How to cite this paper
Chawla, V., Chanda, A & Angra, S. (2018). Automatic guided vehicles fleet size optimization for flexible manufacturing system by grey wolf optimization algorithm.Management Science Letters , 8(2), 79-90.
Refrences
Angeloudis, P., & Bell, M. G. (2010). An uncertainty-aware AGV assignment algorithm for automated container terminals. Transportation Research Part E: Logistics and Transportation Review, 46(3), 354-366.
Arifin, R., & Egbelu, P. J. (2000). Determination of vehicle requirements in automated guided vehicle systems: a statistical approach. Production Planning & Control, 11(3), 258-270.
Bairagi, B., Dey, B., & Sarkar, B. (2013). Incremental analysis for the performance evaluation of material han-dling equipment: A holistic approach. Uncertain Supply Chain Management, 1(2), 77-86.
Bilge, U., & Tanchoco, J. M. (1997). AGV systems with multi-load carriers: basic issues and potential benefits. Journal of Manufacturing Systems, 16(3), 159.
Bozorgi-Amiri, A., Mahmoodian, V., Fahimnia, E., & Saffari, H. (2015). A new memetic algorithm for solving split delivery vehicle routing problem. Management Science Letters, 5(11), 1017-1022.
Bozorg-Haddad, O. (2017). Advanced Optimization by Nature-Inspired Algorithms.
Chang, K. H., Chang, A. L., & Kuo, C. Y. (2014a). A simulation-based framework for multi-objective vehicle fleet sizing of automated material handling systems: an empirical study. Journal of Simulation, 8(4), 271-280.
Chang, K. H., Huang, Y. H., & Yang, S. P. (2014b). Vehicle fleet sizing for automated material handling systems to minimize cost subject to time constraints. IIE Transactions, 46(3), 301-312.
Chawla, V.K., Chanda, A.K., & Angra, S. (2017). Scheduling of multi-load AGVs in FMS by modified memetic particle swarm optimization algorithm. Journal of Project Management, 3(1), 39-54.
Choobineh, F. F., Asef-Vaziri, A., & Huang, X. (2012). Fleet sizing of automated guided vehicles: a linear pro-gramming approach based on closed queuing networks. International Journal of Production Research, 50(12), 3222-3235.
Egbelu, P. J., & Tanchoco, J. M. A. (1986). Potentials for bi-directional guide-path for automated guided vehicle-based systems. International Journal of Production Research, 24(5), 1075-1097.
Ganesharajah, T., Hall, N. G., & Sriskandarajah, C. (1998). Design and operational issues in AGV-served manufacturing systems. Annals of Operations Research, 76, 109-154.
Gharaei, A., Naderi, B., & Mohammadi, M. (2015). Optimization of rewards in single work center scheduling in the rewards-driven systems. Management Science Letters, 5(6), 629-638.
Ho, Y. C., & Liu, H. C. (2009). The performance of load-selection rules and pickup-dispatching rules for multi-ple-load AGVs. Journal of Manufacturing Systems, 28(1), 1-10.
Huang, C. J., Chang, K. H., & Lin, J. T. (2012). Optimal vehicle allocation for an automated materials handling system using simulation optimisation. International Journal of Production Research, 50(20), 5734-5746.
Ji, M., & Xia, J. (2010). Analysis of vehicle requirements in a general automated guided vehicle system based transportation system. Computers & Industrial Engineering, 59(4), 544-551.
Lin, J. T., Chang, K. H., & Huang, C. J. (2010, October). Dynamic vehicle allocation in automated material han-dling system. In Industrial Engineering and Engineering Management (IE&EM), 2010
IEEE 17Th International Conference on (pp. 1523-1527). IEEE.
Mahadevan, B., & T. T. Narendran. (1990). Design of an automated guided vehicle-based material handling sys-tem for a flexible manufacturing system. The International Journal of Production Research 28(9), 1611-1622.
Mahadevan, B., & Narendran, T. T. (1994). A hybrid modeling approach to the design of an AGV-based material handling system for an FMS. The International Journal of Production Research, 32(9), 2015-2030.
Maxwell, W. L., & Muckstadt, J. A. (1982). Design of automatic guided vehicle systems. IIE Transactions, 14(2), 114-124.
Moghadam, B. F., Sadjadi, S. J., & Seyedhosseini, S. M. (2010). An empirical analysis on robust vehicle routing problem: a case study on drug industry. International Journal of Logistics Systems and Management, 7(4), 507-518.
Moghaddam, B. F., Ruiz, R., & Sadjadi, S. J. (2012). Vehicle routing problem with uncertain demands: An ad-vanced particle swarm algorithm. Computers & Industrial Engineering, 62(1), 306-317.
Sadrabadi, M. R., & Sadjadi, S. J. (2009). A new approach to solve multiple objective programming problems. In-ternational Journal of Industrial Engineering & Production Research, 20(1), 41-51.
Sinriech, D., & Tanchoco, J. M. A. (1992). Impact of empty vehicle flow on performance of single-loop AGV systems. The International Journal of Production Research, 30(10), 2237-2252.
Srinivasan, M. M., Bozer, Y. A., & Cho, M. (1994). Trip-based material handling systems: throughput capacity analysis. IIE Transactions, 26(1), 70-89.
Talbot, L. (2003). Design and performance analysis of multi-station automated guided vehicle systems (Doctoral dissertation, Université Catholique de Louvain).
Tanchoco, J. M. A., Egbelu, P. J., & Taghaboni, F. (1987). Determination of the total number of vehicles in an AGV-based material transport system. Material Flow, 4(1-2), 33-51.
Tung, N.S., & Chakravorty, S. (2015). Grey Wolf optimization for active power dispatch planning problem con-sidering generator constraints and valve point effect. International Journal of Hybrid Information Technolo-gy 8(12), 117-134.
Van der Meer, R. (2000). Operational control of internal transport (No. TTS; T2000/5).
Vis, I. F., De Koster, R. M. B. M., Roodbergen, K. J., & Peeters, L. W. (2001). Determination of the number of automated guided vehicles required at a semi-automated container terminal. Journal of the Operational research Society, 409-417.
Yifei, T., Junruo, C., Meihong, L., Xianxi, L., & Yali, F. (2010, July). An estimate and simulation approach to determining the automated guided vehicle fleet size in FMS. In Computer Science and Information Technology (ICCSIT), 2010 3rd IEEE International Conference on (Vol. 9, pp. 432-435). IEEE.
Arifin, R., & Egbelu, P. J. (2000). Determination of vehicle requirements in automated guided vehicle systems: a statistical approach. Production Planning & Control, 11(3), 258-270.
Bairagi, B., Dey, B., & Sarkar, B. (2013). Incremental analysis for the performance evaluation of material han-dling equipment: A holistic approach. Uncertain Supply Chain Management, 1(2), 77-86.
Bilge, U., & Tanchoco, J. M. (1997). AGV systems with multi-load carriers: basic issues and potential benefits. Journal of Manufacturing Systems, 16(3), 159.
Bozorgi-Amiri, A., Mahmoodian, V., Fahimnia, E., & Saffari, H. (2015). A new memetic algorithm for solving split delivery vehicle routing problem. Management Science Letters, 5(11), 1017-1022.
Bozorg-Haddad, O. (2017). Advanced Optimization by Nature-Inspired Algorithms.
Chang, K. H., Chang, A. L., & Kuo, C. Y. (2014a). A simulation-based framework for multi-objective vehicle fleet sizing of automated material handling systems: an empirical study. Journal of Simulation, 8(4), 271-280.
Chang, K. H., Huang, Y. H., & Yang, S. P. (2014b). Vehicle fleet sizing for automated material handling systems to minimize cost subject to time constraints. IIE Transactions, 46(3), 301-312.
Chawla, V.K., Chanda, A.K., & Angra, S. (2017). Scheduling of multi-load AGVs in FMS by modified memetic particle swarm optimization algorithm. Journal of Project Management, 3(1), 39-54.
Choobineh, F. F., Asef-Vaziri, A., & Huang, X. (2012). Fleet sizing of automated guided vehicles: a linear pro-gramming approach based on closed queuing networks. International Journal of Production Research, 50(12), 3222-3235.
Egbelu, P. J., & Tanchoco, J. M. A. (1986). Potentials for bi-directional guide-path for automated guided vehicle-based systems. International Journal of Production Research, 24(5), 1075-1097.
Ganesharajah, T., Hall, N. G., & Sriskandarajah, C. (1998). Design and operational issues in AGV-served manufacturing systems. Annals of Operations Research, 76, 109-154.
Gharaei, A., Naderi, B., & Mohammadi, M. (2015). Optimization of rewards in single work center scheduling in the rewards-driven systems. Management Science Letters, 5(6), 629-638.
Ho, Y. C., & Liu, H. C. (2009). The performance of load-selection rules and pickup-dispatching rules for multi-ple-load AGVs. Journal of Manufacturing Systems, 28(1), 1-10.
Huang, C. J., Chang, K. H., & Lin, J. T. (2012). Optimal vehicle allocation for an automated materials handling system using simulation optimisation. International Journal of Production Research, 50(20), 5734-5746.
Ji, M., & Xia, J. (2010). Analysis of vehicle requirements in a general automated guided vehicle system based transportation system. Computers & Industrial Engineering, 59(4), 544-551.
Lin, J. T., Chang, K. H., & Huang, C. J. (2010, October). Dynamic vehicle allocation in automated material han-dling system. In Industrial Engineering and Engineering Management (IE&EM), 2010
IEEE 17Th International Conference on (pp. 1523-1527). IEEE.
Mahadevan, B., & T. T. Narendran. (1990). Design of an automated guided vehicle-based material handling sys-tem for a flexible manufacturing system. The International Journal of Production Research 28(9), 1611-1622.
Mahadevan, B., & Narendran, T. T. (1994). A hybrid modeling approach to the design of an AGV-based material handling system for an FMS. The International Journal of Production Research, 32(9), 2015-2030.
Maxwell, W. L., & Muckstadt, J. A. (1982). Design of automatic guided vehicle systems. IIE Transactions, 14(2), 114-124.
Moghadam, B. F., Sadjadi, S. J., & Seyedhosseini, S. M. (2010). An empirical analysis on robust vehicle routing problem: a case study on drug industry. International Journal of Logistics Systems and Management, 7(4), 507-518.
Moghaddam, B. F., Ruiz, R., & Sadjadi, S. J. (2012). Vehicle routing problem with uncertain demands: An ad-vanced particle swarm algorithm. Computers & Industrial Engineering, 62(1), 306-317.
Sadrabadi, M. R., & Sadjadi, S. J. (2009). A new approach to solve multiple objective programming problems. In-ternational Journal of Industrial Engineering & Production Research, 20(1), 41-51.
Sinriech, D., & Tanchoco, J. M. A. (1992). Impact of empty vehicle flow on performance of single-loop AGV systems. The International Journal of Production Research, 30(10), 2237-2252.
Srinivasan, M. M., Bozer, Y. A., & Cho, M. (1994). Trip-based material handling systems: throughput capacity analysis. IIE Transactions, 26(1), 70-89.
Talbot, L. (2003). Design and performance analysis of multi-station automated guided vehicle systems (Doctoral dissertation, Université Catholique de Louvain).
Tanchoco, J. M. A., Egbelu, P. J., & Taghaboni, F. (1987). Determination of the total number of vehicles in an AGV-based material transport system. Material Flow, 4(1-2), 33-51.
Tung, N.S., & Chakravorty, S. (2015). Grey Wolf optimization for active power dispatch planning problem con-sidering generator constraints and valve point effect. International Journal of Hybrid Information Technolo-gy 8(12), 117-134.
Van der Meer, R. (2000). Operational control of internal transport (No. TTS; T2000/5).
Vis, I. F., De Koster, R. M. B. M., Roodbergen, K. J., & Peeters, L. W. (2001). Determination of the number of automated guided vehicles required at a semi-automated container terminal. Journal of the Operational research Society, 409-417.
Yifei, T., Junruo, C., Meihong, L., Xianxi, L., & Yali, F. (2010, July). An estimate and simulation approach to determining the automated guided vehicle fleet size in FMS. In Computer Science and Information Technology (ICCSIT), 2010 3rd IEEE International Conference on (Vol. 9, pp. 432-435). IEEE.