How to cite this paper
Aikhuele, D & Turan, F. (2017). A subjective and objective fuzzy-based analytical hierarchy process model for prioritization of lean product development practices.Management Science Letters , 7(6), 297-310.
Refrences
Aikhuele, D. O., & Turan, F. M. (2016a). A Hybrid Fuzzy Model for Lean Product Development Performance Measurement. IOP Conference Series: Materials Science and Engineering, 114(1), 012048. http://doi.org/10.1088/1757-899X/114/1/012048
Aikhuele, D. O., & Turan, F. M. (2016b). Proposal for a Conceptual Model for Evaluating Lean Product Development Performance: A Study of LPD Enablers in Manufacturing Companies. 2Nd International Manufacturing Engineering Conference and 3Rd Asia-Pacific Conference on Manufacturing Systems (Imec-Apcoms 2015), 114. http://doi.org/10.1088/1757-899X/114/1/012047
Al-ashaab, A., Andino, A., & Summers, M. (2013). Lean product development performance measurement tool. Proceedings of the 11th International Conference on Manufacturing Research (ICMR2013) Advances in Manufacturing Technology XXVII: 19-20 September 2013. Cranfield, Bedfordshire, UK., (September), 19–20.
Al-Ashaab, A., Golob, M., Urrutia, U. A., Gourdin, M., Petritsch, C., Summers, M., & El-Nounu, A. (2015). Development and application of lean product development performance measurement tool. International Journal of Computer Integrated Manufacturing, (October), 1–13. http://doi.org/10.1080/0951192X.2015.1066858
Aly, S., & Vrana, I. (2008). Evaluating the knowledge, relevance, and experience of expert decision makers utilizing the Fuzzy-AHP. Agricultural Economics, 54(11), 529–535.
Avicnnasis. (2011). Famous Theorems of Mathematics/Algebra/Matrix Theory.
Baruah, H., & K. (1999). Set Superimposition and Its Application to the Theory of Fuzzy Sets. Journal of Assam Science Society, 40, 25 –31.
Braglia1, M., Frosolini, M., & Montanari, R. (2003). Fuzzy TOPSIS approach for failure mode, effects, and criticality analysis. Quality and Reliability Engineering International, 19(5), 425–443.
Carulli, M., Bordegoni, M., & Cugini, U. (2013). An approach for capturing the Voice of the Customer based on Virtual Prototyping. Journal of Intelligent Manufacturing, 24, 887–903. http://doi.org/10.1007/s10845-012-0662-5
Chaghooshi, A. J., Fathi, M. R., & Kashef, M. (2012). Integration of fuzzy Shannon’s entropy with fuzzy TOPSIS for industrial robotic system selection. Journal of Industrial Engineering and Management, 5(1), 102–114. http://doi.org/10.3926/jiem.397
Chang, D.-Y. (1996). Applications of the extent analysis method on fuzzy AHP. European Journal of Operational Research, 95(95), 649–655. http://doi.org/10.1016/0377-2217(95)00300-2
Chen, S.-M., & Tan, J.-M. (1994). Handling multicriteria fuzzy decision-making problems based on vague set theory. Fuzzy Sets and Systems, 67(2), 163–172.
Chiclana, F., Herrera, F., & Herrera-Viedma, E. (2002). The Ordered Weighted Geometric Operator: Properties and Application in MCDM Problems. In S. V. 90 (Ed.), Technologies for Constructing Intelligent Systems 2 (pp. 173–183). Physica-Verlag HD. http://doi.org/10.1007/978-3-7908-1796-6_14
Christopher, T., & John, J. S. (2014). Multicriteria decision technique on product prioritization. International Journal of Emerging Engineering Research and Technology, 2(3), 194–200.
Corallo, A., Laubacher, R., Margherita, A., & Turrisi, G. (2009). Enhancing product development through knowledge-based engineering (KBE): A case study in the aerospace industry. Journal of Manufacturing Technology Management, 20, 1070–1083. http://doi.org/10.1108/17410380910997218
Daniel Osezua Aikhuele, Fathi S. Souleman, A. A. (2014). Application of Fuzzy AHP for Ranking Critical Success Factors for the Successful Implementation of Lean Production Technique. Australian Journal of Basic and Applied Sciences, 8(December), 399–407.
Echtelt, F. Van, & Wynstra, F. (2001). Managing supplier integration into product development: a literature review and conceptual model. The Future of Innovation Studies, 1–22. Retrieved from http://cms.tm.tue.nl/Ecis/Files/papers/wp2002/eciswp55.pdf
GINEVIČIUS, R. (2011). A new determining method for the criteria weights in multi-criteria evaluation. International Journal of Information Technology & Decision Making, 10(6).
Harland, P. E., & Uddin, Z. (2014). Effects of product platform development: fostering lean product development and production. International Journal of Product Development, 19(5), 259–285. http://doi.org/10.1504/IJPD.2014.064881
Ho, Y., & Wang, H. (2008). Applying fuzzy Delphi method to select the variables of a sustainable urban system dynamics model. … Conference of the System Dynamics …, 1–21. Retrieved from http://www.systemsmodelbook.org/uploadedfile/1376_272c89b6-32c7-4a9d-8a77-b7c613d7a0d2_HO311.pdf
Hwang C. L., & Yoon K. (1981). Multiple Attribute Decision Making Methods and Applications. Berlin: Springer.
Ishikawa, A., Amagasa, M., Shiga, T., Tomizawa, G., Tatsuta, R., & Mieno, H. (1993). The max-min Delphi method and fuzzy Delphi method via fuzzy integration. Fuzzy Sets and Systems, 55(3), 241–253. Retrieved from http://leansi.wp.mines-telecom.fr/files/2009/11/Oobeya-article-2009.pdf
Jurado, M. C. (2012). Visual Planning in Lean Product Development. Master Thesis.
Kahraman, C., Cebeci, U., & Ruan, D. (2004). Multi-attribute comparison of catering service companies using fuzzy AHP: The case of Turkey. International Journal of Production Economics, 87(2), 171–184. http://doi.org/10.1016/S0925-5273(03)00099-9
Kao, C. (2010). Weight determination for consistently ranking alternatives in multiple criteria decision analysis. Applied Mathematical Modelling, 34(7), 1779–1787. http://doi.org/10.1016/j.apm.2009.09.022
Khan, M., & Al-Ashaab, A. (2013). Towards lean product and process development. International Journal of Computer Integrated Manufacturing, 26(12), 1105–1116. Retrieved from http://www.tandfonline.com/doi/abs/10.1080/0951192X.2011.608723
Kim, B. Y., & Kang, B. K. (2008). Cross-functional cooperation with design teams in new product development. International Journal of Design, 2(3), 43–54.
Kong, F., & Liu, H. (2005). Applying fuzzy analytic hierarchy process to evaluate success factors of e-commerce. International Journal of Information and Systems Sciences, 1(3), 406–412.
Leonardi, G. (2016). A Fuzzy Model for a Railway-Planning Problem. Applied Mathematical Sciences, 10(27), 1333–1342.
Li, C. Q. (2010). A New Likert Scale Based on Fuzzy Sets Theory. Ph.D. Thesis.
Ma, J., Fan, Z.-P., & Huang, L.-H. (1999). A subjective and objective integrated approach to determine attribute weights. European Journal of Operational Research, 112(2), 397–404. http://doi.org/10.1016/S0377-2217(98)00141-6
Nurnadiah, Z., & Lazim, A. (2012). A New Weight of Interval Type-2 Fuzzy Rasch Model. Applied Mathematical Sciences, 6(75), 3705–3722.
Oguztimur, S. (2011). Why Fuzzy Analytic Hierarchy Process Approach for Transport Problems? In European Regional Science Association ERSA Conference Papers, Augasse 2–6, 1090 Vienna, Austria, ersa11, 438. (pp. 1–19). Retrieved from http://www.screawu.ac
Parmar, K. R., & Bhoi, U. (2015). Geometric Mean based Algorithm for Prioritizing Processors on Cloud Environment. International Journal of Computer Applications, 120(23), 14–18.
Parry, G. C., & Turner, C. E. (2006). Application of lean visual process management tools. Production Planning & Control, 17(1), 77–86. http://doi.org/10.1080/09537280500414991
Petersen, K. J., Handfield, R. B., & Ragatz, G. L. (2003). A model of supplier integration into new product development. Journal of Product Innovation Management, 20, 284–299. http://doi.org/10.1111/1540-5885.00028
Petersen, K. J., Handfield, R. B., & Ragatz, G. L. (2005). Supplier integration into new product development: Coordinating product, process, and supply chain design. Journal of Operations Management, 23, 371–388. http://doi.org/10.1016/j.jom.2004.07.009
Prasolov, V. (1994). Problems and Theorems in Linear Algebra. Americal Mathematical Society.
Pugh, S. (1996). Creating innovative products using total design: The living legacy of Stuart Pugh. Reading, MA: Addison-Wesley.
Ramik, J. (2009). Consistency of pair-wise comparison matrix with fuzzy elements. In Proceedings of the Joint 2009 International Fuzzy Systems Association World Congress and 2009 European Society of Fuzzy Logic and Technology Conference, Lisbon, Portugal, July 20-24, 2009. (pp. 98–101).
Roszkowska, E. (2013). Rank ordering criteria weighting methods – a comparative overview. Optimum.Studia Ekonomiczne Nr, 5(65), 14 – 33. http://doi.org/10.15290/ose.2013.05.65.02
Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83. http://doi.org/10.1504/IJSSCI.2008.017590
Stenholm, D., Mathiesen, H., & Bergsjo, D. (2015). Knowledge-Based Development in Automotive Industry Guided by Lean Enablers for System Engineering. Procedia Computer Science, 44, 244–253. http://doi.org/10.1016/j.procs.2015.03.047
Stirn, L. Z., & Grošelj, P. (2010). Multiple Criteria Methods With Focus on Analytical Hierarchy Process and Group Decision-making. Croatian Operational Research Review, 1, 2–11.
Turan, F. B. M. (2013). A three-stage methodology for design evaluation in product development. Ph.D. Thesis, (December).
van Til, J., Groothuis-Oudshoorn, C., Lieferink, M., Dolan, J., & Goetghebeur, M. (2014). Does technique matter; a pilot study exploring weighting techniques for a multi-criteria decision support framework. Cost Effectiveness and Resource Allocation : C/E, 12(1), 22. http://doi.org/10.1186/1478-7547-12-22
Verhagen, W. J. C., Bermell-Garcia, P., Van Dijk, R. E. C., & Curran, R. (2012). A critical review of Knowledge-Based Engineering: An identification of research challenges. Advanced Engineering Informatics, 26(1), 5–15. http://doi.org/10.1016/j.aei.2011.06.004
Wang, Y. M., & Chin, K. S. (2011). Fuzzy analytic hierarchy process: A logarithmic fuzzy preference programming methodology. International Journal of Approximate Reasoning, 52(4), 541–553. http://doi.org/10.1016/j.ijar.2010.12.004
Wu, W., Chiang, C., & Lin, C. (1998). Comparing the aggregation methods in the analytic hierarchy process when uniform distribution. WSEAS Transactions on Business and Economics, 5, 82–87.
Aikhuele, D. O., & Turan, F. M. (2016b). Proposal for a Conceptual Model for Evaluating Lean Product Development Performance: A Study of LPD Enablers in Manufacturing Companies. 2Nd International Manufacturing Engineering Conference and 3Rd Asia-Pacific Conference on Manufacturing Systems (Imec-Apcoms 2015), 114. http://doi.org/10.1088/1757-899X/114/1/012047
Al-ashaab, A., Andino, A., & Summers, M. (2013). Lean product development performance measurement tool. Proceedings of the 11th International Conference on Manufacturing Research (ICMR2013) Advances in Manufacturing Technology XXVII: 19-20 September 2013. Cranfield, Bedfordshire, UK., (September), 19–20.
Al-Ashaab, A., Golob, M., Urrutia, U. A., Gourdin, M., Petritsch, C., Summers, M., & El-Nounu, A. (2015). Development and application of lean product development performance measurement tool. International Journal of Computer Integrated Manufacturing, (October), 1–13. http://doi.org/10.1080/0951192X.2015.1066858
Aly, S., & Vrana, I. (2008). Evaluating the knowledge, relevance, and experience of expert decision makers utilizing the Fuzzy-AHP. Agricultural Economics, 54(11), 529–535.
Avicnnasis. (2011). Famous Theorems of Mathematics/Algebra/Matrix Theory.
Baruah, H., & K. (1999). Set Superimposition and Its Application to the Theory of Fuzzy Sets. Journal of Assam Science Society, 40, 25 –31.
Braglia1, M., Frosolini, M., & Montanari, R. (2003). Fuzzy TOPSIS approach for failure mode, effects, and criticality analysis. Quality and Reliability Engineering International, 19(5), 425–443.
Carulli, M., Bordegoni, M., & Cugini, U. (2013). An approach for capturing the Voice of the Customer based on Virtual Prototyping. Journal of Intelligent Manufacturing, 24, 887–903. http://doi.org/10.1007/s10845-012-0662-5
Chaghooshi, A. J., Fathi, M. R., & Kashef, M. (2012). Integration of fuzzy Shannon’s entropy with fuzzy TOPSIS for industrial robotic system selection. Journal of Industrial Engineering and Management, 5(1), 102–114. http://doi.org/10.3926/jiem.397
Chang, D.-Y. (1996). Applications of the extent analysis method on fuzzy AHP. European Journal of Operational Research, 95(95), 649–655. http://doi.org/10.1016/0377-2217(95)00300-2
Chen, S.-M., & Tan, J.-M. (1994). Handling multicriteria fuzzy decision-making problems based on vague set theory. Fuzzy Sets and Systems, 67(2), 163–172.
Chiclana, F., Herrera, F., & Herrera-Viedma, E. (2002). The Ordered Weighted Geometric Operator: Properties and Application in MCDM Problems. In S. V. 90 (Ed.), Technologies for Constructing Intelligent Systems 2 (pp. 173–183). Physica-Verlag HD. http://doi.org/10.1007/978-3-7908-1796-6_14
Christopher, T., & John, J. S. (2014). Multicriteria decision technique on product prioritization. International Journal of Emerging Engineering Research and Technology, 2(3), 194–200.
Corallo, A., Laubacher, R., Margherita, A., & Turrisi, G. (2009). Enhancing product development through knowledge-based engineering (KBE): A case study in the aerospace industry. Journal of Manufacturing Technology Management, 20, 1070–1083. http://doi.org/10.1108/17410380910997218
Daniel Osezua Aikhuele, Fathi S. Souleman, A. A. (2014). Application of Fuzzy AHP for Ranking Critical Success Factors for the Successful Implementation of Lean Production Technique. Australian Journal of Basic and Applied Sciences, 8(December), 399–407.
Echtelt, F. Van, & Wynstra, F. (2001). Managing supplier integration into product development: a literature review and conceptual model. The Future of Innovation Studies, 1–22. Retrieved from http://cms.tm.tue.nl/Ecis/Files/papers/wp2002/eciswp55.pdf
GINEVIČIUS, R. (2011). A new determining method for the criteria weights in multi-criteria evaluation. International Journal of Information Technology & Decision Making, 10(6).
Harland, P. E., & Uddin, Z. (2014). Effects of product platform development: fostering lean product development and production. International Journal of Product Development, 19(5), 259–285. http://doi.org/10.1504/IJPD.2014.064881
Ho, Y., & Wang, H. (2008). Applying fuzzy Delphi method to select the variables of a sustainable urban system dynamics model. … Conference of the System Dynamics …, 1–21. Retrieved from http://www.systemsmodelbook.org/uploadedfile/1376_272c89b6-32c7-4a9d-8a77-b7c613d7a0d2_HO311.pdf
Hwang C. L., & Yoon K. (1981). Multiple Attribute Decision Making Methods and Applications. Berlin: Springer.
Ishikawa, A., Amagasa, M., Shiga, T., Tomizawa, G., Tatsuta, R., & Mieno, H. (1993). The max-min Delphi method and fuzzy Delphi method via fuzzy integration. Fuzzy Sets and Systems, 55(3), 241–253. Retrieved from http://leansi.wp.mines-telecom.fr/files/2009/11/Oobeya-article-2009.pdf
Jurado, M. C. (2012). Visual Planning in Lean Product Development. Master Thesis.
Kahraman, C., Cebeci, U., & Ruan, D. (2004). Multi-attribute comparison of catering service companies using fuzzy AHP: The case of Turkey. International Journal of Production Economics, 87(2), 171–184. http://doi.org/10.1016/S0925-5273(03)00099-9
Kao, C. (2010). Weight determination for consistently ranking alternatives in multiple criteria decision analysis. Applied Mathematical Modelling, 34(7), 1779–1787. http://doi.org/10.1016/j.apm.2009.09.022
Khan, M., & Al-Ashaab, A. (2013). Towards lean product and process development. International Journal of Computer Integrated Manufacturing, 26(12), 1105–1116. Retrieved from http://www.tandfonline.com/doi/abs/10.1080/0951192X.2011.608723
Kim, B. Y., & Kang, B. K. (2008). Cross-functional cooperation with design teams in new product development. International Journal of Design, 2(3), 43–54.
Kong, F., & Liu, H. (2005). Applying fuzzy analytic hierarchy process to evaluate success factors of e-commerce. International Journal of Information and Systems Sciences, 1(3), 406–412.
Leonardi, G. (2016). A Fuzzy Model for a Railway-Planning Problem. Applied Mathematical Sciences, 10(27), 1333–1342.
Li, C. Q. (2010). A New Likert Scale Based on Fuzzy Sets Theory. Ph.D. Thesis.
Ma, J., Fan, Z.-P., & Huang, L.-H. (1999). A subjective and objective integrated approach to determine attribute weights. European Journal of Operational Research, 112(2), 397–404. http://doi.org/10.1016/S0377-2217(98)00141-6
Nurnadiah, Z., & Lazim, A. (2012). A New Weight of Interval Type-2 Fuzzy Rasch Model. Applied Mathematical Sciences, 6(75), 3705–3722.
Oguztimur, S. (2011). Why Fuzzy Analytic Hierarchy Process Approach for Transport Problems? In European Regional Science Association ERSA Conference Papers, Augasse 2–6, 1090 Vienna, Austria, ersa11, 438. (pp. 1–19). Retrieved from http://www.screawu.ac
Parmar, K. R., & Bhoi, U. (2015). Geometric Mean based Algorithm for Prioritizing Processors on Cloud Environment. International Journal of Computer Applications, 120(23), 14–18.
Parry, G. C., & Turner, C. E. (2006). Application of lean visual process management tools. Production Planning & Control, 17(1), 77–86. http://doi.org/10.1080/09537280500414991
Petersen, K. J., Handfield, R. B., & Ragatz, G. L. (2003). A model of supplier integration into new product development. Journal of Product Innovation Management, 20, 284–299. http://doi.org/10.1111/1540-5885.00028
Petersen, K. J., Handfield, R. B., & Ragatz, G. L. (2005). Supplier integration into new product development: Coordinating product, process, and supply chain design. Journal of Operations Management, 23, 371–388. http://doi.org/10.1016/j.jom.2004.07.009
Prasolov, V. (1994). Problems and Theorems in Linear Algebra. Americal Mathematical Society.
Pugh, S. (1996). Creating innovative products using total design: The living legacy of Stuart Pugh. Reading, MA: Addison-Wesley.
Ramik, J. (2009). Consistency of pair-wise comparison matrix with fuzzy elements. In Proceedings of the Joint 2009 International Fuzzy Systems Association World Congress and 2009 European Society of Fuzzy Logic and Technology Conference, Lisbon, Portugal, July 20-24, 2009. (pp. 98–101).
Roszkowska, E. (2013). Rank ordering criteria weighting methods – a comparative overview. Optimum.Studia Ekonomiczne Nr, 5(65), 14 – 33. http://doi.org/10.15290/ose.2013.05.65.02
Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83. http://doi.org/10.1504/IJSSCI.2008.017590
Stenholm, D., Mathiesen, H., & Bergsjo, D. (2015). Knowledge-Based Development in Automotive Industry Guided by Lean Enablers for System Engineering. Procedia Computer Science, 44, 244–253. http://doi.org/10.1016/j.procs.2015.03.047
Stirn, L. Z., & Grošelj, P. (2010). Multiple Criteria Methods With Focus on Analytical Hierarchy Process and Group Decision-making. Croatian Operational Research Review, 1, 2–11.
Turan, F. B. M. (2013). A three-stage methodology for design evaluation in product development. Ph.D. Thesis, (December).
van Til, J., Groothuis-Oudshoorn, C., Lieferink, M., Dolan, J., & Goetghebeur, M. (2014). Does technique matter; a pilot study exploring weighting techniques for a multi-criteria decision support framework. Cost Effectiveness and Resource Allocation : C/E, 12(1), 22. http://doi.org/10.1186/1478-7547-12-22
Verhagen, W. J. C., Bermell-Garcia, P., Van Dijk, R. E. C., & Curran, R. (2012). A critical review of Knowledge-Based Engineering: An identification of research challenges. Advanced Engineering Informatics, 26(1), 5–15. http://doi.org/10.1016/j.aei.2011.06.004
Wang, Y. M., & Chin, K. S. (2011). Fuzzy analytic hierarchy process: A logarithmic fuzzy preference programming methodology. International Journal of Approximate Reasoning, 52(4), 541–553. http://doi.org/10.1016/j.ijar.2010.12.004
Wu, W., Chiang, C., & Lin, C. (1998). Comparing the aggregation methods in the analytic hierarchy process when uniform distribution. WSEAS Transactions on Business and Economics, 5, 82–87.