How to cite this paper
Gharakhani, M., Kazemi, I & Haji, H. (2011). A robust DEA model for measuring the relative efficiency of Iranian high schools.Management Science Letters , 1(3), 389-404.
Refrences
Aigner, D., & Chu, S. (1968). On estimating the industry production function. The American Economic Review, 58(4), 826-839.
Aigner, D., Lovell, C., & Schmidt, P. (1977). Formulation and Estimation of Frontier Production, Profit and Cost Functions. Journal of econometrics, 6(1), 21-37.Bagi, F., & Huang, C. (1983). Estimating production technical efficiency for individual farms in Tennessee. Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, 31(2), 249-256.Barrow, M. (1991). Measuring local education authority performance: a frontier approach. Economics of Education Review, 10(1), 19-27.
Battese, G., & Coelli, T. (1988). Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data* 1. Journal of econometrics, 38(3), 387-399.Battese, G., & Corra, G. (1977). Estimation of a production frontier model: with application to the pastoral zone of Eastern Australia. Australian Journal of Agricultural Economics, 21(3), 169-179.
Ben-Tal, A., & Nemirovski, A. (1998). Robust convex optimization. Mathematics of Operations Research, 23(4), 769-805.
Ben-Tal, A., & Nemirovski, A. (1999). Robust solutions of uncertain linear programs. Operations Research Letters, 25(1), 1-14.
Ben-Tal, A., & Nemirovski, A. (2000). Robust solutions of linear programming problems contaminated with uncertain data. Mathematical Programming, 88(3), 411-424.
Bertsimas, D., & Sim, M. (2003). Robust discrete optimization and network flows. Mathematical Programming, 98(1), 49-71.
Bertsimas, D., & Sim, M. (2004). The price of robustness. Operations Research, 52(1), 35-53.
Bertsimas, D., & Sim, M. (2006). Tractable approximations to robust conic optimization problems. Mathematical Programming, 107(1), 5-36.
Bertsimas, D., Pachamanova, D., & Sim, M. (2004). Robust linear optimization under general norms. Operations Research Letters, 32(6), 510-516.
Bessent, A., & Bessent, E. (1980). Determining the comparative efficiency of schools through data envelopment analysis. Educational Administration Quarterly, 16(2), 57.Bessent, A., Bessent, W., Kennington, J., & Reagan, B. (1982). An application of mathematical programming to assess productivity in the Houston independent school district. Management Science, 28(12), 1355-1367.
Bonesrqnning, H., & Rattsq, J. (1994). Efficiency variation among the Norwegian high schools: consequences of equalization policy. Economics of Education Review, 13(4), 289-304.
Charnes, W. (1978). Measuring the efficiency of decision making units* 1. European journal of operational research, 2(6), 429-444.Coelli, T. (1994). A guide to FRONTIER version 4.1: a computer program for stochastic frontier production and cost function estimation. Department of Econometrics, University of New England, Armidale, Australia.Coelli, T., & Perelman, S. (1999). A comparison of parametric and non-parametric distance functions: With application to European railways. European journal of operational research, 117(2), 326-339.Cooper, S., & Cohn, E. (1997). Estimation of a frontier production function for the South Carolina educational process. Economics of Education Review, 16(3), 313-327.
El-Ghaoui, L., & Lebret, H. (1997). Robust solutions to least-square problems to uncertain data matrices. SIAM J. Matrix Anal. Appl, 18, 1035-1064.
Falk, J. (1976). Exact solutions of inexact linear programs. Operations Research, 24(4), 783-787.
Färe, R., Grosskopf, S., & Weber, W. (1989). Measuring school district performance. Public Finance Review, 17(4), 409.Forsund, F., Lovell, C., & Schmidt, P. (1980). A survey of frontier production functions and of their relationship to efficiency measurement. Journal of econometrics, 13(1), 5-25.Grosskopf, S., Hayes, K., Taylor, L., & Weber, W. (1997). Budget-constrained frontier measures of fiscal equality and efficiency in schooling. Review of Economics and Statistics, 79(1), 116-124.
Jesson, D., Mayston, D., & Smith, P. (1987). Performance assessment in the education sector: educational and economic perspectives. Oxford Review of Education, 13(3), 249-266.
Jondrow, C. (1982). On the estimation of technical inefficiency in the stochastic frontier production function model* 1. Journal of econometrics, 19(2-3), 233-238.
Kalirajan, K., & Flinn, J. (1983). The measurement of farm specific technical efficiency. Pakistan Journal of Applied Economics, 2(2), 167-180.
Klitgaard, R., & Hall, G. (1975). Are there unusually effective schools? Journal of Human Resources, 90-106.Kumbhakar, S., Ghosh, S., & McGuckin, J. (1991). A generalized production frontier approach for estimating determinants of inefficiency in US dairy farms. Journal of Business & Economic Statistics, 9(3), 279-286.
Lee, L., & Tyler, W. (1978). The stochastic frontier production function and average efficiency: An empirical analysis. Journal of econometrics, 7(3), 385-389.Levin, H. (1974). Measuring efficiency in education production”. Public Finance Quaterly, 2, 2-24.
Levin, H., Jamison, D., & Radner, R. (1976). Concepts of economic efficiency and educational production. NBER Chapters, 149-198.
Ludwin, W., & Guthrie, T. (1989). Assessing productivity with data envelopment analysis. Public Productivity Review, 12(4), 361-372.
McCarty, T., & Yaisawarng, S. (1993). Technical efficiency in New Jersey school districts. The measurement of productive efficiency: techniques and applications, 271-287.
Meeusen, W., & van Den Broeck, J. (1977). Efficiency estimation from Cobb-Douglas production functions with composed error. International Economic Review, 435-444.
Pitt, M., & Lee, L. (1981). The measurement and sources of technical inefficiency in the Indonesian weaving industry. Journal of Development Economics, 9(1), 43-64.
Ray, S. (1991). Resource-use efficiency in public schools: A study of Connecticut data. Management Science, 37(12), 1620-1628.
Sadjadi, S., & Omrani, H. (2008). Data envelopment analysis with uncertain data: An application for Iranian electricity distribution companies. Energy Policy, 36(11), 4247-4254.
Schmidt, P., & Sickles, R. (1984). Production frontiers and panel data. Journal of Business & Economic Statistics, 2(4), 367-374.
Simar, L., & Wilson, P. (1998). Sensitivity analysis of efficiency scores: How to bootstrap in nonparametric frontier models. Management Science, 44(1), 49-61.
Simar, L., & Wilson, P. (2000). A general methodology for bootstrapping in non-parametric frontier models. Journal of Applied Statistics, 27(6), 779-802.
Soyster, A. (1973). Convex programming with set-inclusive constraints and applications to inexact linear programming. Operations Research, 21(5), 1154-1157.
Waldman, D. (1984). Properties of technical efficiency estimators in the stochastic frontier model. Journal of econometrics, 25(3), 353-364.Wyckoff, J., & Lavinge, J. (1991). The Relative Inefficiency of Public Elementary Schools in New York. In: Working Paper, State University of New York, Albany.
Zhu, J. (1998). Data envelopment analysis vs. principal component analysis: An illustrative study of economic performance of Chinese cities. European journal of operational research, 111(1), 50-61.
Aigner, D., Lovell, C., & Schmidt, P. (1977). Formulation and Estimation of Frontier Production, Profit and Cost Functions. Journal of econometrics, 6(1), 21-37.Bagi, F., & Huang, C. (1983). Estimating production technical efficiency for individual farms in Tennessee. Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, 31(2), 249-256.Barrow, M. (1991). Measuring local education authority performance: a frontier approach. Economics of Education Review, 10(1), 19-27.
Battese, G., & Coelli, T. (1988). Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data* 1. Journal of econometrics, 38(3), 387-399.Battese, G., & Corra, G. (1977). Estimation of a production frontier model: with application to the pastoral zone of Eastern Australia. Australian Journal of Agricultural Economics, 21(3), 169-179.
Ben-Tal, A., & Nemirovski, A. (1998). Robust convex optimization. Mathematics of Operations Research, 23(4), 769-805.
Ben-Tal, A., & Nemirovski, A. (1999). Robust solutions of uncertain linear programs. Operations Research Letters, 25(1), 1-14.
Ben-Tal, A., & Nemirovski, A. (2000). Robust solutions of linear programming problems contaminated with uncertain data. Mathematical Programming, 88(3), 411-424.
Bertsimas, D., & Sim, M. (2003). Robust discrete optimization and network flows. Mathematical Programming, 98(1), 49-71.
Bertsimas, D., & Sim, M. (2004). The price of robustness. Operations Research, 52(1), 35-53.
Bertsimas, D., & Sim, M. (2006). Tractable approximations to robust conic optimization problems. Mathematical Programming, 107(1), 5-36.
Bertsimas, D., Pachamanova, D., & Sim, M. (2004). Robust linear optimization under general norms. Operations Research Letters, 32(6), 510-516.
Bessent, A., & Bessent, E. (1980). Determining the comparative efficiency of schools through data envelopment analysis. Educational Administration Quarterly, 16(2), 57.Bessent, A., Bessent, W., Kennington, J., & Reagan, B. (1982). An application of mathematical programming to assess productivity in the Houston independent school district. Management Science, 28(12), 1355-1367.
Bonesrqnning, H., & Rattsq, J. (1994). Efficiency variation among the Norwegian high schools: consequences of equalization policy. Economics of Education Review, 13(4), 289-304.
Charnes, W. (1978). Measuring the efficiency of decision making units* 1. European journal of operational research, 2(6), 429-444.Coelli, T. (1994). A guide to FRONTIER version 4.1: a computer program for stochastic frontier production and cost function estimation. Department of Econometrics, University of New England, Armidale, Australia.Coelli, T., & Perelman, S. (1999). A comparison of parametric and non-parametric distance functions: With application to European railways. European journal of operational research, 117(2), 326-339.Cooper, S., & Cohn, E. (1997). Estimation of a frontier production function for the South Carolina educational process. Economics of Education Review, 16(3), 313-327.
El-Ghaoui, L., & Lebret, H. (1997). Robust solutions to least-square problems to uncertain data matrices. SIAM J. Matrix Anal. Appl, 18, 1035-1064.
Falk, J. (1976). Exact solutions of inexact linear programs. Operations Research, 24(4), 783-787.
Färe, R., Grosskopf, S., & Weber, W. (1989). Measuring school district performance. Public Finance Review, 17(4), 409.Forsund, F., Lovell, C., & Schmidt, P. (1980). A survey of frontier production functions and of their relationship to efficiency measurement. Journal of econometrics, 13(1), 5-25.Grosskopf, S., Hayes, K., Taylor, L., & Weber, W. (1997). Budget-constrained frontier measures of fiscal equality and efficiency in schooling. Review of Economics and Statistics, 79(1), 116-124.
Jesson, D., Mayston, D., & Smith, P. (1987). Performance assessment in the education sector: educational and economic perspectives. Oxford Review of Education, 13(3), 249-266.
Jondrow, C. (1982). On the estimation of technical inefficiency in the stochastic frontier production function model* 1. Journal of econometrics, 19(2-3), 233-238.
Kalirajan, K., & Flinn, J. (1983). The measurement of farm specific technical efficiency. Pakistan Journal of Applied Economics, 2(2), 167-180.
Klitgaard, R., & Hall, G. (1975). Are there unusually effective schools? Journal of Human Resources, 90-106.Kumbhakar, S., Ghosh, S., & McGuckin, J. (1991). A generalized production frontier approach for estimating determinants of inefficiency in US dairy farms. Journal of Business & Economic Statistics, 9(3), 279-286.
Lee, L., & Tyler, W. (1978). The stochastic frontier production function and average efficiency: An empirical analysis. Journal of econometrics, 7(3), 385-389.Levin, H. (1974). Measuring efficiency in education production”. Public Finance Quaterly, 2, 2-24.
Levin, H., Jamison, D., & Radner, R. (1976). Concepts of economic efficiency and educational production. NBER Chapters, 149-198.
Ludwin, W., & Guthrie, T. (1989). Assessing productivity with data envelopment analysis. Public Productivity Review, 12(4), 361-372.
McCarty, T., & Yaisawarng, S. (1993). Technical efficiency in New Jersey school districts. The measurement of productive efficiency: techniques and applications, 271-287.
Meeusen, W., & van Den Broeck, J. (1977). Efficiency estimation from Cobb-Douglas production functions with composed error. International Economic Review, 435-444.
Pitt, M., & Lee, L. (1981). The measurement and sources of technical inefficiency in the Indonesian weaving industry. Journal of Development Economics, 9(1), 43-64.
Ray, S. (1991). Resource-use efficiency in public schools: A study of Connecticut data. Management Science, 37(12), 1620-1628.
Sadjadi, S., & Omrani, H. (2008). Data envelopment analysis with uncertain data: An application for Iranian electricity distribution companies. Energy Policy, 36(11), 4247-4254.
Schmidt, P., & Sickles, R. (1984). Production frontiers and panel data. Journal of Business & Economic Statistics, 2(4), 367-374.
Simar, L., & Wilson, P. (1998). Sensitivity analysis of efficiency scores: How to bootstrap in nonparametric frontier models. Management Science, 44(1), 49-61.
Simar, L., & Wilson, P. (2000). A general methodology for bootstrapping in non-parametric frontier models. Journal of Applied Statistics, 27(6), 779-802.
Soyster, A. (1973). Convex programming with set-inclusive constraints and applications to inexact linear programming. Operations Research, 21(5), 1154-1157.
Waldman, D. (1984). Properties of technical efficiency estimators in the stochastic frontier model. Journal of econometrics, 25(3), 353-364.Wyckoff, J., & Lavinge, J. (1991). The Relative Inefficiency of Public Elementary Schools in New York. In: Working Paper, State University of New York, Albany.
Zhu, J. (1998). Data envelopment analysis vs. principal component analysis: An illustrative study of economic performance of Chinese cities. European journal of operational research, 111(1), 50-61.