How to cite this paper
Farahmand, H., Harounabadi, A & Mirabedini, S. (2014). Document features selection using background knowledge and word clustering technique.Management Science Letters , 4(2), 241-250.
Refrences
Bloehdorn, S., Cimiano, P., Hotho, A., & Staab, S. (2005, May). An Ontology-based Framework for Text Mining. In LDV Forum, 20(1), 87-112.
Bracewell, D., Ren, F., & Kuroiwa, S. (2005). Multilingual Single Document Keyword Extraction for Information Retrieval. In Proc. IEEE Int. Conf. Natural Language Processing and Knowledge Eng, 517-522.
Breaux, T. D., & Reed, J. W. (2005). Using Ontology in Hierarchical Information Clustering. In Proc. 38th Hawaii Int. Conf. System Sciences.
Dash, M., & Liu, H. (1997). Feature selection for classification. Intelligent data analysis, 1(3), 131-156.
Fellbaum, C. (1998). WordNet: an electronic lexical database. MIT Press.
Forman, G. (2003). An extensive empirical study of feature selection metrics for text classification. The Journal of Machine Learning Research, 3, 1289-1305.
Guyon, I., & Elisseff, A. (2003). An Introduction to variable and feature selection. Machine Learning Research 3, 1157-1182.
Han, H., Manavoglu, E., Zha, H., Tsioutsiouliklis, K., Lee Giles, C., & Zhang, X. (2005). Rule-based Word Clustering for Document Metadata Extraction. ACM Symp. On Applied Computing, 1049-1053).
Hotho, A., Staab, S., & Stumme, G. (2003). Ontologies Improve Text Clustering. In Proc. ICDM’03 3rd IEEE Int. Conf. on Data Mining (pp. 541).
Kohavi, R., & Sommerfield, D. (1995). Feature subset selection using wrapper methods: verfitting and dynamic search space topology. In Proc. 1st International Conference on Knowledge Discovery and Data Mining (pp. 192-197).
Kononenko, I. (1994). Estimating attributes: analysis and extension of RELLIEF. In Proc. 6th European Conference on Machine Learning (ECML-94) (pp. 171-182).
Lewis, D.D., Yang, Y., Rose, T., & Li, F. (2004). RCV1: A new benchmark collection for text categorization research. Journal of Machine Learning Research, 5, 361-397).
Makrehchi, M., & Kamel, M. (2004, June). A fuzzy set approach to extracting keywords from abstracts. In Fuzzy Information, 2004. Processing NAFIPS & apos; 04. IEEE Annual Meeting of the (Vol. 2, pp. 528-532). IEEE.
Schone, P., & Jurafsky, D. (2001). Knowledge-free induction of inflectional morphologies. In Proc. North American Chapter of the Association for Computational Linguistics on Language technologies (pp. 1-9).
Sebastiani, F. (2002). Machine learning automated text categorization. ACM Computing Surveys, 34(1), 1–47.
Shang, W., Huang, H., Zhu, H., Lin, Y., Qu, Y., & Wang, Z. (2007). A novel feature selection algorithm for text categorization. Expert Systems with Applications, 33(1), 1–5.
Yang, Y., & Pedersen, J.P. (1995). A comparative study on feature selection in text categorization. 14th Int. Conf. Machine Learning (pp. 412–420).
Zheng, Z., & Srihari, R. (2003). Optimally combining positive and negative features for text categorization. ICML Workshop.
Bracewell, D., Ren, F., & Kuroiwa, S. (2005). Multilingual Single Document Keyword Extraction for Information Retrieval. In Proc. IEEE Int. Conf. Natural Language Processing and Knowledge Eng, 517-522.
Breaux, T. D., & Reed, J. W. (2005). Using Ontology in Hierarchical Information Clustering. In Proc. 38th Hawaii Int. Conf. System Sciences.
Dash, M., & Liu, H. (1997). Feature selection for classification. Intelligent data analysis, 1(3), 131-156.
Fellbaum, C. (1998). WordNet: an electronic lexical database. MIT Press.
Forman, G. (2003). An extensive empirical study of feature selection metrics for text classification. The Journal of Machine Learning Research, 3, 1289-1305.
Guyon, I., & Elisseff, A. (2003). An Introduction to variable and feature selection. Machine Learning Research 3, 1157-1182.
Han, H., Manavoglu, E., Zha, H., Tsioutsiouliklis, K., Lee Giles, C., & Zhang, X. (2005). Rule-based Word Clustering for Document Metadata Extraction. ACM Symp. On Applied Computing, 1049-1053).
Hotho, A., Staab, S., & Stumme, G. (2003). Ontologies Improve Text Clustering. In Proc. ICDM’03 3rd IEEE Int. Conf. on Data Mining (pp. 541).
Kohavi, R., & Sommerfield, D. (1995). Feature subset selection using wrapper methods: verfitting and dynamic search space topology. In Proc. 1st International Conference on Knowledge Discovery and Data Mining (pp. 192-197).
Kononenko, I. (1994). Estimating attributes: analysis and extension of RELLIEF. In Proc. 6th European Conference on Machine Learning (ECML-94) (pp. 171-182).
Lewis, D.D., Yang, Y., Rose, T., & Li, F. (2004). RCV1: A new benchmark collection for text categorization research. Journal of Machine Learning Research, 5, 361-397).
Makrehchi, M., & Kamel, M. (2004, June). A fuzzy set approach to extracting keywords from abstracts. In Fuzzy Information, 2004. Processing NAFIPS & apos; 04. IEEE Annual Meeting of the (Vol. 2, pp. 528-532). IEEE.
Schone, P., & Jurafsky, D. (2001). Knowledge-free induction of inflectional morphologies. In Proc. North American Chapter of the Association for Computational Linguistics on Language technologies (pp. 1-9).
Sebastiani, F. (2002). Machine learning automated text categorization. ACM Computing Surveys, 34(1), 1–47.
Shang, W., Huang, H., Zhu, H., Lin, Y., Qu, Y., & Wang, Z. (2007). A novel feature selection algorithm for text categorization. Expert Systems with Applications, 33(1), 1–5.
Yang, Y., & Pedersen, J.P. (1995). A comparative study on feature selection in text categorization. 14th Int. Conf. Machine Learning (pp. 412–420).
Zheng, Z., & Srihari, R. (2003). Optimally combining positive and negative features for text categorization. ICML Workshop.