How to cite this paper
Abad, Z & Momayezi, F. (2024). Optimizing Modular Hub Location in Air and Road Transportation Systems.Journal of Project Management, 9(3), 277-300.
Refrences
Abdinnour-Helm, S., & Venkataramanan, M. A. (1998). Solution approaches to hub location problems. Annals of Op-erations research, 78(0), 31-50.
Alumur, S. A., Campbell, J. F., Contreras, I., Kara, B. Y., Marianov, V., & O’Kelly, M. E. (2021). Perspectives on mod-eling hub location problems. European Journal of Operational Research, 291(1), 1-17.
Alumur, S. A., Nickel, S., Saldanha-da-Gama, F., & Seçerdin, Y. (2016). Multi-period hub network design problems with modular capacities. Annals of Operations Research, 246, 289-312.
Alumur, S., & Kara, B. Y. (2008). Network hub location problems: The state of the art. European journal of operational research, 190(1), 1-21.
Athamneh, R. A., Tanash, M., Hani, D. B., Rawshdeh, M., Alawin, A., & Albataineh, Z. (2023). Variable Neighborhood Search Algorithm for the Single Assignment Incomplete Hub Location Problem with Modular Capacities and Direct Connections. Operations Research Perspectives, 11, 100286.
Bashiri, M., Golkarian, A., & Nikzad, E. (2018a). Design of a manufacturing hub with modular automation units. Pro-cedia Manufacturing, 17, 911-918.
Bashiri, M., Rezanezhad, M., Tavakkoli-Moghaddam, R., & Hasanzadeh, H. (2018b). Mathematical modeling for a p-mobile hub location problem in a dynamic environment by a genetic algorithm. Applied Mathematical Modelling, 54, 151-169.
Basirati, M., Akbari Jokar, M. R., & Hassannayebi, E. (2020). Bi-objective optimization approaches to many-to-many hub location routing with distance balancing and hard time window. Neural Computing and Applications, 32(17), 13267-13288.
Bhattacharjee, A. K., & Mukhopadhyay, A. (2023). An improved genetic algorithm with local refinement for solving hi-erarchical single-allocation hub median facility location problem. Soft Computing, 27(3), 1493-1509.
Bryan, D. L., & O'kelly, M. E. (1999). Hub‐and‐spoke networks in air transportation: an analytical review. Journal of regional science, 39(2), 275-295.
Campbell, J. F. (1994). Integer programming formulations of discrete hub location problems. European journal of oper-ational research, 72(2), 387-405.
Campbell, J. F., & O'Kelly, M. E. (2012). Twenty-five years of hub location research. Transportation Science, 46(2), 153-169.
Carello, G., Della Croce, F., Ghirardi, M., & Tadei, R. (2004). Solving the hub location problem in telecommunication network design: A local search approach. Networks: An International Journal, 44(2), 94-105.
Contreras, I., & O’Kelly, M. (2019). Hub location problems. Location science, 327-363.
Corberán, Á., Peiró, J., Campos, V., Glover, F., & Martí, R. (2016). Strategic oscillation for the capacitated hub location problem with modular links. Journal of Heuristics, 22, 221-244.
Correia, I., Nickel, S., & Saldanha-da-Gama, F. (2018). A stochastic multi-period capacitated multiple allocation hub location problem: Formulation and inequalities. Omega, 74, 122-134.
Damgacioglu, H., Dinler, D., Ozdemirel, N. E., & Iyigun, C. (2015). A genetic algorithm for the uncapacitated single al-location planar hub location problem. Computers & Operations Research, 62, 224-236.
De Freitas, C. C., Aloise, D. J., Da Costa Fontes, F. F., Santos, A. C., & Da Silva Menezes, M. (2023). A biased random-key genetic algorithm for the two-level hub location routing problem with directed tours. OR Spectrum, 45(3), 903-924.
Ernst, A. T., & Krishnamoorthy, M. (1996). Efficient algorithms for the uncapacitated single allocation p-hub median problem. Location science, 4(3), 139-154.
Ernst, A. T., & Krishnamoorthy, M. (1999). Solution algorithms for the capacitated single allocation hub location prob-lem. Annals of operations Research, 86(0), 141-159.
Farahani, R. Z., Hekmatfar, M., Arabani, A. B., & Nikbakhsh, E. (2013). Hub location problems: A review of models, classification, solution techniques, and applications. Computers & industrial engineering, 64(4), 1096-1109.
Fard, M. K., & Alfandari, L. (2019). Trade-offs between the stepwise cost function and its linear approximation for the modular hub location problem. Computers & Operations Research, 104, 358-374.
Haddow, B. P., & Tufte, G. (2010). Goldberg DE genetic algorithms in search, optimization and machine learning. In Proceedings of the 2000 Congress on.
Hoff, A., Peiro, J., Corberan, A., & Marti, R. (2017). Heuristics for the capacitated modular hub location problem. Com-puters & Operations Research, 86, 94-109.
Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory analysis with applications to biolo-gy, control, and artificial intelligence. MIT press.
Horner, M. W., & O'Kelly, M. E. (2001). Embedding economies of scale concepts for hub network design. Journal of Transport Geography, 9(4), 255-265.
Hosseini, S. B. (2013). A Lagrangean Relaxation Approach for the Modular Hub Location Problem (Doctoral disserta-tion, Concordia University).
Jaillet, P., Song, G., & Yu, G. (1996). Airline network design and hub location problems. Location science, 4(3), 195-212.
Kahag, M. R., Niaki, S. T. A., Seifbarghy, M., & Zabihi, S. (2019). Bi-objective optimization of multi-server intermodal hub-location-allocation problem in congested systems: modeling and solution. Journal of Industrial Engineering In-ternational, 15(2), 221-248.
Karimi, B., & Bashiri, M. (2019, January). Multi-period modular capacitated hub location problem with a splittable flow of commodities and multimodal transportation system. In 2019 15th Iran International Industrial Engineering Conference (IIIEC) (pp. 31-36). IEEE.
Khaleghi, A., & Eydi, A. (2023). Multi-period hub location problem considering polynomial time-dependent demand. Computers & Operations Research, 159, 106357.
Majima, T., Takadma, K., Watanabe, D., & Katuhara, M. (2017). Generating hub-spoke network for public transporta-tion: comparison between genetic algorithm and cuckoo search algorithm. In Intelligent and Evolutionary Systems: The 20th Asia Pacific Symposium, IES 2016, Canberra, Australia, November 2016, Proceedings (pp. 263-275). Springer International Publishing.
Mikić, M., Todosijević, R., & Urošević, D. (2019). Less is more: General variable neighborhood search for the capaci-tated modular hub location problem. Computers & Operations Research, 110, 101-115.
Mirzaghafour, F. S. (2013). Modular hub location problems (Doctoral dissertation, Concordia University).
Mitchell, M. (1998). An introduction to genetic algorithms. MIT press.
Momayezi, F., Chaharsooghi, S. K., Sepehri, M. M., & Kashan, A. H. (2021). The capacitated modular single-allocation hub location problem with possibilities of hubs disruptions: modeling and a solution algorithm. Operational Re-search, 21(1), 139-166.
Mrabti, N., Hamani, N., Boulaksil, Y., Gargouri, M. A., & Delahoche, L. (2022). A multi-objective optimization model for the problems of sustainable collaborative hub location and cost sharing. Transportation Research Part E: Logis-tics and Transportation Review, 164, 102821.
O’Kelly, M. E., & Bryan, D. L. (1998). Hub location with flow economies of scale. Transportation research part B: Methodological, 32(8), 605-616.
O'kelly, M. E. (1987). A quadratic integer program for the location of interacting hub facilities. European journal of op-erational research, 32(3), 393-404.
O'Kelly, M. E. (1998). A geographer's analysis of hub-and-spoke networks. Journal of transport Geography, 6(3), 171-186.
Peker, M., Kara, B. Y., Campbell, J. F., & Alumur, S. A. (2016). Spatial analysis of single allocation hub location prob-lems. Networks and Spatial Economics, 16, 1075-1101.
Rabbani, M., Mokhtarzadeh, M., & Manavizadeh, N. (2021). A constraint programming approach and a hybrid of genet-ic and K-means algorithms to solve the p-hub location-allocation problems. International Journal of Management Science and Engineering Management, 16(2), 123-133
Skorin-Kapov, D., Skorin-Kapov, J., & O'Kelly, M. (1996). Tight linear programming relaxations of uncapacitated p-hub median problems. European journal of operational research, 94(3), 582-593.
Tanash, M., Contreras, I., & Vidyarthi, N. (2017). An exact algorithm for the modular hub location problem with single assignments. Computers & Operations Research, 85, 32-44.
Topcuoglu, H., Corut, F., Ermis, M., & Yilmaz, G. (2005). Solving the uncapacitated hub location problem using genetic algorithms. Computers & operations research, 32(4), 967-984.
Wu, Q., Sun, Z., Benlic, U., & Lu, Y. (2023). A parallel adaptive memory algorithm for the capacitated modular hub lo-cation problem. Computers & Operations Research, 153, 106173.
Yaman, H. (2005). Polyhedral analysis for the uncapacitated hub location problem with modular arc capacities. SIAM Journal on Discrete Mathematics, 19(2), 501-522.
Yaman, H. (2008). Star p-hub median problem with modular arc capacities. Computers & Operations Research, 35(9), 3009-3019.
Yaman, H., & Carello, G. (2005). Solving the hub location problem with modular link capacities. Computers & opera-tions research, 32(12), 3227-3245.
Wang, C., Liu, Y., & Yang, G. (2023). Adaptive distributionally robust hub location and routing problem with a third-party logistics strategy. Socio-Economic Planning Sciences, 87, 101563.
Alumur, S. A., Campbell, J. F., Contreras, I., Kara, B. Y., Marianov, V., & O’Kelly, M. E. (2021). Perspectives on mod-eling hub location problems. European Journal of Operational Research, 291(1), 1-17.
Alumur, S. A., Nickel, S., Saldanha-da-Gama, F., & Seçerdin, Y. (2016). Multi-period hub network design problems with modular capacities. Annals of Operations Research, 246, 289-312.
Alumur, S., & Kara, B. Y. (2008). Network hub location problems: The state of the art. European journal of operational research, 190(1), 1-21.
Athamneh, R. A., Tanash, M., Hani, D. B., Rawshdeh, M., Alawin, A., & Albataineh, Z. (2023). Variable Neighborhood Search Algorithm for the Single Assignment Incomplete Hub Location Problem with Modular Capacities and Direct Connections. Operations Research Perspectives, 11, 100286.
Bashiri, M., Golkarian, A., & Nikzad, E. (2018a). Design of a manufacturing hub with modular automation units. Pro-cedia Manufacturing, 17, 911-918.
Bashiri, M., Rezanezhad, M., Tavakkoli-Moghaddam, R., & Hasanzadeh, H. (2018b). Mathematical modeling for a p-mobile hub location problem in a dynamic environment by a genetic algorithm. Applied Mathematical Modelling, 54, 151-169.
Basirati, M., Akbari Jokar, M. R., & Hassannayebi, E. (2020). Bi-objective optimization approaches to many-to-many hub location routing with distance balancing and hard time window. Neural Computing and Applications, 32(17), 13267-13288.
Bhattacharjee, A. K., & Mukhopadhyay, A. (2023). An improved genetic algorithm with local refinement for solving hi-erarchical single-allocation hub median facility location problem. Soft Computing, 27(3), 1493-1509.
Bryan, D. L., & O'kelly, M. E. (1999). Hub‐and‐spoke networks in air transportation: an analytical review. Journal of regional science, 39(2), 275-295.
Campbell, J. F. (1994). Integer programming formulations of discrete hub location problems. European journal of oper-ational research, 72(2), 387-405.
Campbell, J. F., & O'Kelly, M. E. (2012). Twenty-five years of hub location research. Transportation Science, 46(2), 153-169.
Carello, G., Della Croce, F., Ghirardi, M., & Tadei, R. (2004). Solving the hub location problem in telecommunication network design: A local search approach. Networks: An International Journal, 44(2), 94-105.
Contreras, I., & O’Kelly, M. (2019). Hub location problems. Location science, 327-363.
Corberán, Á., Peiró, J., Campos, V., Glover, F., & Martí, R. (2016). Strategic oscillation for the capacitated hub location problem with modular links. Journal of Heuristics, 22, 221-244.
Correia, I., Nickel, S., & Saldanha-da-Gama, F. (2018). A stochastic multi-period capacitated multiple allocation hub location problem: Formulation and inequalities. Omega, 74, 122-134.
Damgacioglu, H., Dinler, D., Ozdemirel, N. E., & Iyigun, C. (2015). A genetic algorithm for the uncapacitated single al-location planar hub location problem. Computers & Operations Research, 62, 224-236.
De Freitas, C. C., Aloise, D. J., Da Costa Fontes, F. F., Santos, A. C., & Da Silva Menezes, M. (2023). A biased random-key genetic algorithm for the two-level hub location routing problem with directed tours. OR Spectrum, 45(3), 903-924.
Ernst, A. T., & Krishnamoorthy, M. (1996). Efficient algorithms for the uncapacitated single allocation p-hub median problem. Location science, 4(3), 139-154.
Ernst, A. T., & Krishnamoorthy, M. (1999). Solution algorithms for the capacitated single allocation hub location prob-lem. Annals of operations Research, 86(0), 141-159.
Farahani, R. Z., Hekmatfar, M., Arabani, A. B., & Nikbakhsh, E. (2013). Hub location problems: A review of models, classification, solution techniques, and applications. Computers & industrial engineering, 64(4), 1096-1109.
Fard, M. K., & Alfandari, L. (2019). Trade-offs between the stepwise cost function and its linear approximation for the modular hub location problem. Computers & Operations Research, 104, 358-374.
Haddow, B. P., & Tufte, G. (2010). Goldberg DE genetic algorithms in search, optimization and machine learning. In Proceedings of the 2000 Congress on.
Hoff, A., Peiro, J., Corberan, A., & Marti, R. (2017). Heuristics for the capacitated modular hub location problem. Com-puters & Operations Research, 86, 94-109.
Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory analysis with applications to biolo-gy, control, and artificial intelligence. MIT press.
Horner, M. W., & O'Kelly, M. E. (2001). Embedding economies of scale concepts for hub network design. Journal of Transport Geography, 9(4), 255-265.
Hosseini, S. B. (2013). A Lagrangean Relaxation Approach for the Modular Hub Location Problem (Doctoral disserta-tion, Concordia University).
Jaillet, P., Song, G., & Yu, G. (1996). Airline network design and hub location problems. Location science, 4(3), 195-212.
Kahag, M. R., Niaki, S. T. A., Seifbarghy, M., & Zabihi, S. (2019). Bi-objective optimization of multi-server intermodal hub-location-allocation problem in congested systems: modeling and solution. Journal of Industrial Engineering In-ternational, 15(2), 221-248.
Karimi, B., & Bashiri, M. (2019, January). Multi-period modular capacitated hub location problem with a splittable flow of commodities and multimodal transportation system. In 2019 15th Iran International Industrial Engineering Conference (IIIEC) (pp. 31-36). IEEE.
Khaleghi, A., & Eydi, A. (2023). Multi-period hub location problem considering polynomial time-dependent demand. Computers & Operations Research, 159, 106357.
Majima, T., Takadma, K., Watanabe, D., & Katuhara, M. (2017). Generating hub-spoke network for public transporta-tion: comparison between genetic algorithm and cuckoo search algorithm. In Intelligent and Evolutionary Systems: The 20th Asia Pacific Symposium, IES 2016, Canberra, Australia, November 2016, Proceedings (pp. 263-275). Springer International Publishing.
Mikić, M., Todosijević, R., & Urošević, D. (2019). Less is more: General variable neighborhood search for the capaci-tated modular hub location problem. Computers & Operations Research, 110, 101-115.
Mirzaghafour, F. S. (2013). Modular hub location problems (Doctoral dissertation, Concordia University).
Mitchell, M. (1998). An introduction to genetic algorithms. MIT press.
Momayezi, F., Chaharsooghi, S. K., Sepehri, M. M., & Kashan, A. H. (2021). The capacitated modular single-allocation hub location problem with possibilities of hubs disruptions: modeling and a solution algorithm. Operational Re-search, 21(1), 139-166.
Mrabti, N., Hamani, N., Boulaksil, Y., Gargouri, M. A., & Delahoche, L. (2022). A multi-objective optimization model for the problems of sustainable collaborative hub location and cost sharing. Transportation Research Part E: Logis-tics and Transportation Review, 164, 102821.
O’Kelly, M. E., & Bryan, D. L. (1998). Hub location with flow economies of scale. Transportation research part B: Methodological, 32(8), 605-616.
O'kelly, M. E. (1987). A quadratic integer program for the location of interacting hub facilities. European journal of op-erational research, 32(3), 393-404.
O'Kelly, M. E. (1998). A geographer's analysis of hub-and-spoke networks. Journal of transport Geography, 6(3), 171-186.
Peker, M., Kara, B. Y., Campbell, J. F., & Alumur, S. A. (2016). Spatial analysis of single allocation hub location prob-lems. Networks and Spatial Economics, 16, 1075-1101.
Rabbani, M., Mokhtarzadeh, M., & Manavizadeh, N. (2021). A constraint programming approach and a hybrid of genet-ic and K-means algorithms to solve the p-hub location-allocation problems. International Journal of Management Science and Engineering Management, 16(2), 123-133
Skorin-Kapov, D., Skorin-Kapov, J., & O'Kelly, M. (1996). Tight linear programming relaxations of uncapacitated p-hub median problems. European journal of operational research, 94(3), 582-593.
Tanash, M., Contreras, I., & Vidyarthi, N. (2017). An exact algorithm for the modular hub location problem with single assignments. Computers & Operations Research, 85, 32-44.
Topcuoglu, H., Corut, F., Ermis, M., & Yilmaz, G. (2005). Solving the uncapacitated hub location problem using genetic algorithms. Computers & operations research, 32(4), 967-984.
Wu, Q., Sun, Z., Benlic, U., & Lu, Y. (2023). A parallel adaptive memory algorithm for the capacitated modular hub lo-cation problem. Computers & Operations Research, 153, 106173.
Yaman, H. (2005). Polyhedral analysis for the uncapacitated hub location problem with modular arc capacities. SIAM Journal on Discrete Mathematics, 19(2), 501-522.
Yaman, H. (2008). Star p-hub median problem with modular arc capacities. Computers & Operations Research, 35(9), 3009-3019.
Yaman, H., & Carello, G. (2005). Solving the hub location problem with modular link capacities. Computers & opera-tions research, 32(12), 3227-3245.
Wang, C., Liu, Y., & Yang, G. (2023). Adaptive distributionally robust hub location and routing problem with a third-party logistics strategy. Socio-Economic Planning Sciences, 87, 101563.