How to cite this paper
Nagano, M & Rossi, F. (2024). A two-stage iterated greedy algorithm and a multi-objective constructive heuristic for the mixed no-idle flowshop scheduling problem to minimize makespan subject to total completion time.Journal of Project Management, 9(1), 45-60.
Refrences
Allahverdi, A. (2004). A new heuristic for m-machine flowshop scheduling problem with bicriteria of makespan and maximum tardiness. Computers & Operations Research, 31, 157–80. https://doi.org/10.1016/S0305-0548(02)00143-0.
Allahverdi, A., & Aydilek, H. (2013). Algorithms for no-wait flowshops with total completion time subject to makespan. The International Journal of Advanced Manufacturing Technology, 68. https://doi.org/10.1007/s00170-013-4836-x.
Allahverdi, A., Aydilek, H., & Aydilek, A. (2018). No-wait flowshop scheduling problem with two criteria; total tardi-ness and makespan. European Journal of Operational Research, 269(2), 590–601. https://doi.org/https://doi.org/10.1016/j.ejor.2017.11.070.
———. 2020. No-wait flowshop scheduling problem with separate setup times to minimize total tardiness subject to makespan. Applied Mathematics and Computation, 365, 124688. https://doi.org/https://doi.org/10.1016/j.amc.2019.124688.
Allali, K., Aqil, S., & Belabid, J. (2022). Distributed no-wait flow shop problem with sequence dependent setup time: Optimization of makespan and maximum tardiness. Simulation Modelling Practice and Theory, 116, 102455. https://doi.org/https://doi.org/10.1016/j.simpat.2021.102455.
Almeida, F. S. D., & Nagano, M. S. (2023). Heuristics to optimize total completion time subject to makespan in no-wait flow shops with sequence-dependent setup times. Journal of the Operational Research Society, 74(1), 362-373. https://doi.org/10.1080/01605682.2022.2039569.
Aqil, S., & Allali, K. (2021). On a bi-criteria flow shop scheduling problem under constraints of blocking and sequence dependent setup time. Annals of Operations Research, 296(1), 615–37. https://doi.org/10.1007/s10479-019-03490-x.
Arabameri, S., & Salmasi, N. (2013). Minimization of weighted earliness and tardiness for no-wait sequence-dependent setup times flowshop scheduling problem. Computers & Industrial Engineering, 64(4), 902-916. https://doi.org/https://doi.org/10.1016/j.cie.2012.12.023.
Arroyo, J. E. C., & Armentano, V. A. (2005). Genetic local search for multi-objective flowshop scheduling problems. European journal of operational research, 167(3), 717-738. https://doi.org/https://doi.org/10.1016/j.ejor.2004.07.017.
Aydilek, H., & Allahverdi, A. (2012). Heuristics for no-wait flowshops with makespan subject to mean completion time. Applied Mathematics and Computation, 219(1), 351-359. https://doi.org/https://doi.org/10.1016/j.amc.2012.06.024.
———. (2013). New heuristics for no-wait flowshops with performance measures of makespan and mean completion time. International Journal of Operations Research, 10, 29–37.
Bagga, P C. (2003). Minimizing total elapsed time subject to zero total idle time of machines in n X 3 flowshop prob-lem. Indian Journal of Pure Applied Mathematics, 34(2), 219–28.
Baptiste, P., & Hguny, L.K. (1997). A branch and bound algorithm for the F/no- idle/Cmax. In Proceedings of the Inter-national Conference on Industrial Engineering and Production Management, IEPM, 97, 429–38.
Baraz, D., & Mosheiov, G. (2008). A note on a greedy heuristic for flow-shop makespan minimization with no machine idle-time. European Journal of Operational Research, 184(2), 810-813.
Chen, J. F., Wang, L., & Peng, Z. P. (2019). A collaborative optimization algorithm for energy-efficient multi-objective distributed no-idle flow-shop scheduling. Swarm and Evolutionary Computation, 50, 100557. https://doi.org/https://doi.org/10.1016/j.swevo.2019.100557.
Cheng, C. Y., Lin, S. W., Pourhejazy, P., Ying, K. C., & Lin, Y. Z. (2021). No-Idle Flowshop Scheduling for Energy-Efficient Production: An Improved Optimization Framework. Mathematics, 9(12), 1335. https://doi.org/10.3390/math9121335.
Cho, H. M., & Jeong, I. J. (2017). A two-level method of production planning and scheduling for bi-objective reentrant hybrid flow shops. Computers & industrial engineering, 106, 174-181. https://doi.org/https://doi.org/10.1016/j.cie.2017.02.010.
Ciavotta, M., Minella, G., & Ruiz, R. (2013). Multi-objective sequence dependent setup times permutation flowshop: A new algorithm and a comprehensive study. European Journal of Operational Research, 227(2), 301-313. https://doi.org/https://doi.org/10.1016/j.ejor.2012.12.031.
Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), 182-197. https://doi.org/10.1109/4235.996017.
Deng, G., & Gu, X. (2012). A hybrid discrete differential evolution algorithm for the no-idle permutation flow shop scheduling problem with makespan criterion. Computers & Operations Research, 39(9), 2152-2160. https://doi.org/http://dx.doi.org/10.1016/jcor201110024.
Deng, J., & Wang, L. (2017). A competitive memetic algorithm for multi-objective distributed permutation flow shop scheduling problem. Swarm and evolutionary computation, 32, 121-131. https://doi.org/https://doi.org/10.1016/j.swevo.2016.06.002.
Ding, J. Y., Song, S., Gupta, J. N., Zhang, R., Chiong, R., & Wu, C. (2015). An improved iterated greedy algorithm with a Tabu-based reconstruction strategy for the no-wait flowshop scheduling problem. Applied Soft Computing, 30, 604-613. https://doi.org/10.1016/j.asoc.2015.02.006.
Ding, J. Y., Song, S., & Wu, C. (2016). Carbon-efficient scheduling of flow shops by multi-objective optimization. Eu-ropean Journal of Operational Research, 248(3), 758-771. https://doi.org/https://doi.org/10.1016/j.ejor.2015.05.019.
Dong, X., Huang, H., & Chen, P. (2008). An improved NEH-based heuristic for the permutation flowshop problem. Computers & Operations Research, 35(12), 3962-3968. https://doi.org/http://dx.doi.org/10.1016/j.cor200705005.
Dubois-Lacoste, J., López-Ibánez, M., & Stützle, T. (2011). A hybrid TP+ PLS algorithm for bi-objective flow-shop scheduling problems. Computers & Operations Research, 38(8), 1219-1236. https://doi.org/10.1016/j.cor.2010.10.008.
Fernandez-Viagas, V., & Framinan, J. M. (2014). On insertion tie-breaking rules in heuristics for the permutation flow-shop scheduling problem. Computers & Operations Research, 45, 60-67. https://doi.org/http://dx.doi.org/10.1016/jcor201312012.
———. (2015). A new set of high-performing heuristics to minimise flowtime in permutation flowshops. Computers and Operations Research, 53, 68–80. https://doi.org/http://dx.doi.org/10.1016/jcor201408004.
Fernandez-Viagas, V., Leisten, R., & Framinan, J. M. (2016). A computational evaluation of constructive and improve-ment heuristics for the blocking flow shop to minimise total flowtime. Expert Systems with Applications, 61, 290-301. https://doi.org/https://doi.org/10.1016/j.eswa.2016.05.040.
Fernandez-Viagas, V., Valente, J. M., & Framinan, J. M. (2018). Iterated-greedy-based algorithms with beam search ini-tialization for the permutation flowshop to minimise total tardiness. Expert Systems with Applications, 94, 58-69. https://doi.org/https://doi.org/10.1016/j.eswa.2017.10.050.
Framinan, J. M., & Leisten, R. (2003). An efficient constructive heuristic for flowtime minimisation in permutation flow shops. Omega, 31(4), 311-317. https://doi.org/http://dx.doi.org/10.1016/S0305048303000471.
Framinan, J. M., & Leisten, R. (2006). A heuristic for scheduling a permutation flowshop with makespan objective sub-ject to maximum tardiness. International Journal of Production Economics, 99(1-2), 28-40. https://doi.org/https://doi.org/10.1016/j.ijpe.2004.12.004.
———. (2008). A multi-objective iterated greedy search for flowshop scheduling with makespan and flowtime criteria. OR Spectrum, 30(4), 787–804. https://doi.org/10.1007/s00291-007-0098-z.
Goncharov, Y., & Sevastyanov, S. (2009). The flow shop problem with no-idle constraints: A review and approximation. European Journal of Operational Research, 196(2), 450-456.
Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. R. (1979). Optimization and approximation in deterministic se-quencing and scheduling: a survey. In Annals of discrete mathematics (Vol. 5, pp. 287-326). Elsevier. https://doi.org/http://dx.doi.org/10.1016/S016750600870356X.
Ho, J. C., & Chang, Y. L. (1991). A new heuristic for the n-job, M-machine flow-shop problem. European Journal of Operational Research, 52(2), 194-202.
Jarosław, P., Czesław, S., & Dominik, Ż. (2013). Optimizing bicriteria flow shop scheduling problem by simulated an-nealing algorithm. Procedia Computer Science, 18, 936-945. https://doi.org/https://doi.org/10.1016/j.procs.2013.05.259.
Johnson, S. M. (1954). Optimal two‐and three‐stage production schedules with setup times included. Naval research lo-gistics quarterly, 1(1), 61-68.
Kalczynski, P. J., & Kamburowski, J. (2005). A heuristic for minimizing the makespan in no-idle permutation flow shops. Computers & Industrial Engineering, 49(1), 146-154. https://doi.org/10.1016/j.cie.2005.05.002.
———. (2007). On no-wait and no-idle flow shops with makespan criterion. European Journal of Operational Re-search, 178(3), 677–85.
Kalczynski, P. J., & Kamburowski, J. (2008). An improved NEH heuristic to minimize makespan in permutation flow shops. Computers & Operations Research, 35(9), 3001-3008. https://doi.org/http://dx.doi.org/10.1016/jcor200701020.
Kamburowski, J. (2004). More on three-machine no-idle flow shops. Computers & Industrial Engineering, 46(3), 461-466.
Keskin, K., & Engin, O. (2021). A hybrid genetic local and global search algorithm for solving no-wait flow shop prob-lem with bi criteria. SN Applied Sciences, 3(6), 628. https://doi.org/10.1007/s42452-021-04615-3.
Laha, D., & Sarin, S. C. (2009). A heuristic to minimize total flow time in permutation flow shop. Omega, 37(3), 734-739. https://doi.org/http://dx.doi.org/10.1016/jomega200805002.
Li, X., Wang, Q., & Wu, C. (2009). Efficient composite heuristics for total flowtime minimization in permutation flow shops. Omega, 37(1), 155-164. https://doi.org/https://doi.org/10.1016/j.omega.2006.11.003.
Liu, J., & Reeves, C. R. (2001). Constructive and composite heuristic solutions to the P//∑ Ci scheduling problem. Eu-ropean Journal of Operational Research, 132(2), 439-452. https://doi.org/http://dx.doi.org/10.1016/S0377221700001375.
Liu, W., Jin, Y., & Price, M. (2016). A new Nawaz–Enscore–Ham-based heuristic for permutation flow-shop problems with bicriteria of makespan and machine idle time. Engineering Optimization, 48(10), 1808-1822. https://doi.org/10.1080/0305215X.2016.1141202.
Lu, C., Gao, L., Li, X., Pan, Q., & Wang, Q. (2017). Energy-efficient permutation flow shop scheduling problem using a hybrid multi-objective backtracking search algorithm. Journal of cleaner production, 144, 228-238. https://doi.org/https://doi.org/10.1016/j.jclepro.2017.01.011.
Maccarthy, B. L., & Liu, J. (1993). Addressing the gap in scheduling research: a review of optimization and heuristic methods in production scheduling. The International Journal of Production Research, 31(1), 59-79. https://doi.org/10.1080/00207549308956713.
Marichelvam, M. K., Azhagurajan, A., & Geetha, M. (2017). A hybrid fruit fly optimisation algorithm to solve the flow shop scheduling problems with multi-objectives. International Journal of Advanced Intelligence Paradigms, 9(2-3), 164-185. https://doi.org/10.1504/IJAIP.2017.082971.
Marichelvam, M. K., & Geetha, M. (2018). A hybrid crow search algorithm to minimise the weighted sum of makespan and total flow time in a flow shop environment. International Journal of Computer Aided Engineering and Technol-ogy, 10(6), 636-649. https://doi.org/10.1504/IJCAET.2018.095200.
Minella, G., Ruiz, R., & Ciavotta, M. (2011). Restarted Iterated Pareto Greedy algorithm for multi-objective flowshop scheduling problems. Computers & Operations Research, 38(11), 1521-1533. https://doi.org/https://doi.org/10.1016/j.cor.2011.01.010.
Nagano, M. S., & Moccellin, J. V. (2002). A high quality solution constructive heuristic for flow shop sequencing. Journal of the Operational Research Society, 53, 1374-1379. https://doi.org/10.1057/palgrave.jors.2601466.
Nagano, M. S., de Almeida, F. S., & Miyata, H. H. (2021). An iterated greedy algorithm for the no-wait flowshop sched-uling problem to minimize makespan subject to total completion time. Engineering Optimization, 53(8), 1431-1449. https://doi.org/10.1080/0305215X.2020.1797000.
Nagano, M. S., Rossi, F. L., & Martarelli, N. J. (2019). High-performing heuristics to minimize flowtime in no-idle permutation flowshop. Engineering Optimization, 51(2), 185-198. https://doi.org/10.1080/0305215X.2018.1444163.
Nagano, M. S., Rossi, F. L., & Tomazella, C. P. (2017). A new efficient heuristic method for minimizing the total tardi-ness in a no-idle permutation flow shop. Production Engineering, 11, 523-529. https://doi.org/10.1007/s11740-017-0747-2.
Nawaz, M., Enscore Jr, E. E., & Ham, I. (1983). A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega, 11(1), 91-95. https://doi.org/http://dx.doi.org/10.1016/0305048383900889.
Pan, Q. K., & Ruiz, R. (2013). A comprehensive review and evaluation of permutation flowshop heuristics to minimize flowtime. Computers & Operations Research, 40(1), 117-128. https://doi.org/http://dx.doi.org/10.1016/jcor201205018.
———. (2014). An effective iterated greedy algorithm for the mixed no-idle permutation flowshop scheduling problem. Omega, 44, 41–50. https://doi.org/http://dx.doi.org/10.1016/jomega201310002.
Pan, Q. K., & Wang, L. (2008a). A novel differential evolution algorithm for no-idle permutation flow-shop scheduling problems. European Journal of Industrial Engineering, 2(3), 279-297. https://doi.org/10.1504/EJIE2008017687.
———. (2008b). No-idle permutation flow shop scheduling based on a hybrid discrete particle swarm optimization al-gorithm. The International Journal of Advanced Manufacturing Technology, 39(7), 796–807. https://doi.org/10.1007/s0017000712520.
Pan, Q. K., Wang, L., & Qian, B. (2009). A novel differential evolution algorithm for bi-criteria no-wait flow shop scheduling problems. Computers & Operations Research, 36(8), 2498-2511. https://doi.org/https://doi.org/10.1016/j.cor.2008.10.008.
Pasupathy, T., Rajendran, C., & Suresh, R. K. (2006). A multi-objective genetic algorithm for scheduling in flow shops to minimize the makespan and total flow time of jobs. The International Journal of Advanced Manufacturing Tech-nology, 27, 804-815. https://doi.org/10.1007/s00170-004-2249-6.
Pinedo, M. L. (2016). Scheduling: theory, algorithms, and systems. Springer.
Rad, S. F., Ruiz, R., & Boroojerdian, N. (2009). New high performing heuristics for minimizing makespan in permuta-tion flowshops. Omega, 37(2), 331-345. https://doi.org/http://dx.doi.org/10.1016/j.omega200702002.
Rahimi-Vahed, A. R., Javadi, B., Rabbani, M., & Tavakkoli-Moghaddam, R. (2008). A multi-objective scatter search for a bi-criteria no-wait flow shop scheduling problem. Engineering Optimization, 40(4), 331-346. https://doi.org/10.1080/03052150701732509.
Rajendran, C. (1995). Heuristics for scheduling in flowshop with multiple objectives. European journal of operational research, 82(3), 540-555. https://doi.org/https://doi.org/10.1016/0377-2217(93)E0212-G.
Rajendran, C., & Ziegler, H. (1997). An efficient heuristic for scheduling in a flowshop to minimize total weighted flowtime of jobs. European Journal of Operational Research, 103(1), 129-138. https://doi.org/https://doi.org/10.1016/S0377-2217(96)00273-1.
Ravindran, D., Selvakumar, S. J., Sivaraman, R., & Haq, A. N. (2005). Flow shop scheduling with multiple objective of minimizing makespan and total flow time. The international journal of advanced manufacturing technology, 25, 1007-1012. https://doi.org/10.1007/s00170-003-1926-1.
Ribas, I., Companys, R., & Tort-Martorell, X. (2010). Comparing three-step heuristics for the permutation flow shop problem. Computers & Operations Research, 37(12), 2062-2070. https://doi.org/http://dx.doi.org/10.1016/jcor201002006.
———. (2017). Efficient heuristics for the parallel blocking flow shop scheduling problem. Expert Systems with Appli-cations, 74(Supplement C): 41–54. https://doi.org/https://doi.org/10.1016/j.eswa.2017.01.006.
Rifai, A. P., Nguyen, H. T., & Dawal, S. Z. M. (2016). Multi-objective adaptive large neighborhood search for distribut-ed reentrant permutation flow shop scheduling. Applied Soft Computing, 40, 42-57. https://doi.org/https://doi.org/10.1016/j.asoc.2015.11.034.
Rossi, F. L., & Nagano, M. S. (2020). Heuristics and metaheuristics for the mixed no-idle flowshop with sequence-dependent setup times and total tardiness minimisation. Swarm and Evolutionary Computation, 55, 100689. https://doi.org/https://doi.org/10.1016/j.swevo.2020.100689.
———. (2021a). Heuristics and iterated greedy algorithms for the distributed mixed no-idle flowshop with sequence-dependent setup times. Computers & Industrial Engineering, 157, 107337. https://doi.org/https://doi.org/10.1016/j.cie.2021.107337.
———. (2021b). Heuristics for the mixed no-idle flowshop with sequence-dependent setup times. Journal of the Opera-tional Research Society, 72(2), 417–43. https://doi.org/10.1080/01605682.2019.1671149.
Rossi, F. L., Nagano, M. S., & Neto, R. F. T. (2016). Evaluation of high performance constructive heuristics for the flow shop with makespan minimization. The International Journal of Advanced Manufacturing Technology, 87, 125-136. https://doi.org/10.1007/s00170-016-8484-9.
Rossi, F. L., Nagano, M. S., & Sagawa, J. K. (2017). An effective constructive heuristic for permutation flow shop scheduling problem with total flow time criterion. The International Journal of Advanced Manufacturing Technolo-gy, 90, 93-107. https://doi.org/10.1007/s00170-016-9347-0.
Ruiz, R., & Allahverdi, A. (2009). New heuristics for no-wait flow shops with a linear combination of makespan and maximum lateness. International Journal of Production Research, 47(20), 5717-5738. https://doi.org/10.1080/00207540802070942.
Ruiz, R., Maroto, C., & Alcaraz, J. (2006). Two new robust genetic algorithms for the flowshop scheduling problem. Omega, 34(5), 461-476.
Ruiz, R., & Stützle, T. (2007). A simple and effective iterated greedy algorithm for the permutation flowshop schedul-ing problem. European journal of operational research, 177(3), 2033-2049. https://doi.org/http://dx.doi.org/10.1016/jejor200512009.
———. (2008). An iterated greedy heuristic for the sequence dependent setup times flowshop problem with makespan and weighted tardiness objectives. European Journal of Operational Research, 187(3), 1143–59.
Ruiz, R., Vallada, E., & Fernández-Martínez, C. (2009). Scheduling in flowshops with no-idle machines. Computational intelligence in flow shop and job shop scheduling, 21-51. https://doi.org/10.1007/97836420283662.
Saadani, N. E. H., Guinet, A., & Moalla, M. (2003). Three stage no-idle flow-shops. Computers & industrial engineer-ing, 44(3), 425-434.
———. (2005). A travelling salesman approach to solve the F/no-idle/Cmax problem. European Journal of Operational Research, 161(1), 11–20. https://doi.org/http://dx.doi.org/10.1016/jejor200308030.
Pour, N., Tavakkoli-Moghaddam, R., & Asadi, H. (2013). 5. Optimizing a multi-objectives flow shop scheduling prob-lem by a novel genetic algorithm. International Journal of Industrial Engineering Computations, 4(3), 345-354. https://doi.org/10.5267/j.ijiec.2013.03.008.
Shao, W., Pi, D., & Shao, Z. (2017). Memetic algorithm with node and edge histogram for no-idle flow shop scheduling problem to minimize the makespan criterion. Applied Soft Computing, 54, 164-182. https://doi.org/https://doi.org/10.1016/j.asoc.2017.01.017.
Shao, Z., Pi, D., & Shao, W. (2019). A novel multi-objective discrete water wave optimization for solving multi-objective blocking flow-shop scheduling problem. Knowledge-Based Systems, 165, 110-131. https://doi.org/https://doi.org/10.1016/j.knosys.2018.11.021.
Shen, J. N., Wang, L., & Wang, S. Y. (2015). A bi-population EDA for solving the no-idle permutation flow-shop scheduling problem with the total tardiness criterion. Knowledge-Based Systems, 74, 167-175.
Singh, H., Oberoi, J. S., & Singh, D. (2021). Multi-objective permutation and non-permutation flow shop scheduling problems with no-wait: a systematic literature review. RAIRO-Operations Research, 55(1), 27-50. https://doi.org/10.1051/ro/2020055.
Sun, Y., Zhang, C., Gao, L., & Wang, X. (2011). Multi-objective optimization algorithms for flow shop scheduling problem: a review and prospects. The International Journal of Advanced Manufacturing Technology, 55, 723-739.
T'kindt, V., & Billaut, J. C. (2006). Multicriteria scheduling: theory, models and algorithms. Springer Science & Busi-ness Media. https://doi.org/10.1007/b106275.
Tasgetiren, M. F., Liang, Y. C., Sevkli, M., & Gencyilmaz, G. (2007). A particle swarm optimization algorithm for makespan and total flowtime minimization in the permutation flowshop sequencing problem. European journal of operational research, 177(3), 1930-1947.
Tasgetiren, M. F., Pan, Q. K., Suganthan, P. N., & Buyukdagli, O. (2013). A variable iterated greedy algorithm with dif-ferential evolution for the no-idle permutation flowshop scheduling problem. Computers & Operations Research, 40(7), 1729-1743. https://doi.org/http://dx.doi.org/10.1016/jcor201301005.
Tasgetiren, M. F., Kizilay, D., Pan, Q. K., & Suganthan, P. N. (2017). Iterated greedy algorithms for the blocking flow-shop scheduling problem with makespan criterion. Computers & Operations Research, 77, 111-126. https://doi.org/10.1016/j.cor.2016.07.002.
Tasgetiren, M. F., Öztop, H., Gao, L., Pan, Q. K., & Li, X. (2019). A variable iterated local search algorithm for energy-efficient no-idle flowshop scheduling problem. Procedia Manufacturing, 39, 1185-1193. https://doi.org/https://doi.org/10.1016/j.promfg.2020.01.351.
Vachajitpan, P. (1982). Job sequencing with continuous machine operation. Computers & Industrial Engineering, 6(3), 255-259.
Varadharajan, T. K., & Rajendran, C. (2005). A multi-objective simulated-annealing algorithm for scheduling in flow-shops to minimize the makespan and total flowtime of jobs. European Journal of Operational Research, 167(3), 772-795. https://doi.org/https://doi.org/10.1016/j.ejor.2004.07.020.
Wu, X., & Che, A. (2020). Energy-efficient no-wait permutation flow shop scheduling by adaptive multi-objective vari-able neighborhood search. Omega, 94, 102117. https://doi.org/https://doi.org/10.1016/j.omega.2019.102117.
Yagmahan, B., & Yenisey, M. M. (2008). Ant colony optimization for multi-objective flow shop scheduling problem. Computers & Industrial Engineering, 54(3), 411-420. https://doi.org/https://doi.org/10.1016/j.cie.2007.08.003.
Ye, H., Li, W., & Nault, B. R. (2020). Trade-off balancing between maximum and total completion times for no-wait flow shop production. International Journal of Production Research, 58(11), 3235-3251. https://doi.org/10.1080/00207543.2019.1630777.
Yenisey, M. M., & Yagmahan, B. (2014). Multi-objective permutation flow shop scheduling problem: Literature re-view, classification and current trends. Omega, 45, 119-135. https://doi.org/https://doi.org/10.1016/j.omega.2013.07.004.
Zhao, F., Zhang, L., Zhang, Y., Ma, W., Zhang, C., & Song, H. (2020). A hybrid discrete water wave optimization algo-rithm for the no-idle flowshop scheduling problem with total tardiness criterion. Expert Systems with Applications, 146, 113166. https://doi.org/https://doi.org/10.1016/j.eswa.2019.113166.
Zhou, Y., Chen, H., & Zhou, G. (2014). Invasive weed optimization algorithm for optimization no-idle flow shop scheduling problem. Neurocomputing, 137, 285-292. https://doi.org/http://dx.doi.org/10.1016/jneucom201305063v
Allahverdi, A., & Aydilek, H. (2013). Algorithms for no-wait flowshops with total completion time subject to makespan. The International Journal of Advanced Manufacturing Technology, 68. https://doi.org/10.1007/s00170-013-4836-x.
Allahverdi, A., Aydilek, H., & Aydilek, A. (2018). No-wait flowshop scheduling problem with two criteria; total tardi-ness and makespan. European Journal of Operational Research, 269(2), 590–601. https://doi.org/https://doi.org/10.1016/j.ejor.2017.11.070.
———. 2020. No-wait flowshop scheduling problem with separate setup times to minimize total tardiness subject to makespan. Applied Mathematics and Computation, 365, 124688. https://doi.org/https://doi.org/10.1016/j.amc.2019.124688.
Allali, K., Aqil, S., & Belabid, J. (2022). Distributed no-wait flow shop problem with sequence dependent setup time: Optimization of makespan and maximum tardiness. Simulation Modelling Practice and Theory, 116, 102455. https://doi.org/https://doi.org/10.1016/j.simpat.2021.102455.
Almeida, F. S. D., & Nagano, M. S. (2023). Heuristics to optimize total completion time subject to makespan in no-wait flow shops with sequence-dependent setup times. Journal of the Operational Research Society, 74(1), 362-373. https://doi.org/10.1080/01605682.2022.2039569.
Aqil, S., & Allali, K. (2021). On a bi-criteria flow shop scheduling problem under constraints of blocking and sequence dependent setup time. Annals of Operations Research, 296(1), 615–37. https://doi.org/10.1007/s10479-019-03490-x.
Arabameri, S., & Salmasi, N. (2013). Minimization of weighted earliness and tardiness for no-wait sequence-dependent setup times flowshop scheduling problem. Computers & Industrial Engineering, 64(4), 902-916. https://doi.org/https://doi.org/10.1016/j.cie.2012.12.023.
Arroyo, J. E. C., & Armentano, V. A. (2005). Genetic local search for multi-objective flowshop scheduling problems. European journal of operational research, 167(3), 717-738. https://doi.org/https://doi.org/10.1016/j.ejor.2004.07.017.
Aydilek, H., & Allahverdi, A. (2012). Heuristics for no-wait flowshops with makespan subject to mean completion time. Applied Mathematics and Computation, 219(1), 351-359. https://doi.org/https://doi.org/10.1016/j.amc.2012.06.024.
———. (2013). New heuristics for no-wait flowshops with performance measures of makespan and mean completion time. International Journal of Operations Research, 10, 29–37.
Bagga, P C. (2003). Minimizing total elapsed time subject to zero total idle time of machines in n X 3 flowshop prob-lem. Indian Journal of Pure Applied Mathematics, 34(2), 219–28.
Baptiste, P., & Hguny, L.K. (1997). A branch and bound algorithm for the F/no- idle/Cmax. In Proceedings of the Inter-national Conference on Industrial Engineering and Production Management, IEPM, 97, 429–38.
Baraz, D., & Mosheiov, G. (2008). A note on a greedy heuristic for flow-shop makespan minimization with no machine idle-time. European Journal of Operational Research, 184(2), 810-813.
Chen, J. F., Wang, L., & Peng, Z. P. (2019). A collaborative optimization algorithm for energy-efficient multi-objective distributed no-idle flow-shop scheduling. Swarm and Evolutionary Computation, 50, 100557. https://doi.org/https://doi.org/10.1016/j.swevo.2019.100557.
Cheng, C. Y., Lin, S. W., Pourhejazy, P., Ying, K. C., & Lin, Y. Z. (2021). No-Idle Flowshop Scheduling for Energy-Efficient Production: An Improved Optimization Framework. Mathematics, 9(12), 1335. https://doi.org/10.3390/math9121335.
Cho, H. M., & Jeong, I. J. (2017). A two-level method of production planning and scheduling for bi-objective reentrant hybrid flow shops. Computers & industrial engineering, 106, 174-181. https://doi.org/https://doi.org/10.1016/j.cie.2017.02.010.
Ciavotta, M., Minella, G., & Ruiz, R. (2013). Multi-objective sequence dependent setup times permutation flowshop: A new algorithm and a comprehensive study. European Journal of Operational Research, 227(2), 301-313. https://doi.org/https://doi.org/10.1016/j.ejor.2012.12.031.
Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), 182-197. https://doi.org/10.1109/4235.996017.
Deng, G., & Gu, X. (2012). A hybrid discrete differential evolution algorithm for the no-idle permutation flow shop scheduling problem with makespan criterion. Computers & Operations Research, 39(9), 2152-2160. https://doi.org/http://dx.doi.org/10.1016/jcor201110024.
Deng, J., & Wang, L. (2017). A competitive memetic algorithm for multi-objective distributed permutation flow shop scheduling problem. Swarm and evolutionary computation, 32, 121-131. https://doi.org/https://doi.org/10.1016/j.swevo.2016.06.002.
Ding, J. Y., Song, S., Gupta, J. N., Zhang, R., Chiong, R., & Wu, C. (2015). An improved iterated greedy algorithm with a Tabu-based reconstruction strategy for the no-wait flowshop scheduling problem. Applied Soft Computing, 30, 604-613. https://doi.org/10.1016/j.asoc.2015.02.006.
Ding, J. Y., Song, S., & Wu, C. (2016). Carbon-efficient scheduling of flow shops by multi-objective optimization. Eu-ropean Journal of Operational Research, 248(3), 758-771. https://doi.org/https://doi.org/10.1016/j.ejor.2015.05.019.
Dong, X., Huang, H., & Chen, P. (2008). An improved NEH-based heuristic for the permutation flowshop problem. Computers & Operations Research, 35(12), 3962-3968. https://doi.org/http://dx.doi.org/10.1016/j.cor200705005.
Dubois-Lacoste, J., López-Ibánez, M., & Stützle, T. (2011). A hybrid TP+ PLS algorithm for bi-objective flow-shop scheduling problems. Computers & Operations Research, 38(8), 1219-1236. https://doi.org/10.1016/j.cor.2010.10.008.
Fernandez-Viagas, V., & Framinan, J. M. (2014). On insertion tie-breaking rules in heuristics for the permutation flow-shop scheduling problem. Computers & Operations Research, 45, 60-67. https://doi.org/http://dx.doi.org/10.1016/jcor201312012.
———. (2015). A new set of high-performing heuristics to minimise flowtime in permutation flowshops. Computers and Operations Research, 53, 68–80. https://doi.org/http://dx.doi.org/10.1016/jcor201408004.
Fernandez-Viagas, V., Leisten, R., & Framinan, J. M. (2016). A computational evaluation of constructive and improve-ment heuristics for the blocking flow shop to minimise total flowtime. Expert Systems with Applications, 61, 290-301. https://doi.org/https://doi.org/10.1016/j.eswa.2016.05.040.
Fernandez-Viagas, V., Valente, J. M., & Framinan, J. M. (2018). Iterated-greedy-based algorithms with beam search ini-tialization for the permutation flowshop to minimise total tardiness. Expert Systems with Applications, 94, 58-69. https://doi.org/https://doi.org/10.1016/j.eswa.2017.10.050.
Framinan, J. M., & Leisten, R. (2003). An efficient constructive heuristic for flowtime minimisation in permutation flow shops. Omega, 31(4), 311-317. https://doi.org/http://dx.doi.org/10.1016/S0305048303000471.
Framinan, J. M., & Leisten, R. (2006). A heuristic for scheduling a permutation flowshop with makespan objective sub-ject to maximum tardiness. International Journal of Production Economics, 99(1-2), 28-40. https://doi.org/https://doi.org/10.1016/j.ijpe.2004.12.004.
———. (2008). A multi-objective iterated greedy search for flowshop scheduling with makespan and flowtime criteria. OR Spectrum, 30(4), 787–804. https://doi.org/10.1007/s00291-007-0098-z.
Goncharov, Y., & Sevastyanov, S. (2009). The flow shop problem with no-idle constraints: A review and approximation. European Journal of Operational Research, 196(2), 450-456.
Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. R. (1979). Optimization and approximation in deterministic se-quencing and scheduling: a survey. In Annals of discrete mathematics (Vol. 5, pp. 287-326). Elsevier. https://doi.org/http://dx.doi.org/10.1016/S016750600870356X.
Ho, J. C., & Chang, Y. L. (1991). A new heuristic for the n-job, M-machine flow-shop problem. European Journal of Operational Research, 52(2), 194-202.
Jarosław, P., Czesław, S., & Dominik, Ż. (2013). Optimizing bicriteria flow shop scheduling problem by simulated an-nealing algorithm. Procedia Computer Science, 18, 936-945. https://doi.org/https://doi.org/10.1016/j.procs.2013.05.259.
Johnson, S. M. (1954). Optimal two‐and three‐stage production schedules with setup times included. Naval research lo-gistics quarterly, 1(1), 61-68.
Kalczynski, P. J., & Kamburowski, J. (2005). A heuristic for minimizing the makespan in no-idle permutation flow shops. Computers & Industrial Engineering, 49(1), 146-154. https://doi.org/10.1016/j.cie.2005.05.002.
———. (2007). On no-wait and no-idle flow shops with makespan criterion. European Journal of Operational Re-search, 178(3), 677–85.
Kalczynski, P. J., & Kamburowski, J. (2008). An improved NEH heuristic to minimize makespan in permutation flow shops. Computers & Operations Research, 35(9), 3001-3008. https://doi.org/http://dx.doi.org/10.1016/jcor200701020.
Kamburowski, J. (2004). More on three-machine no-idle flow shops. Computers & Industrial Engineering, 46(3), 461-466.
Keskin, K., & Engin, O. (2021). A hybrid genetic local and global search algorithm for solving no-wait flow shop prob-lem with bi criteria. SN Applied Sciences, 3(6), 628. https://doi.org/10.1007/s42452-021-04615-3.
Laha, D., & Sarin, S. C. (2009). A heuristic to minimize total flow time in permutation flow shop. Omega, 37(3), 734-739. https://doi.org/http://dx.doi.org/10.1016/jomega200805002.
Li, X., Wang, Q., & Wu, C. (2009). Efficient composite heuristics for total flowtime minimization in permutation flow shops. Omega, 37(1), 155-164. https://doi.org/https://doi.org/10.1016/j.omega.2006.11.003.
Liu, J., & Reeves, C. R. (2001). Constructive and composite heuristic solutions to the P//∑ Ci scheduling problem. Eu-ropean Journal of Operational Research, 132(2), 439-452. https://doi.org/http://dx.doi.org/10.1016/S0377221700001375.
Liu, W., Jin, Y., & Price, M. (2016). A new Nawaz–Enscore–Ham-based heuristic for permutation flow-shop problems with bicriteria of makespan and machine idle time. Engineering Optimization, 48(10), 1808-1822. https://doi.org/10.1080/0305215X.2016.1141202.
Lu, C., Gao, L., Li, X., Pan, Q., & Wang, Q. (2017). Energy-efficient permutation flow shop scheduling problem using a hybrid multi-objective backtracking search algorithm. Journal of cleaner production, 144, 228-238. https://doi.org/https://doi.org/10.1016/j.jclepro.2017.01.011.
Maccarthy, B. L., & Liu, J. (1993). Addressing the gap in scheduling research: a review of optimization and heuristic methods in production scheduling. The International Journal of Production Research, 31(1), 59-79. https://doi.org/10.1080/00207549308956713.
Marichelvam, M. K., Azhagurajan, A., & Geetha, M. (2017). A hybrid fruit fly optimisation algorithm to solve the flow shop scheduling problems with multi-objectives. International Journal of Advanced Intelligence Paradigms, 9(2-3), 164-185. https://doi.org/10.1504/IJAIP.2017.082971.
Marichelvam, M. K., & Geetha, M. (2018). A hybrid crow search algorithm to minimise the weighted sum of makespan and total flow time in a flow shop environment. International Journal of Computer Aided Engineering and Technol-ogy, 10(6), 636-649. https://doi.org/10.1504/IJCAET.2018.095200.
Minella, G., Ruiz, R., & Ciavotta, M. (2011). Restarted Iterated Pareto Greedy algorithm for multi-objective flowshop scheduling problems. Computers & Operations Research, 38(11), 1521-1533. https://doi.org/https://doi.org/10.1016/j.cor.2011.01.010.
Nagano, M. S., & Moccellin, J. V. (2002). A high quality solution constructive heuristic for flow shop sequencing. Journal of the Operational Research Society, 53, 1374-1379. https://doi.org/10.1057/palgrave.jors.2601466.
Nagano, M. S., de Almeida, F. S., & Miyata, H. H. (2021). An iterated greedy algorithm for the no-wait flowshop sched-uling problem to minimize makespan subject to total completion time. Engineering Optimization, 53(8), 1431-1449. https://doi.org/10.1080/0305215X.2020.1797000.
Nagano, M. S., Rossi, F. L., & Martarelli, N. J. (2019). High-performing heuristics to minimize flowtime in no-idle permutation flowshop. Engineering Optimization, 51(2), 185-198. https://doi.org/10.1080/0305215X.2018.1444163.
Nagano, M. S., Rossi, F. L., & Tomazella, C. P. (2017). A new efficient heuristic method for minimizing the total tardi-ness in a no-idle permutation flow shop. Production Engineering, 11, 523-529. https://doi.org/10.1007/s11740-017-0747-2.
Nawaz, M., Enscore Jr, E. E., & Ham, I. (1983). A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega, 11(1), 91-95. https://doi.org/http://dx.doi.org/10.1016/0305048383900889.
Pan, Q. K., & Ruiz, R. (2013). A comprehensive review and evaluation of permutation flowshop heuristics to minimize flowtime. Computers & Operations Research, 40(1), 117-128. https://doi.org/http://dx.doi.org/10.1016/jcor201205018.
———. (2014). An effective iterated greedy algorithm for the mixed no-idle permutation flowshop scheduling problem. Omega, 44, 41–50. https://doi.org/http://dx.doi.org/10.1016/jomega201310002.
Pan, Q. K., & Wang, L. (2008a). A novel differential evolution algorithm for no-idle permutation flow-shop scheduling problems. European Journal of Industrial Engineering, 2(3), 279-297. https://doi.org/10.1504/EJIE2008017687.
———. (2008b). No-idle permutation flow shop scheduling based on a hybrid discrete particle swarm optimization al-gorithm. The International Journal of Advanced Manufacturing Technology, 39(7), 796–807. https://doi.org/10.1007/s0017000712520.
Pan, Q. K., Wang, L., & Qian, B. (2009). A novel differential evolution algorithm for bi-criteria no-wait flow shop scheduling problems. Computers & Operations Research, 36(8), 2498-2511. https://doi.org/https://doi.org/10.1016/j.cor.2008.10.008.
Pasupathy, T., Rajendran, C., & Suresh, R. K. (2006). A multi-objective genetic algorithm for scheduling in flow shops to minimize the makespan and total flow time of jobs. The International Journal of Advanced Manufacturing Tech-nology, 27, 804-815. https://doi.org/10.1007/s00170-004-2249-6.
Pinedo, M. L. (2016). Scheduling: theory, algorithms, and systems. Springer.
Rad, S. F., Ruiz, R., & Boroojerdian, N. (2009). New high performing heuristics for minimizing makespan in permuta-tion flowshops. Omega, 37(2), 331-345. https://doi.org/http://dx.doi.org/10.1016/j.omega200702002.
Rahimi-Vahed, A. R., Javadi, B., Rabbani, M., & Tavakkoli-Moghaddam, R. (2008). A multi-objective scatter search for a bi-criteria no-wait flow shop scheduling problem. Engineering Optimization, 40(4), 331-346. https://doi.org/10.1080/03052150701732509.
Rajendran, C. (1995). Heuristics for scheduling in flowshop with multiple objectives. European journal of operational research, 82(3), 540-555. https://doi.org/https://doi.org/10.1016/0377-2217(93)E0212-G.
Rajendran, C., & Ziegler, H. (1997). An efficient heuristic for scheduling in a flowshop to minimize total weighted flowtime of jobs. European Journal of Operational Research, 103(1), 129-138. https://doi.org/https://doi.org/10.1016/S0377-2217(96)00273-1.
Ravindran, D., Selvakumar, S. J., Sivaraman, R., & Haq, A. N. (2005). Flow shop scheduling with multiple objective of minimizing makespan and total flow time. The international journal of advanced manufacturing technology, 25, 1007-1012. https://doi.org/10.1007/s00170-003-1926-1.
Ribas, I., Companys, R., & Tort-Martorell, X. (2010). Comparing three-step heuristics for the permutation flow shop problem. Computers & Operations Research, 37(12), 2062-2070. https://doi.org/http://dx.doi.org/10.1016/jcor201002006.
———. (2017). Efficient heuristics for the parallel blocking flow shop scheduling problem. Expert Systems with Appli-cations, 74(Supplement C): 41–54. https://doi.org/https://doi.org/10.1016/j.eswa.2017.01.006.
Rifai, A. P., Nguyen, H. T., & Dawal, S. Z. M. (2016). Multi-objective adaptive large neighborhood search for distribut-ed reentrant permutation flow shop scheduling. Applied Soft Computing, 40, 42-57. https://doi.org/https://doi.org/10.1016/j.asoc.2015.11.034.
Rossi, F. L., & Nagano, M. S. (2020). Heuristics and metaheuristics for the mixed no-idle flowshop with sequence-dependent setup times and total tardiness minimisation. Swarm and Evolutionary Computation, 55, 100689. https://doi.org/https://doi.org/10.1016/j.swevo.2020.100689.
———. (2021a). Heuristics and iterated greedy algorithms for the distributed mixed no-idle flowshop with sequence-dependent setup times. Computers & Industrial Engineering, 157, 107337. https://doi.org/https://doi.org/10.1016/j.cie.2021.107337.
———. (2021b). Heuristics for the mixed no-idle flowshop with sequence-dependent setup times. Journal of the Opera-tional Research Society, 72(2), 417–43. https://doi.org/10.1080/01605682.2019.1671149.
Rossi, F. L., Nagano, M. S., & Neto, R. F. T. (2016). Evaluation of high performance constructive heuristics for the flow shop with makespan minimization. The International Journal of Advanced Manufacturing Technology, 87, 125-136. https://doi.org/10.1007/s00170-016-8484-9.
Rossi, F. L., Nagano, M. S., & Sagawa, J. K. (2017). An effective constructive heuristic for permutation flow shop scheduling problem with total flow time criterion. The International Journal of Advanced Manufacturing Technolo-gy, 90, 93-107. https://doi.org/10.1007/s00170-016-9347-0.
Ruiz, R., & Allahverdi, A. (2009). New heuristics for no-wait flow shops with a linear combination of makespan and maximum lateness. International Journal of Production Research, 47(20), 5717-5738. https://doi.org/10.1080/00207540802070942.
Ruiz, R., Maroto, C., & Alcaraz, J. (2006). Two new robust genetic algorithms for the flowshop scheduling problem. Omega, 34(5), 461-476.
Ruiz, R., & Stützle, T. (2007). A simple and effective iterated greedy algorithm for the permutation flowshop schedul-ing problem. European journal of operational research, 177(3), 2033-2049. https://doi.org/http://dx.doi.org/10.1016/jejor200512009.
———. (2008). An iterated greedy heuristic for the sequence dependent setup times flowshop problem with makespan and weighted tardiness objectives. European Journal of Operational Research, 187(3), 1143–59.
Ruiz, R., Vallada, E., & Fernández-Martínez, C. (2009). Scheduling in flowshops with no-idle machines. Computational intelligence in flow shop and job shop scheduling, 21-51. https://doi.org/10.1007/97836420283662.
Saadani, N. E. H., Guinet, A., & Moalla, M. (2003). Three stage no-idle flow-shops. Computers & industrial engineer-ing, 44(3), 425-434.
———. (2005). A travelling salesman approach to solve the F/no-idle/Cmax problem. European Journal of Operational Research, 161(1), 11–20. https://doi.org/http://dx.doi.org/10.1016/jejor200308030.
Pour, N., Tavakkoli-Moghaddam, R., & Asadi, H. (2013). 5. Optimizing a multi-objectives flow shop scheduling prob-lem by a novel genetic algorithm. International Journal of Industrial Engineering Computations, 4(3), 345-354. https://doi.org/10.5267/j.ijiec.2013.03.008.
Shao, W., Pi, D., & Shao, Z. (2017). Memetic algorithm with node and edge histogram for no-idle flow shop scheduling problem to minimize the makespan criterion. Applied Soft Computing, 54, 164-182. https://doi.org/https://doi.org/10.1016/j.asoc.2017.01.017.
Shao, Z., Pi, D., & Shao, W. (2019). A novel multi-objective discrete water wave optimization for solving multi-objective blocking flow-shop scheduling problem. Knowledge-Based Systems, 165, 110-131. https://doi.org/https://doi.org/10.1016/j.knosys.2018.11.021.
Shen, J. N., Wang, L., & Wang, S. Y. (2015). A bi-population EDA for solving the no-idle permutation flow-shop scheduling problem with the total tardiness criterion. Knowledge-Based Systems, 74, 167-175.
Singh, H., Oberoi, J. S., & Singh, D. (2021). Multi-objective permutation and non-permutation flow shop scheduling problems with no-wait: a systematic literature review. RAIRO-Operations Research, 55(1), 27-50. https://doi.org/10.1051/ro/2020055.
Sun, Y., Zhang, C., Gao, L., & Wang, X. (2011). Multi-objective optimization algorithms for flow shop scheduling problem: a review and prospects. The International Journal of Advanced Manufacturing Technology, 55, 723-739.
T'kindt, V., & Billaut, J. C. (2006). Multicriteria scheduling: theory, models and algorithms. Springer Science & Busi-ness Media. https://doi.org/10.1007/b106275.
Tasgetiren, M. F., Liang, Y. C., Sevkli, M., & Gencyilmaz, G. (2007). A particle swarm optimization algorithm for makespan and total flowtime minimization in the permutation flowshop sequencing problem. European journal of operational research, 177(3), 1930-1947.
Tasgetiren, M. F., Pan, Q. K., Suganthan, P. N., & Buyukdagli, O. (2013). A variable iterated greedy algorithm with dif-ferential evolution for the no-idle permutation flowshop scheduling problem. Computers & Operations Research, 40(7), 1729-1743. https://doi.org/http://dx.doi.org/10.1016/jcor201301005.
Tasgetiren, M. F., Kizilay, D., Pan, Q. K., & Suganthan, P. N. (2017). Iterated greedy algorithms for the blocking flow-shop scheduling problem with makespan criterion. Computers & Operations Research, 77, 111-126. https://doi.org/10.1016/j.cor.2016.07.002.
Tasgetiren, M. F., Öztop, H., Gao, L., Pan, Q. K., & Li, X. (2019). A variable iterated local search algorithm for energy-efficient no-idle flowshop scheduling problem. Procedia Manufacturing, 39, 1185-1193. https://doi.org/https://doi.org/10.1016/j.promfg.2020.01.351.
Vachajitpan, P. (1982). Job sequencing with continuous machine operation. Computers & Industrial Engineering, 6(3), 255-259.
Varadharajan, T. K., & Rajendran, C. (2005). A multi-objective simulated-annealing algorithm for scheduling in flow-shops to minimize the makespan and total flowtime of jobs. European Journal of Operational Research, 167(3), 772-795. https://doi.org/https://doi.org/10.1016/j.ejor.2004.07.020.
Wu, X., & Che, A. (2020). Energy-efficient no-wait permutation flow shop scheduling by adaptive multi-objective vari-able neighborhood search. Omega, 94, 102117. https://doi.org/https://doi.org/10.1016/j.omega.2019.102117.
Yagmahan, B., & Yenisey, M. M. (2008). Ant colony optimization for multi-objective flow shop scheduling problem. Computers & Industrial Engineering, 54(3), 411-420. https://doi.org/https://doi.org/10.1016/j.cie.2007.08.003.
Ye, H., Li, W., & Nault, B. R. (2020). Trade-off balancing between maximum and total completion times for no-wait flow shop production. International Journal of Production Research, 58(11), 3235-3251. https://doi.org/10.1080/00207543.2019.1630777.
Yenisey, M. M., & Yagmahan, B. (2014). Multi-objective permutation flow shop scheduling problem: Literature re-view, classification and current trends. Omega, 45, 119-135. https://doi.org/https://doi.org/10.1016/j.omega.2013.07.004.
Zhao, F., Zhang, L., Zhang, Y., Ma, W., Zhang, C., & Song, H. (2020). A hybrid discrete water wave optimization algo-rithm for the no-idle flowshop scheduling problem with total tardiness criterion. Expert Systems with Applications, 146, 113166. https://doi.org/https://doi.org/10.1016/j.eswa.2019.113166.
Zhou, Y., Chen, H., & Zhou, G. (2014). Invasive weed optimization algorithm for optimization no-idle flow shop scheduling problem. Neurocomputing, 137, 285-292. https://doi.org/http://dx.doi.org/10.1016/jneucom201305063v