How to cite this paper
Asadi, E & Fricke, H. (2022). Aircraft total turnaround time estimation using fuzzy critical path method.Journal of Project Management, 7(4), 241-254.
Refrences
Ahn, Y. C., Lee, I. B., Lee, K. H., & Han, J. H. (2015). Strategic planning design of microalgae biomass-to-biodiesel supply chain network: Multi-period deterministic model. Applied Energy, 154, 528-542.
Ahmadbeygi, S., Cohn, A., & Lapp, M. (2010). Decreasing airline delay propagation by re-allocating scheduled slack. IIE transactions, 42(7), 478-489.
Akbarzadeh-T, M. R., & Moshtagh-Khorasani, M. (2007). A hierarchical fuzzy rule-based approach to aphasia diagno-sis. Journal of Biomedical Informatics, 40(5), 465-475.
Aquilano, N. J., & Smith, D. E. (1980). A formal set of algorithms for project scheduling with critical path schedul-ing/material requirements planning. Journal of Operations Management, 1(2), 57-67.
Asadi, E., Evler, J., Preis, H., & Fricke, H. (2020). Coping with uncertainties in predicting the aircraft turnaround time at airports. In Operations Research Proceedings 2019 (pp. 773-780). Springer, Cham.
Asadi, E., Schultz, M., & Fricke, H. (2021). Optimal schedule recovery for the aircraft gate assignment with constrained resources. Computers & Industrial Engineering, 162, 107682.
Atli, O., & Kahraman, C. (2012). Aircraft maintenance planning using fuzzy critical path analysis. International Journal of Computational Intelligence Systems, 5(3), 553-567.
Beatty, R., Hsu, R., Berry, L., & Rome, J. (1999). Preliminary evaluation of flight delay propagation through an airline schedule. Air Traffic Control Quarterly, 7(4), 259-270.
Chanas, S., & Zieliński, P. (2001). Critical path analysis in the network with fuzzy activity times. Fuzzy sets and sys-tems, 122(2), 195-204.
Chang, P. L., & Chen, Y. C. (1994). A fuzzy multi-criteria decision making method for technology transfer strategy se-lection in biotechnology. Fuzzy Sets and Systems, 63(2), 131-139.
Clarke, J. P., Melconian, T., Bly, E., & Rabbani, F. (2007). Means—mit extensible air network simula-tion. Simulation, 83(5), 385-399.
Dubois, D., Fargier, H., & Fortin, J. (2005). Computational methods for determining the latest starting times and floats of tasks in interval-valued activity networks. Journal of Intelligent Manufacturing, 16(4), 407-421.
Dubois, D., Foulloy, L., Mauris, G., & Prade, H. (2004). Probability-possibility transformations, triangular fuzzy sets, and probabilistic inequalities. Reliable computing, 10(4), 273-297.
Elizabeth, S., & Sujatha, L. (2013). Fuzzy critical path problem for project network. International Journal of Pure and Applied Mathematics, 85(2), 223-240.
Eurocontrol. (2017). Airport CDM Implementation Manual.
Evler, J., Asadi, E., Preis, H., & Fricke, H. (2021). Airline ground operations: Schedule recovery optimization approach with constrained resources. Transportation Research Part C: Emerging Technologies, 128, 103129.
Fricke, H., & Schultz, M. (2009, June). Delay impacts onto turnaround performance. In ATM Seminar.
Gazdik, I. (1983). Fuzzy-network planning-FNET. IEEE Transactions on Reliability, 32(3), 304-313.
He, L. H., & Zhang, L. Y. (2014). An improved fuzzy network critical path method. Systems Engineering-Theory & Practice, 34(1), 190-196.
Jianli, D., Jiantao, Z., & Weidong, C. (2015). Dynamic estimation about turnaround time of flight based on Bayesian network. Journal of Nanjing University of Aeronautics & Astronautics, 47(4), 517524.
Klir, G. J. (1990). A principle of uncertainty and information invariance. International Journal Of General Sys-tem, 17(2-3), 249-275.
Lee, K. H. (2004). First course on fuzzy theory and applications (Vol. 27). Springer Science & Business Media.
Li, Y. F., & Lau, C. C. (1989). Development of fuzzy algorithms for servo systems. IEEE Control Systems Maga-zine, 9(3), 65-72.
Mares, M. (1991). Some remarks to fuzzy critical path method. Ekonomicko-matematicky obzor, 27(4), 367-370.
Nasution, S. H. (1994). Fuzzy critical path method. IEEE Transactions on Systems, Man, and Cybernetics, 24(1), 48-57.
Netto, O., Silva, J., & Baltazar, M. (2020). The airport A-CDM operational implementation description and challeng-es. Journal of Airline and Airport Management, 10(1), 14-30.
Novák, V. (2005). Are fuzzy sets a reasonable tool for modeling vague phenomena?. Fuzzy Sets and Systems, 156(3), 341-348.
Oreschko, B., Kunze, T., Schultz, M., Fricke, H., Kumar, V., & Sherry, L. (2012, May). Turnaround prediction with sto-chastic process times and airport specific delay pattern. In International Conference on Research in Airport Trans-portation (ICRAT), Berkeley.
Pota, M., Esposito, M., & De Pietro, G. (2011, December). Transformation of probability distribution into fuzzy set in-terpretable with likelihood view. In 2011 11th International Conference on Hybrid Intelligent Systems (HIS) (pp. 91-96). IEEE.
Pota, M., Esposito, M., & De Pietro, G. (2013). Transforming probability distributions into membership functions of fuzzy classes: A hypothesis test approach. Fuzzy Sets and Systems, 233, 52-73.
Prade, H. (1979). Using fuzzy set theory in a scheduling problem: a case study. Fuzzy sets and systems, 2(2), 153-165.
Schultz, M., Evler, J., Asadi, E., Preis, H., Fricke, H., & Wu, C. L. (2020). Future aircraft turnaround operations consid-ering post-pandemic requirements. Journal of Air Transport Management, 89, 101886.
Schultz, M., Kunze, T., Oreschko, B., & Fricke, H. (2012). Dynamic turnaround management in a highly automated air-port environment. In Proceedings of the 28th International Congress of the Aeronautical Sciences (pp. 4362-4371).
Silverio, I., Juan, A. A., & Arias, P. (2013, June). A simulation-based approach for solving the aircraft turnaround prob-lem. In International Conference on Modeling and Simulation in Engineering, Economics and Management (pp. 163-170). Springer, Berlin, Heidelberg.
Slyeptsov, A., & Tyshchuk, T. (2000). Project network planning on the basis of generalized fuzzy critical path method. In The State of the Art in Computational Intelligence (pp. 133-139). Physica, Heidelberg.
Vimala, S., & Prabha, S. K. (2015). Solving fuzzy critical path problem using method of magnitude. International Jour-nal of Scientific & Engineering Research, 6(11), 1362-1370.
Wu, C. L., & Caves, R. E. (2004). Modelling and optimization of aircraft turnaround time at an airport. Transportation Planning and Technology, 27(1), 47-66.
Zadeh, L. A. (1973). Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans-actions on systems, Man, and Cybernetics, (1), 28-44.
Zadeh, L. A. (1999). Fuzzy sets as a basis for a theory of possibility. Fuzzy sets and systems, 100, 9-34.
Zhao, J., & Bose, B. K. (2002, November). Evaluation of membership functions for fuzzy logic controlled induction mo-tor drive. In IEEE 2002 28th Annual Conference of the Industrial Electronics Society. IECON 02 (Vol. 1, pp. 229-234). IEEE.
Ahmadbeygi, S., Cohn, A., & Lapp, M. (2010). Decreasing airline delay propagation by re-allocating scheduled slack. IIE transactions, 42(7), 478-489.
Akbarzadeh-T, M. R., & Moshtagh-Khorasani, M. (2007). A hierarchical fuzzy rule-based approach to aphasia diagno-sis. Journal of Biomedical Informatics, 40(5), 465-475.
Aquilano, N. J., & Smith, D. E. (1980). A formal set of algorithms for project scheduling with critical path schedul-ing/material requirements planning. Journal of Operations Management, 1(2), 57-67.
Asadi, E., Evler, J., Preis, H., & Fricke, H. (2020). Coping with uncertainties in predicting the aircraft turnaround time at airports. In Operations Research Proceedings 2019 (pp. 773-780). Springer, Cham.
Asadi, E., Schultz, M., & Fricke, H. (2021). Optimal schedule recovery for the aircraft gate assignment with constrained resources. Computers & Industrial Engineering, 162, 107682.
Atli, O., & Kahraman, C. (2012). Aircraft maintenance planning using fuzzy critical path analysis. International Journal of Computational Intelligence Systems, 5(3), 553-567.
Beatty, R., Hsu, R., Berry, L., & Rome, J. (1999). Preliminary evaluation of flight delay propagation through an airline schedule. Air Traffic Control Quarterly, 7(4), 259-270.
Chanas, S., & Zieliński, P. (2001). Critical path analysis in the network with fuzzy activity times. Fuzzy sets and sys-tems, 122(2), 195-204.
Chang, P. L., & Chen, Y. C. (1994). A fuzzy multi-criteria decision making method for technology transfer strategy se-lection in biotechnology. Fuzzy Sets and Systems, 63(2), 131-139.
Clarke, J. P., Melconian, T., Bly, E., & Rabbani, F. (2007). Means—mit extensible air network simula-tion. Simulation, 83(5), 385-399.
Dubois, D., Fargier, H., & Fortin, J. (2005). Computational methods for determining the latest starting times and floats of tasks in interval-valued activity networks. Journal of Intelligent Manufacturing, 16(4), 407-421.
Dubois, D., Foulloy, L., Mauris, G., & Prade, H. (2004). Probability-possibility transformations, triangular fuzzy sets, and probabilistic inequalities. Reliable computing, 10(4), 273-297.
Elizabeth, S., & Sujatha, L. (2013). Fuzzy critical path problem for project network. International Journal of Pure and Applied Mathematics, 85(2), 223-240.
Eurocontrol. (2017). Airport CDM Implementation Manual.
Evler, J., Asadi, E., Preis, H., & Fricke, H. (2021). Airline ground operations: Schedule recovery optimization approach with constrained resources. Transportation Research Part C: Emerging Technologies, 128, 103129.
Fricke, H., & Schultz, M. (2009, June). Delay impacts onto turnaround performance. In ATM Seminar.
Gazdik, I. (1983). Fuzzy-network planning-FNET. IEEE Transactions on Reliability, 32(3), 304-313.
He, L. H., & Zhang, L. Y. (2014). An improved fuzzy network critical path method. Systems Engineering-Theory & Practice, 34(1), 190-196.
Jianli, D., Jiantao, Z., & Weidong, C. (2015). Dynamic estimation about turnaround time of flight based on Bayesian network. Journal of Nanjing University of Aeronautics & Astronautics, 47(4), 517524.
Klir, G. J. (1990). A principle of uncertainty and information invariance. International Journal Of General Sys-tem, 17(2-3), 249-275.
Lee, K. H. (2004). First course on fuzzy theory and applications (Vol. 27). Springer Science & Business Media.
Li, Y. F., & Lau, C. C. (1989). Development of fuzzy algorithms for servo systems. IEEE Control Systems Maga-zine, 9(3), 65-72.
Mares, M. (1991). Some remarks to fuzzy critical path method. Ekonomicko-matematicky obzor, 27(4), 367-370.
Nasution, S. H. (1994). Fuzzy critical path method. IEEE Transactions on Systems, Man, and Cybernetics, 24(1), 48-57.
Netto, O., Silva, J., & Baltazar, M. (2020). The airport A-CDM operational implementation description and challeng-es. Journal of Airline and Airport Management, 10(1), 14-30.
Novák, V. (2005). Are fuzzy sets a reasonable tool for modeling vague phenomena?. Fuzzy Sets and Systems, 156(3), 341-348.
Oreschko, B., Kunze, T., Schultz, M., Fricke, H., Kumar, V., & Sherry, L. (2012, May). Turnaround prediction with sto-chastic process times and airport specific delay pattern. In International Conference on Research in Airport Trans-portation (ICRAT), Berkeley.
Pota, M., Esposito, M., & De Pietro, G. (2011, December). Transformation of probability distribution into fuzzy set in-terpretable with likelihood view. In 2011 11th International Conference on Hybrid Intelligent Systems (HIS) (pp. 91-96). IEEE.
Pota, M., Esposito, M., & De Pietro, G. (2013). Transforming probability distributions into membership functions of fuzzy classes: A hypothesis test approach. Fuzzy Sets and Systems, 233, 52-73.
Prade, H. (1979). Using fuzzy set theory in a scheduling problem: a case study. Fuzzy sets and systems, 2(2), 153-165.
Schultz, M., Evler, J., Asadi, E., Preis, H., Fricke, H., & Wu, C. L. (2020). Future aircraft turnaround operations consid-ering post-pandemic requirements. Journal of Air Transport Management, 89, 101886.
Schultz, M., Kunze, T., Oreschko, B., & Fricke, H. (2012). Dynamic turnaround management in a highly automated air-port environment. In Proceedings of the 28th International Congress of the Aeronautical Sciences (pp. 4362-4371).
Silverio, I., Juan, A. A., & Arias, P. (2013, June). A simulation-based approach for solving the aircraft turnaround prob-lem. In International Conference on Modeling and Simulation in Engineering, Economics and Management (pp. 163-170). Springer, Berlin, Heidelberg.
Slyeptsov, A., & Tyshchuk, T. (2000). Project network planning on the basis of generalized fuzzy critical path method. In The State of the Art in Computational Intelligence (pp. 133-139). Physica, Heidelberg.
Vimala, S., & Prabha, S. K. (2015). Solving fuzzy critical path problem using method of magnitude. International Jour-nal of Scientific & Engineering Research, 6(11), 1362-1370.
Wu, C. L., & Caves, R. E. (2004). Modelling and optimization of aircraft turnaround time at an airport. Transportation Planning and Technology, 27(1), 47-66.
Zadeh, L. A. (1973). Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans-actions on systems, Man, and Cybernetics, (1), 28-44.
Zadeh, L. A. (1999). Fuzzy sets as a basis for a theory of possibility. Fuzzy sets and systems, 100, 9-34.
Zhao, J., & Bose, B. K. (2002, November). Evaluation of membership functions for fuzzy logic controlled induction mo-tor drive. In IEEE 2002 28th Annual Conference of the Industrial Electronics Society. IECON 02 (Vol. 1, pp. 229-234). IEEE.