How to cite this paper
Braga-Santos, S., Barroso, G & Prata, B. (2022). A size-reduction algorithm for the order scheduling problem with total tardiness minimization.Journal of Project Management, 7(3), 167-176.
Refrences
Ahmadi, R., Bagchi, U., & Roemer, T. A. (2005). Coordinated scheduling of customer orders for quick response. Naval Research Logistics (NRL), 52(6), 493-512.
Antonioli, M., Rodrigues, C., & Prata, B. (2022). Minimizing total tardiness for the order scheduling problem with se-quence-dependent setup times using hybrid matheuristics. International Journal of Industrial Engineering Computa-tions, 13(2), 223-236.
Fanjul-Peyro, L., & Ruiz, R. (2011). Size-reduction heuristics for the unrelated parallel machines scheduling problem. Computers & Operations Research, 38(1), 301-309.
Fanjul-Peyro, L., Perea, F., & Ruiz, R. (2017). Models and matheuristics for the unrelated parallel machine scheduling problem with additional resources. European Journal of Operational Research, 260(2), 482-493.
Fernandez-Viagas, V., & Framinan, J. M. (2015). NEH-based heuristics for the permutation flowshop scheduling prob-lem to minimise total tardiness. Computers & Operations Research, 60, 27-36.
Framinan, J. M., & Perez-Gonzalez, P. (2017). New approximate algorithms for the customer order scheduling problem with total completion time objective. Computers & Operations Research, 78, 181-192.
Framinan, J. M., & Perez-Gonzalez, P. (2018). Order scheduling with tardiness objective: Improved approximate solu-tions. European Journal of Operational Research, 266(3), 840-850.
Framinan, J. M., Perez-Gonzalez, P., & Fernandez-Viagas, V. (2019). Deterministic assembly scheduling problems: A review and classification of concurrent-type scheduling models and solution procedures. European Journal of Oper-ational Research, 273(2), 401-417.
Julien, F. M., & Magazine, M. J. (1990). Scheduling customer orders: An alternative production scheduling approach. Journal of Manufacturing and Operations Management, 3(3), 177-199.
Lee, I. S. (2013). Minimizing total tardiness for the order scheduling problem. International Journal of Production Eco-nomics, 144(1), 128-134.
Leung, J. Y. T., Li, H., & Pinedo, M. (2005). Order scheduling in an environment with dedicated resources in parallel. Journal of Scheduling, 8(5), 355-386.
Lin, B. M., & Kononov, A. V. (2007). Customer order scheduling to minimize the number of late jobs. European Jour-nal of Operational Research, 183(2), 944-948.
Lin, W. C., Yin, Y., Cheng, S. R., Cheng, T. E., Wu, C. H., & Wu, C. C. (2017). Particle swarm optimization and oppo-site-based particle swarm optimization for two-agent multi-facility customer order scheduling with ready times. Ap-plied Soft Computing, 52, 877-884.
Prata, B. D. A., de Abreu, L. R., & Lima, J. Y. F. (2021). Heuristic methods for the single-machine scheduling problem with periodical resource constraints. Top, 29(2), 524-546.
de Athayde Prata, B., Rodrigues, C. D., & Framinan, J. M. (2021). Customer order scheduling problem to minimize makespan with sequence-dependent setup times. Computers & Industrial Engineering, 151, 106962.
de Athayde Prata, B., Rodrigues, C. D., & Framinan, J. M. (2022). A differential evolution algorithm for the customer order scheduling problem with sequence-dependent setup times. Expert Systems with Applications, 189, 116097.
Riahi, V., Newton, M. H., Polash, M. M. A., & Sattar, A. (2019). Tailoring customer order scheduling search algorithms. Computers & Operations Research, 108, 155-165.
Shi, Z., Wang, L., Liu, P., & Shi, L. (2015). Minimizing completion time for order scheduling: Formulation and heuris-tic algorithm. IEEE Transactions on Automation Science and Engineering, 14(4), 1558-1569.
Sung, C. S., & Yoon, S. H. (1998). Minimizing total weighted completion time at a pre-assembly stage composed of two feeding machines. International Journal of Production Economics, 54(3), 247-255.
Wagneur, E., & Sriskandarajah, C. (1993). Openshops with jobs overlap. European Journal of Operational Research, 71(3), 366-378.
Wang, G., & Cheng, T. E. (2007). Customer order scheduling to minimize total weighted completion time. Omega, 35(5), 623-626.
Xu, J., Wu, C. C., Yin, Y., Zhao, C., Chiou, Y. T., & Lin, W. C. (2016). An order scheduling problem with position-based learning effect. Computers & Operations Research, 74, 175-186.
Xu, X., Ma, Y., Zhou, Z., & Zhao, Y. (2013). Customer order scheduling on unrelated parallel machines to minimize to-tal completion time. IEEE Transactions on Automation Science and Engineering, 12(1), 244-257.
Yang, J., & Posner, M. E. (2005). Scheduling parallel machines for the customer order problem. Journal of Scheduling, 8(1), 49-74.
Antonioli, M., Rodrigues, C., & Prata, B. (2022). Minimizing total tardiness for the order scheduling problem with se-quence-dependent setup times using hybrid matheuristics. International Journal of Industrial Engineering Computa-tions, 13(2), 223-236.
Fanjul-Peyro, L., & Ruiz, R. (2011). Size-reduction heuristics for the unrelated parallel machines scheduling problem. Computers & Operations Research, 38(1), 301-309.
Fanjul-Peyro, L., Perea, F., & Ruiz, R. (2017). Models and matheuristics for the unrelated parallel machine scheduling problem with additional resources. European Journal of Operational Research, 260(2), 482-493.
Fernandez-Viagas, V., & Framinan, J. M. (2015). NEH-based heuristics for the permutation flowshop scheduling prob-lem to minimise total tardiness. Computers & Operations Research, 60, 27-36.
Framinan, J. M., & Perez-Gonzalez, P. (2017). New approximate algorithms for the customer order scheduling problem with total completion time objective. Computers & Operations Research, 78, 181-192.
Framinan, J. M., & Perez-Gonzalez, P. (2018). Order scheduling with tardiness objective: Improved approximate solu-tions. European Journal of Operational Research, 266(3), 840-850.
Framinan, J. M., Perez-Gonzalez, P., & Fernandez-Viagas, V. (2019). Deterministic assembly scheduling problems: A review and classification of concurrent-type scheduling models and solution procedures. European Journal of Oper-ational Research, 273(2), 401-417.
Julien, F. M., & Magazine, M. J. (1990). Scheduling customer orders: An alternative production scheduling approach. Journal of Manufacturing and Operations Management, 3(3), 177-199.
Lee, I. S. (2013). Minimizing total tardiness for the order scheduling problem. International Journal of Production Eco-nomics, 144(1), 128-134.
Leung, J. Y. T., Li, H., & Pinedo, M. (2005). Order scheduling in an environment with dedicated resources in parallel. Journal of Scheduling, 8(5), 355-386.
Lin, B. M., & Kononov, A. V. (2007). Customer order scheduling to minimize the number of late jobs. European Jour-nal of Operational Research, 183(2), 944-948.
Lin, W. C., Yin, Y., Cheng, S. R., Cheng, T. E., Wu, C. H., & Wu, C. C. (2017). Particle swarm optimization and oppo-site-based particle swarm optimization for two-agent multi-facility customer order scheduling with ready times. Ap-plied Soft Computing, 52, 877-884.
Prata, B. D. A., de Abreu, L. R., & Lima, J. Y. F. (2021). Heuristic methods for the single-machine scheduling problem with periodical resource constraints. Top, 29(2), 524-546.
de Athayde Prata, B., Rodrigues, C. D., & Framinan, J. M. (2021). Customer order scheduling problem to minimize makespan with sequence-dependent setup times. Computers & Industrial Engineering, 151, 106962.
de Athayde Prata, B., Rodrigues, C. D., & Framinan, J. M. (2022). A differential evolution algorithm for the customer order scheduling problem with sequence-dependent setup times. Expert Systems with Applications, 189, 116097.
Riahi, V., Newton, M. H., Polash, M. M. A., & Sattar, A. (2019). Tailoring customer order scheduling search algorithms. Computers & Operations Research, 108, 155-165.
Shi, Z., Wang, L., Liu, P., & Shi, L. (2015). Minimizing completion time for order scheduling: Formulation and heuris-tic algorithm. IEEE Transactions on Automation Science and Engineering, 14(4), 1558-1569.
Sung, C. S., & Yoon, S. H. (1998). Minimizing total weighted completion time at a pre-assembly stage composed of two feeding machines. International Journal of Production Economics, 54(3), 247-255.
Wagneur, E., & Sriskandarajah, C. (1993). Openshops with jobs overlap. European Journal of Operational Research, 71(3), 366-378.
Wang, G., & Cheng, T. E. (2007). Customer order scheduling to minimize total weighted completion time. Omega, 35(5), 623-626.
Xu, J., Wu, C. C., Yin, Y., Zhao, C., Chiou, Y. T., & Lin, W. C. (2016). An order scheduling problem with position-based learning effect. Computers & Operations Research, 74, 175-186.
Xu, X., Ma, Y., Zhou, Z., & Zhao, Y. (2013). Customer order scheduling on unrelated parallel machines to minimize to-tal completion time. IEEE Transactions on Automation Science and Engineering, 12(1), 244-257.
Yang, J., & Posner, M. E. (2005). Scheduling parallel machines for the customer order problem. Journal of Scheduling, 8(1), 49-74.