How to cite this paper
Zohrehvandi, S & Soltani, R. (2022). Project scheduling and buffer management: A comprehensive review and future directions.Journal of Project Management, 7(2), 121-132.
Refrences
Alfieri, A., Matta, A., & Pastore, E. (2016). A column generation algorithm for the Buffer Allocation Problem approximated by the Time Buffer concept. IFAC-PapersOnLine, 49(12), 739-744, https://doi.org/10.1016/j.ifacol.2016.07.862.
Almeida, B. F., Correia, I., & Saldanha-da-Gama, F. (2016). Priority-based heuristics for the multi-skill resource constrained project scheduling problem. Expert Systems with Applications, 57, 91-103, https://doi.org/10.1016/j.eswa.2016.03.017.
Bakry, I., Moselhi, O., & Zayed, T. (2016). Optimized scheduling and buffering of repetitive construction projects under un-certainty. Engineering, Construction and Architectural Management, 23(6), 782-800, https://doi.org/10.1108/ECAM-05-2014-0069.
Beşikci, U., Bilge, Ü., & Ulusoy, G. (2015). Multi-mode resource constrained multi-project scheduling and resource portfo-lio problem. European Journal of Operational Research, 240(1), 22-31.
Bevilacqua, M., Ciarapica, F. E., Mazzuto, G., & Paciarotti, C. (2015). Robust multi-criteria project scheduling in plant en-gineering and construction. In Handbook on Project Management and Scheduling Vol. 2 (pp. 1291-1305). Springer, Cham.
Bie, L., Cui, N., & Zhang, X. (2012). Buffer sizing approach with dependence assumption between activities in critical chain scheduling. International Journal of Production Research, 50(24), 7343-7356, https://doi.org/10.1080/00207543.2011.649096.
Blackstone, J.H., Cox, J.F., and Schleier, J.G. (2009). A tutorial on project management from a theory of constraints per-spective. International Journal of Production Research, 47 (24), 7029–7046, https://doi.org/10.1080/00207540802392551.
Bruni, M. E., Pugliese, L. D. P., Beraldi, P., & Guerriero, F. (2017). An adjustable robust optimization model for the re-source-constrained project scheduling problem with uncertain activity durations. Omega, 71, 66-84, https://doi.org/10.1016/j.omega.2016.09.009.
Chen, Z., Demeulemeester, E., Bai, S., & Guo, Y. (2018). Efficient priority rules for the stochastic resource-constrained pro-ject scheduling problem. European Journal of Operational Research, 270(3), 957-967, https://doi.org/10.1016/j.ejor.2018.04.025.
Coelho, J., & Vanhoucke, M. (2020). Going to the core of hard resource-constrained project scheduling instanc-es. Computers & Operations Research, 121, 104976, https://doi.org/10.1016/j.cor.2020.104976.
Dehghan, R., & Ruwnapura, J. Y. (2013). Model of trade-off between overlapping and rework of design activities. Journal of Construction Engineering and Management, 140(2), 04013043, https://doi.org/10.1061/(ASCE)CO.1943-7862.0000786.
Dehghan, R., Hazini, K., & Ruwanpura, J. (2015). Optimization of overlapping activities in the design phase of construction projects. Automation in Construction, 59, 81-95, https://doi.org/10.1016/j.autcon.2015.08.004.
E.M. Goldratt, Critical Chain, North River Press, New York, 1997
Ghaffari, M., & Emsley, M. W. (2015). Current status and future potential of the research on Critical Chain Project Man-agement. Surveys in Operations Research and Management Science, 20(2), 43-54.
Ghoddousi, P., Ansari, R., & Makui, A. (2017). A risk-oriented buffer allocation model based on critical chain project man-agement. KSCE Journal of Civil Engineering, 21(5), 1536-1548, https://doi.org/10.1007/s12205-016-0039-y.
Ghoddousi, P., Ansari, R., & Makui, A. (2017). An improved robust buffer allocation method for the project scheduling problem. Engineering Optimization, 49(4), 718-731, https://doi.org/10.1080/0305215X.2016.1206534.
Goldratt, E. M., & Cox, J. (1984). The goal: excellence in manufacturing. North River Press.
Hajdu, M., & Bokor, O. (2016). Sensitivity analysis in PERT networks: Does activity duration distribution mat-ter?. Automation in Construction, 65, 1-8.
Hall, N. G. (2015). Further research opportunities in project management. In Handbook on Project Management and Sched-uling Vol. 2 (pp. 945-970). Springer, Cham, https://doi.org/10.1007/978-3-319-05915-0_13.
Hammad, M. W., Abbasi, A., & Ryan, M. J. (2018). Developing a Novel Framework to Manage Schedule Contingency Us-ing Theory of Constraints and Earned Schedule Method. Journal of Construction Engineering and Management, 144(4), 04018011.
Hazır, Ö. (2015). A review of analytical models, approaches and decision support tools in project monitoring and con-trol. International Journal of Project Management, 33(4), 808-815.
Herroelen, W., & Leus, R. (2001). On the merits and pitfalls of critical chain scheduling. Journal of operations manage-ment, 19(5), 559-577, https://doi.org/10.1016/S0272-6963(01)00054-7.
Hu, X., Cui, N., & Demeulemeester, E. (2015). Effective expediting to improve project due date and cost performance through buffer management. International Journal of Production Research, 53(5), 1460-1471.
Hu, X., Cui, N., Demeulemeester, E., & Bie, L. (2016). Incorporation of activity sensitivity measures into buffer manage-ment to manage project schedule risk. European Journal of Operational Research, 249(2), 717-727, https://doi.org/10.1016/j.ejor.2015.08.066.
Hu, X., Demeulemeester, E., Cui, N., Wang, J., & Tian, W. (2017). Improved critical chain buffer management framework considering resource costs and schedule stability. Flexible Services and Manufacturing Journal, 29(2), 159-183, https://doi.org/10.1007/s10696-016-9241-y.
Hu, X., Wang, J., & Leng, K. (2019). The interaction between critical chain sequencing, buffer sizing, and reactive actions in a CC/BM framework. Asia-Pacific Journal of Operational Research, 36(03), 1950010.
Iranmanesh, H., Mansourian, F., & Kouchaki, S. (2016). Critical chain scheduling: a new approach for feeding buffer siz-ing. International Journal of Operational Research, 25(1), 114-130.
Kadri, R. L., & Boctor, F. F. 2018. An efficient genetic algorithm to solve the resource-constrained project scheduling prob-lem with transfer times: The single mode case. European Journal of Operational Research, 265(2), 454-462, https://doi.org/10.1016/j.ejor.2017.07.027.
Khesal, T., Saghaei, A., Khalilzadeh, M., Galankashi, M. R., & Soltani, R. (2019). Integrated cost, quality, risk and schedule control through earned value management (EVM). Journal of Engineering, Design and Technology.
Leach, L.P. (2005). Critical chain project management. 2nd ed. London: Artech House Inc.
Leyman, P., & Vanhoucke, M. (2015). A new scheduling technique for the resource–constrained project scheduling problem with discounted cash flows. International Journal of Production Research, 53(9), 2771-2786, https://doi.org/10.1080/00207543.2014.980463.
Li, H., Wang, M., & Dong, X. 2019. Resource Leveling in Projects with Stochastic Minimum Time Lags. Journal of Con-struction Engineering and Management, 145(4), 04019015, https://doi.org/10.1061/(ASCE)CO.1943-7862.0001635.
Liu, N., Zhang, Y. F., & Lu, W. F. 2020. Energy-efficient integration of process planning and scheduling in discrete parts manufacturing with a heuristic-based two-stage approach. The International Journal of Advanced Manufacturing Tech-nology, 106(5), 2415-2432, https://doi.org/10.1007/s00170-019-04776-x.
Ma, G., Gu, L., & Li, N. 2015. Scenario-based proactive robust optimization for critical-chain project scheduling. Journal of Construction Engineering and Management, 141(10), 04015030, https://doi.org/10.1061/(ASCE)CO.1943-7862.0001003.
Ma, G., Wang, A., Li, N., Gu, L., & Ai, Q. (2014). Improved critical chain project management framework for scheduling construction projects. Journal of Construction Engineering and Management, 140(12), 04014055.
Mahtamtama, E., Ridwan, A. Y., & Santosa, B. (2018, October). Development Of Cycle Counting Monitoring Dashboard With Buffer Time Management For Cocoa Company. In 2018 12th International Conference on Telecommunication Sys-tems, Services, and Applications (TSSA) (pp. 1-5). IEEE.
Malcolm D.G., Roseboom J.H., and Clark C.E., (1959), Application of a technique of research and development program evaluation. Operations Research, 7 ,646-669, https://doi.org/10.1287/opre.7.5.646.
Martens, A., & Vanhoucke, M. (2020). Integrating Corrective Actions in Project Time Forecasting Using Exponential Smoothing. Journal of Management in Engineering, 36(5), 04020044, https://doi.org/10.1061/(ASCE)ME.1943-5479.0000806.
Martens, A., & Vanhoucke, M. 2017. A buffer control method for top-down project control. European Journal of Opera-tional Research, 262(1), 274-286, https://doi.org/10.1016/j.ejor.2017.03.034.
Naeni, L. M., Shadrokh, S., & Salehipour, A. (2014). A fuzzy approach for the earned value management. International Journal of Project Management, 32(4), 709-716.
Newbold, R. C. (1998). Project management in the fast lane: applying the theory of constraints. CRC Press.
Peng, W., & Huang, M. (2014). A critical chain project scheduling method based on a differential evolution algo-rithm. International Journal of Production Research, 52(13), 3940-3949.
Peng, W., Huang, M., & Yongping, H. (2015). A multi-mode critical chain scheduling method based on priority rules. Production Planning & Control, 26(12), 1011-1024.
Poshdar, M., González, V. A., Raftery, G. M., Orozco, F., & Cabrera-Guerrero, G. G. (2018). A multi-objective probabilis-tic-based method to determine optimum allocation of time buffer in construction schedules. Automation in Construction, 92, 46-58.
Poshdar, M., González, V. A., Raftery, G. M., Orozco, F., Romeo, J. S., & Forcael, E. 2016. A probabilistic-based method to determine optimum size of project buffer in construction schedules. Journal of Construction Engineering and Man-agement, 142(10), 04016046, https://doi.org/10.1061/(ASCE)CO.1943-7862.0001158.
Rabbani, M., et al., 2007. A new heuristic for resource-constrained project scheduling in stochastic networks using critical chain concept. European Journal of Operational Research, 176 (2), 794–808, https://doi.org/10.1016/j.ejor.2005.09.018.
Rahman, H. F., Chakrabortty, R. K., & Ryan, M. J. (2020). Memetic algorithm for solving resource constrained project scheduling problems. Automation in Construction, 111, 103052.
Roghanian, E., Alipour, M., & Rezaei, M. (2018). An improved fuzzy critical chain approach in order to face uncertainty in project scheduling. International Journal of Construction Management, 18(1), 1-13, https://doi.org/10.1080/15623599.2016.1225327.
Rueda-Velasco, F. J., Cubaque, C. E., & Latorre, J. M. I. (2017, September). Project Scheduling with Dynamic Resource Al-location in a Multi-project Environment. Case: Bogotá Electricity Distributor. In Workshop on Engineering Applica-tions (pp. 589-600). Springer, Cham.
Russell, M. M., Liu, M., Howell, G., & Hsiang, S. M. (2014). Case studies of the allocation and reduction of time buffer through use of the last planner system. Journal of Construction Engineering and Management, 141(2), 04014068.
Salama, T., Salah, A., & Moselhi, O. (2021). Integrating critical chain project management with last planner system for line-ar scheduling of modular construction. Construction Innovation.
Salas-Morera, L., Arauzo-Azofra, A., García-Hernández, L., Palomo-Romero, J. M., & Ayuso-Muñoz, J. L. (2018). New Approach to the Distribution of Project Completion Time in PERT Networks. Journal of Construction Engineering and Management, 144(10), 04018094.
Sarkar, D., Jha, K. N., & Patel, S. (2021). Critical chain project management for a highway construction project with a focus on theory of constraints. International Journal of Construction Management, 21(2), 194-207.
Sarkar, D., Jha, K. N., & Patel, S. 2018. Critical chain project management for a highway construction project with a focus on theory of constraints. International Journal of Construction Management, 1-14, https://doi.org/10.1080/15623599.2018.1512031.
She, B., Chen, B., & Hall, N. G. (2021). Buffer sizing in critical chain project management by network decomposi-tion. Omega, 102, 102382.
Tukel, O. I., Rom, W. O., & Eksioglu, S. D. (2006). An investigation of buffer sizing techniques in critical chain schedul-ing. European Journal of Operational Research, 172(2), 401-416, https://doi.org/10.1016/j.ejor.2004.10.019.
Vanhoucke, M. (2016). Buffer management. In Integrated Project Management Sourcebook (pp. 155-193). Springer, Cham, https://doi.org/10.1007/978-3-319-27373-0.
Vanhoucke, M., & Coelho, J. 2019. Resource-constrained project scheduling with activity splitting and setup times. Computers & Operations Research, 109, 230-249, https://doi.org/10.1016/j.cor.2019.05.004.
Wang, Q., Liu, C., & Zheng, L. (2019). A column-generation-based algorithm for a resource-constrained project scheduling problem with a fractional shared resource. Engineering Optimization, 1-19, https://doi.org/10.1080/0305215X.2019.1610946.
Woeppel, M.J., 2006. Projects in less time: a synopsis of critical chain. Plano, Texas: Pinnacle Strategies Pub.
Zarghami, S. A., Gunawan, I., Corral de Zubielqui, G., & Baroudi, B. (2020). Incorporation of resource reliability into criti-cal chain project management buffer sizing. International Journal of Production Research, 58(20), 6130-6144.
Zarghami, S. A., Gunawan, I., Corral de Zubielqui, G., & Baroudi, B. (2019). Incorporation of resource reliability into criti-cal chain project management buffer sizing. International Journal of Production Research, 1-15, https://doi.org/10.1080/00207543.2019.1667041.
Zhang, J., & Wan, D. (2018). Integrated buffer monitoring and control based on grey neural network. Journal of the Opera-tional Research Society, 1-14.
Zhang, J., Jia, S., & Diaz, E. 2018. Dynamic monitoring and control of a critical chain project based on phase buffer alloca-tion. Journal of the Operational Research Society, 1-12, https://doi.org/10.1080/01605682.2017.1415641.
Zhang, J., Song, X., & Díaz, E. (2016). Project buffer sizing of a critical chain based on comprehensive resource tightness. European Journal of Operational Research, 248(1), 174-182.
Zhang, J., Song, X., & Díaz, E. 2017. Critical chain project buffer sizing based on resource constraints. International Journal of Production Research, 55(3), 671-683, https://doi.org/10.1080/00207543.2016.1200151.
Zhang, J., Song, X., Chen, H., & Shi, R. (2015). Optimisation of critical chain sequencing based on activities’ information flow interactions. International Journal of Production Research, 53(20), 6231-6241.
Zhao, Y., Cui, N., & Tian, W. (2020). A two-stage approach for the critical chain project rescheduling. Annals of Operations Research, 285(1), 67-95, https://doi.org/10.1007/s10479-019-03347-3.
Zhong, X., & Zhang, Z. (2015). Proactive Scheduling Procedures for RCPSP with Beta Distributed Durations and Exponen-tial Distributed Resources. In Proceedings of the Ninth International Conference on Management Science and Engineering Management (pp. 855-867). Springer, Berlin, Heidelberg.
Zohrehvandi, S., & Khalilzadeh, M. 2019. APRT-FMEA buffer sizing method in scheduling of a wind farm construction project. Engineering, Construction and Architectural Management, https://doi.org/10.1108/ECAM-04-2018-0161.
Zohrehvandi, S., Khalilzadeh, M., Amiri, M., & Shadrokh, S. (2020). A heuristic buffer sizing algorithm for implementing a renewable energy project. Automation in Construction, 117, 103267.
Zohrehvandi, S., Khalilzadeh, M., Hajizadeh, M., & Cheraghi, E. (2017). Planning project closure phase in combined cycle power plant projects. Procedia Computer Science, 121, 274-281, https://doi.org/10.1016/j.procs.2017.11.038.
Zohrehvandi, S., Vanhoucke, M., Soltani, R., & Javadi, M. (2019). A reconfigurable model for implementation in the closing phase of a wind turbines project construction. Engineering, Construction and Architectural Management, 27(2), 502-524. https://doi.org/10.1108/ECAM-01-2019-0065.
Zohrehvandi, S., Khalilzadeh, M., Amiri, M. and Shadrokh, S. (2021), "Project buffer sizing and dynamic buffer consump-tion algorithm in power generation construction", Engineering, Construction and Architectural Management, Vol. ahead-of-print No. ahead-of-print, https://doi.org/10.1108/ECAM-08-2020-0605.
Zohrehvandi, S., Vanhoucke, M. and Khalilzadeh, M. (2020), "A project buffer and resource management model in energy sector; a case study in construction of a wind farm project", International Journal of Energy Sector Management, 14(6), 1123-1142. https://doi.org/10.1108/IJESM-10-2019-0025.
Almeida, B. F., Correia, I., & Saldanha-da-Gama, F. (2016). Priority-based heuristics for the multi-skill resource constrained project scheduling problem. Expert Systems with Applications, 57, 91-103, https://doi.org/10.1016/j.eswa.2016.03.017.
Bakry, I., Moselhi, O., & Zayed, T. (2016). Optimized scheduling and buffering of repetitive construction projects under un-certainty. Engineering, Construction and Architectural Management, 23(6), 782-800, https://doi.org/10.1108/ECAM-05-2014-0069.
Beşikci, U., Bilge, Ü., & Ulusoy, G. (2015). Multi-mode resource constrained multi-project scheduling and resource portfo-lio problem. European Journal of Operational Research, 240(1), 22-31.
Bevilacqua, M., Ciarapica, F. E., Mazzuto, G., & Paciarotti, C. (2015). Robust multi-criteria project scheduling in plant en-gineering and construction. In Handbook on Project Management and Scheduling Vol. 2 (pp. 1291-1305). Springer, Cham.
Bie, L., Cui, N., & Zhang, X. (2012). Buffer sizing approach with dependence assumption between activities in critical chain scheduling. International Journal of Production Research, 50(24), 7343-7356, https://doi.org/10.1080/00207543.2011.649096.
Blackstone, J.H., Cox, J.F., and Schleier, J.G. (2009). A tutorial on project management from a theory of constraints per-spective. International Journal of Production Research, 47 (24), 7029–7046, https://doi.org/10.1080/00207540802392551.
Bruni, M. E., Pugliese, L. D. P., Beraldi, P., & Guerriero, F. (2017). An adjustable robust optimization model for the re-source-constrained project scheduling problem with uncertain activity durations. Omega, 71, 66-84, https://doi.org/10.1016/j.omega.2016.09.009.
Chen, Z., Demeulemeester, E., Bai, S., & Guo, Y. (2018). Efficient priority rules for the stochastic resource-constrained pro-ject scheduling problem. European Journal of Operational Research, 270(3), 957-967, https://doi.org/10.1016/j.ejor.2018.04.025.
Coelho, J., & Vanhoucke, M. (2020). Going to the core of hard resource-constrained project scheduling instanc-es. Computers & Operations Research, 121, 104976, https://doi.org/10.1016/j.cor.2020.104976.
Dehghan, R., & Ruwnapura, J. Y. (2013). Model of trade-off between overlapping and rework of design activities. Journal of Construction Engineering and Management, 140(2), 04013043, https://doi.org/10.1061/(ASCE)CO.1943-7862.0000786.
Dehghan, R., Hazini, K., & Ruwanpura, J. (2015). Optimization of overlapping activities in the design phase of construction projects. Automation in Construction, 59, 81-95, https://doi.org/10.1016/j.autcon.2015.08.004.
E.M. Goldratt, Critical Chain, North River Press, New York, 1997
Ghaffari, M., & Emsley, M. W. (2015). Current status and future potential of the research on Critical Chain Project Man-agement. Surveys in Operations Research and Management Science, 20(2), 43-54.
Ghoddousi, P., Ansari, R., & Makui, A. (2017). A risk-oriented buffer allocation model based on critical chain project man-agement. KSCE Journal of Civil Engineering, 21(5), 1536-1548, https://doi.org/10.1007/s12205-016-0039-y.
Ghoddousi, P., Ansari, R., & Makui, A. (2017). An improved robust buffer allocation method for the project scheduling problem. Engineering Optimization, 49(4), 718-731, https://doi.org/10.1080/0305215X.2016.1206534.
Goldratt, E. M., & Cox, J. (1984). The goal: excellence in manufacturing. North River Press.
Hajdu, M., & Bokor, O. (2016). Sensitivity analysis in PERT networks: Does activity duration distribution mat-ter?. Automation in Construction, 65, 1-8.
Hall, N. G. (2015). Further research opportunities in project management. In Handbook on Project Management and Sched-uling Vol. 2 (pp. 945-970). Springer, Cham, https://doi.org/10.1007/978-3-319-05915-0_13.
Hammad, M. W., Abbasi, A., & Ryan, M. J. (2018). Developing a Novel Framework to Manage Schedule Contingency Us-ing Theory of Constraints and Earned Schedule Method. Journal of Construction Engineering and Management, 144(4), 04018011.
Hazır, Ö. (2015). A review of analytical models, approaches and decision support tools in project monitoring and con-trol. International Journal of Project Management, 33(4), 808-815.
Herroelen, W., & Leus, R. (2001). On the merits and pitfalls of critical chain scheduling. Journal of operations manage-ment, 19(5), 559-577, https://doi.org/10.1016/S0272-6963(01)00054-7.
Hu, X., Cui, N., & Demeulemeester, E. (2015). Effective expediting to improve project due date and cost performance through buffer management. International Journal of Production Research, 53(5), 1460-1471.
Hu, X., Cui, N., Demeulemeester, E., & Bie, L. (2016). Incorporation of activity sensitivity measures into buffer manage-ment to manage project schedule risk. European Journal of Operational Research, 249(2), 717-727, https://doi.org/10.1016/j.ejor.2015.08.066.
Hu, X., Demeulemeester, E., Cui, N., Wang, J., & Tian, W. (2017). Improved critical chain buffer management framework considering resource costs and schedule stability. Flexible Services and Manufacturing Journal, 29(2), 159-183, https://doi.org/10.1007/s10696-016-9241-y.
Hu, X., Wang, J., & Leng, K. (2019). The interaction between critical chain sequencing, buffer sizing, and reactive actions in a CC/BM framework. Asia-Pacific Journal of Operational Research, 36(03), 1950010.
Iranmanesh, H., Mansourian, F., & Kouchaki, S. (2016). Critical chain scheduling: a new approach for feeding buffer siz-ing. International Journal of Operational Research, 25(1), 114-130.
Kadri, R. L., & Boctor, F. F. 2018. An efficient genetic algorithm to solve the resource-constrained project scheduling prob-lem with transfer times: The single mode case. European Journal of Operational Research, 265(2), 454-462, https://doi.org/10.1016/j.ejor.2017.07.027.
Khesal, T., Saghaei, A., Khalilzadeh, M., Galankashi, M. R., & Soltani, R. (2019). Integrated cost, quality, risk and schedule control through earned value management (EVM). Journal of Engineering, Design and Technology.
Leach, L.P. (2005). Critical chain project management. 2nd ed. London: Artech House Inc.
Leyman, P., & Vanhoucke, M. (2015). A new scheduling technique for the resource–constrained project scheduling problem with discounted cash flows. International Journal of Production Research, 53(9), 2771-2786, https://doi.org/10.1080/00207543.2014.980463.
Li, H., Wang, M., & Dong, X. 2019. Resource Leveling in Projects with Stochastic Minimum Time Lags. Journal of Con-struction Engineering and Management, 145(4), 04019015, https://doi.org/10.1061/(ASCE)CO.1943-7862.0001635.
Liu, N., Zhang, Y. F., & Lu, W. F. 2020. Energy-efficient integration of process planning and scheduling in discrete parts manufacturing with a heuristic-based two-stage approach. The International Journal of Advanced Manufacturing Tech-nology, 106(5), 2415-2432, https://doi.org/10.1007/s00170-019-04776-x.
Ma, G., Gu, L., & Li, N. 2015. Scenario-based proactive robust optimization for critical-chain project scheduling. Journal of Construction Engineering and Management, 141(10), 04015030, https://doi.org/10.1061/(ASCE)CO.1943-7862.0001003.
Ma, G., Wang, A., Li, N., Gu, L., & Ai, Q. (2014). Improved critical chain project management framework for scheduling construction projects. Journal of Construction Engineering and Management, 140(12), 04014055.
Mahtamtama, E., Ridwan, A. Y., & Santosa, B. (2018, October). Development Of Cycle Counting Monitoring Dashboard With Buffer Time Management For Cocoa Company. In 2018 12th International Conference on Telecommunication Sys-tems, Services, and Applications (TSSA) (pp. 1-5). IEEE.
Malcolm D.G., Roseboom J.H., and Clark C.E., (1959), Application of a technique of research and development program evaluation. Operations Research, 7 ,646-669, https://doi.org/10.1287/opre.7.5.646.
Martens, A., & Vanhoucke, M. (2020). Integrating Corrective Actions in Project Time Forecasting Using Exponential Smoothing. Journal of Management in Engineering, 36(5), 04020044, https://doi.org/10.1061/(ASCE)ME.1943-5479.0000806.
Martens, A., & Vanhoucke, M. 2017. A buffer control method for top-down project control. European Journal of Opera-tional Research, 262(1), 274-286, https://doi.org/10.1016/j.ejor.2017.03.034.
Naeni, L. M., Shadrokh, S., & Salehipour, A. (2014). A fuzzy approach for the earned value management. International Journal of Project Management, 32(4), 709-716.
Newbold, R. C. (1998). Project management in the fast lane: applying the theory of constraints. CRC Press.
Peng, W., & Huang, M. (2014). A critical chain project scheduling method based on a differential evolution algo-rithm. International Journal of Production Research, 52(13), 3940-3949.
Peng, W., Huang, M., & Yongping, H. (2015). A multi-mode critical chain scheduling method based on priority rules. Production Planning & Control, 26(12), 1011-1024.
Poshdar, M., González, V. A., Raftery, G. M., Orozco, F., & Cabrera-Guerrero, G. G. (2018). A multi-objective probabilis-tic-based method to determine optimum allocation of time buffer in construction schedules. Automation in Construction, 92, 46-58.
Poshdar, M., González, V. A., Raftery, G. M., Orozco, F., Romeo, J. S., & Forcael, E. 2016. A probabilistic-based method to determine optimum size of project buffer in construction schedules. Journal of Construction Engineering and Man-agement, 142(10), 04016046, https://doi.org/10.1061/(ASCE)CO.1943-7862.0001158.
Rabbani, M., et al., 2007. A new heuristic for resource-constrained project scheduling in stochastic networks using critical chain concept. European Journal of Operational Research, 176 (2), 794–808, https://doi.org/10.1016/j.ejor.2005.09.018.
Rahman, H. F., Chakrabortty, R. K., & Ryan, M. J. (2020). Memetic algorithm for solving resource constrained project scheduling problems. Automation in Construction, 111, 103052.
Roghanian, E., Alipour, M., & Rezaei, M. (2018). An improved fuzzy critical chain approach in order to face uncertainty in project scheduling. International Journal of Construction Management, 18(1), 1-13, https://doi.org/10.1080/15623599.2016.1225327.
Rueda-Velasco, F. J., Cubaque, C. E., & Latorre, J. M. I. (2017, September). Project Scheduling with Dynamic Resource Al-location in a Multi-project Environment. Case: Bogotá Electricity Distributor. In Workshop on Engineering Applica-tions (pp. 589-600). Springer, Cham.
Russell, M. M., Liu, M., Howell, G., & Hsiang, S. M. (2014). Case studies of the allocation and reduction of time buffer through use of the last planner system. Journal of Construction Engineering and Management, 141(2), 04014068.
Salama, T., Salah, A., & Moselhi, O. (2021). Integrating critical chain project management with last planner system for line-ar scheduling of modular construction. Construction Innovation.
Salas-Morera, L., Arauzo-Azofra, A., García-Hernández, L., Palomo-Romero, J. M., & Ayuso-Muñoz, J. L. (2018). New Approach to the Distribution of Project Completion Time in PERT Networks. Journal of Construction Engineering and Management, 144(10), 04018094.
Sarkar, D., Jha, K. N., & Patel, S. (2021). Critical chain project management for a highway construction project with a focus on theory of constraints. International Journal of Construction Management, 21(2), 194-207.
Sarkar, D., Jha, K. N., & Patel, S. 2018. Critical chain project management for a highway construction project with a focus on theory of constraints. International Journal of Construction Management, 1-14, https://doi.org/10.1080/15623599.2018.1512031.
She, B., Chen, B., & Hall, N. G. (2021). Buffer sizing in critical chain project management by network decomposi-tion. Omega, 102, 102382.
Tukel, O. I., Rom, W. O., & Eksioglu, S. D. (2006). An investigation of buffer sizing techniques in critical chain schedul-ing. European Journal of Operational Research, 172(2), 401-416, https://doi.org/10.1016/j.ejor.2004.10.019.
Vanhoucke, M. (2016). Buffer management. In Integrated Project Management Sourcebook (pp. 155-193). Springer, Cham, https://doi.org/10.1007/978-3-319-27373-0.
Vanhoucke, M., & Coelho, J. 2019. Resource-constrained project scheduling with activity splitting and setup times. Computers & Operations Research, 109, 230-249, https://doi.org/10.1016/j.cor.2019.05.004.
Wang, Q., Liu, C., & Zheng, L. (2019). A column-generation-based algorithm for a resource-constrained project scheduling problem with a fractional shared resource. Engineering Optimization, 1-19, https://doi.org/10.1080/0305215X.2019.1610946.
Woeppel, M.J., 2006. Projects in less time: a synopsis of critical chain. Plano, Texas: Pinnacle Strategies Pub.
Zarghami, S. A., Gunawan, I., Corral de Zubielqui, G., & Baroudi, B. (2020). Incorporation of resource reliability into criti-cal chain project management buffer sizing. International Journal of Production Research, 58(20), 6130-6144.
Zarghami, S. A., Gunawan, I., Corral de Zubielqui, G., & Baroudi, B. (2019). Incorporation of resource reliability into criti-cal chain project management buffer sizing. International Journal of Production Research, 1-15, https://doi.org/10.1080/00207543.2019.1667041.
Zhang, J., & Wan, D. (2018). Integrated buffer monitoring and control based on grey neural network. Journal of the Opera-tional Research Society, 1-14.
Zhang, J., Jia, S., & Diaz, E. 2018. Dynamic monitoring and control of a critical chain project based on phase buffer alloca-tion. Journal of the Operational Research Society, 1-12, https://doi.org/10.1080/01605682.2017.1415641.
Zhang, J., Song, X., & Díaz, E. (2016). Project buffer sizing of a critical chain based on comprehensive resource tightness. European Journal of Operational Research, 248(1), 174-182.
Zhang, J., Song, X., & Díaz, E. 2017. Critical chain project buffer sizing based on resource constraints. International Journal of Production Research, 55(3), 671-683, https://doi.org/10.1080/00207543.2016.1200151.
Zhang, J., Song, X., Chen, H., & Shi, R. (2015). Optimisation of critical chain sequencing based on activities’ information flow interactions. International Journal of Production Research, 53(20), 6231-6241.
Zhao, Y., Cui, N., & Tian, W. (2020). A two-stage approach for the critical chain project rescheduling. Annals of Operations Research, 285(1), 67-95, https://doi.org/10.1007/s10479-019-03347-3.
Zhong, X., & Zhang, Z. (2015). Proactive Scheduling Procedures for RCPSP with Beta Distributed Durations and Exponen-tial Distributed Resources. In Proceedings of the Ninth International Conference on Management Science and Engineering Management (pp. 855-867). Springer, Berlin, Heidelberg.
Zohrehvandi, S., & Khalilzadeh, M. 2019. APRT-FMEA buffer sizing method in scheduling of a wind farm construction project. Engineering, Construction and Architectural Management, https://doi.org/10.1108/ECAM-04-2018-0161.
Zohrehvandi, S., Khalilzadeh, M., Amiri, M., & Shadrokh, S. (2020). A heuristic buffer sizing algorithm for implementing a renewable energy project. Automation in Construction, 117, 103267.
Zohrehvandi, S., Khalilzadeh, M., Hajizadeh, M., & Cheraghi, E. (2017). Planning project closure phase in combined cycle power plant projects. Procedia Computer Science, 121, 274-281, https://doi.org/10.1016/j.procs.2017.11.038.
Zohrehvandi, S., Vanhoucke, M., Soltani, R., & Javadi, M. (2019). A reconfigurable model for implementation in the closing phase of a wind turbines project construction. Engineering, Construction and Architectural Management, 27(2), 502-524. https://doi.org/10.1108/ECAM-01-2019-0065.
Zohrehvandi, S., Khalilzadeh, M., Amiri, M. and Shadrokh, S. (2021), "Project buffer sizing and dynamic buffer consump-tion algorithm in power generation construction", Engineering, Construction and Architectural Management, Vol. ahead-of-print No. ahead-of-print, https://doi.org/10.1108/ECAM-08-2020-0605.
Zohrehvandi, S., Vanhoucke, M. and Khalilzadeh, M. (2020), "A project buffer and resource management model in energy sector; a case study in construction of a wind farm project", International Journal of Energy Sector Management, 14(6), 1123-1142. https://doi.org/10.1108/IJESM-10-2019-0025.