Processing, Please wait...

  • Home
  • About Us
  • Search:
  • Advanced Search

Growing Science » Journal of Project Management » A genetic algorithm for scheduling multimode resource-constrained project problem in the presence of preemptive resources

Journals

  • IJIEC (726)
  • MSL (2637)
  • DSL (649)
  • CCL (495)
  • USCM (1092)
  • ESM (404)
  • AC (557)
  • JPM (247)
  • IJDS (912)
  • JFS (91)
  • HE (21)
  • SCI (0)

JPM Volumes

    • Volume 1 (8)
      • Issue 1 (5)
      • Issue 2 (3)
    • Volume 2 (13)
      • Issue 1 (4)
      • Issue 2 (3)
      • Issue 3 (3)
      • Issue 4 (3)
    • Volume 3 (17)
      • Issue 1 (4)
      • Issue 2 (5)
      • Issue 3 (4)
      • Issue 4 (4)
    • Volume 4 (24)
      • Issue 1 (4)
      • Issue 2 (8)
      • Issue 3 (8)
      • Issue 4 (4)
    • Volume 5 (20)
      • Issue 1 (5)
      • Issue 2 (5)
      • Issue 3 (5)
      • Issue 4 (5)
    • Volume 6 (20)
      • Issue 1 (5)
      • Issue 2 (5)
      • Issue 3 (5)
      • Issue 4 (5)
    • Volume 7 (21)
      • Issue 1 (5)
      • Issue 2 (5)
      • Issue 3 (5)
      • Issue 4 (6)
    • Volume 8 (21)
      • Issue 1 (6)
      • Issue 2 (5)
      • Issue 3 (5)
      • Issue 4 (5)
    • Volume 9 (35)
      • Issue 1 (6)
      • Issue 2 (5)
      • Issue 3 (9)
      • Issue 4 (15)
    • Volume 10 (68)
      • Issue 1 (15)
      • Issue 2 (21)
      • Issue 3 (13)
      • Issue 4 (19)

Keywords

Jordan(161)
Supply chain management(160)
Vietnam(148)
Customer satisfaction(120)
Performance(113)
Supply chain(108)
Service quality(98)
Tehran Stock Exchange(94)
Competitive advantage(93)
SMEs(86)
optimization(84)
Financial performance(83)
Trust(81)
Job satisfaction(79)
Social media(78)
Factor analysis(78)
TOPSIS(78)
Knowledge Management(77)
Genetic Algorithm(76)
Sustainability(76)


» Show all keywords

Authors

Naser Azad(82)
Mohammad Reza Iravani(64)
Zeplin Jiwa Husada Tarigan(59)
Endri Endri(45)
Muhammad Alshurideh(42)
Hotlan Siagian(39)
Jumadil Saputra(36)
Muhammad Turki Alshurideh(35)
Dmaithan Almajali(35)
Barween Al Kurdi(32)
Basrowi Basrowi(31)
Hassan Ghodrati(31)
Ahmad Makui(31)
Mohammad Khodaei Valahzaghard(30)
Shankar Chakraborty(29)
Ni Nyoman Kerti Yasa(29)
Sulieman Ibraheem Shelash Al-Hawary(28)
Prasadja Ricardianto(28)
Sautma Ronni Basana(27)
Haitham M. Alzoubi(27)


» Show all authors

Countries

Iran(2162)
Indonesia(1276)
Jordan(783)
India(779)
Vietnam(500)
Saudi Arabia(438)
Malaysia(438)
United Arab Emirates(220)
China(181)
Thailand(151)
United States(109)
Turkey(102)
Ukraine(99)
Egypt(95)
Canada(89)
Pakistan(84)
Peru(83)
United Kingdom(77)
Nigeria(77)
Morocco(73)


» Show all countries

Journal of Project Management

ISSN 2371-8374 (Online) - ISSN 2371-8366 (Print)
Quarterly Publication
Volume 4 Issue 3 pp. 195-212 , 2019

A genetic algorithm for scheduling multimode resource-constrained project problem in the presence of preemptive resources Pages 195-212 Right click to download the paper Download PDF

Authors: Aidin Delgoshaei, Sepehr Esmaeili Hanjani, Amir Hossein Nasiri

DOI: 10.5267/j.jpm.2019.3.005

Keywords: Multimode Project Scheduling, Genetic Algorithm, Pre-emptive Constrained Resources, Discounted Cash Flows

Abstract: In this paper, a backward approach is proposed for maximizing net present value (NPV) in multi-mode resource constrained project scheduling problem while assuming discounted positive cash flows (MRCPSP-DCF). The progress payment method is used and all re-sources are considered as pre-emptible. The proposed approach maximizes NPV using unscheduled resources through resource calendar in backward mode. For this purpose, a Genetic Algorithm is applied to solve experimental cases with 50 variables and the results are compared with forward serial programming method. The remarkable results reveal that the backward approach is an effective way to maximize NPV in MRCPSP-DC while activity splitting is allowed. The algorithm is flexible enough to be used in real project.

How to cite this paper
Delgoshaei, A., Hanjani, S & Nasiri, A. (2019). A genetic algorithm for scheduling multimode resource-constrained project problem in the presence of preemptive resources.Journal of Project Management, 4(3), 195-212.

Refrences
Abbasi, B., Shadrokh, S., & Arkat, J. (2006). Bi-objective resource-constrained project scheduling with robustness and makespan criteria. Applied Mathematics and Computation, 180(1), 146-152. doi:https://doi.org/10.1016/j.amc.2005.11.160
Ballestín, F., Valls, V., & Quintanilla, S. (2008). Pre-emption in resource-constrained project scheduling. European Journal of Operational Research, 189(3), 1136-1152. doi:https://doi.org/10.1016/j.ejor.2006.07.052
Buddhakulsomsiri, J., & Kim, D. S. (2006). Properties of multi-mode resource-constrained project scheduling problems with resource vacations and activity splitting. European Journal of Operational Research, 175(1), 279-295. doi:https://doi.org/10.1016/j.ejor.2005.04.030
Castejón-Limas, M., Ordieres-Meré, J., González-Marcos, A., & González-Castro, V. (2011). Effort estimates through project complexity. Annals of Operations research, 186(1), 395-406. doi:https://doi.org/10.1007/s10479-010-0776-0
Chen, J., & Askin, R. G. (2009). Project selection, scheduling and resource allocation with time dependent returns. European Journal of Operational Research, 193(1), 23-34. doi:https://doi.org/10.1016/j.ejor.2007.10.040
Chtourou, H., & Haouari, M. (2008). A two-stage-priority-rule-based algorithm for robust resource-constrained project scheduling. Computers & Industrial Engineering, 55(1), 183-194. doi:https://doi.org/10.1016/j.cie.2007.11.017
Damay, J., Quilliot, A., & Sanlaville, E. (2007). Linear programming based algorithms for preemptive and non-preemptive RCPSP. European Journal of Operational Research, 182(3), 1012-1022. doi:https://doi.org/10.1016/j.ejor.2006.09.052
Delgoshaei, A., Ariffin, M., Baharudin, B., & Leman, Z. (2016a). A new method for decreasing cell-load variation in dynamic cellular manufacturing systems. International Journal of Industrial Engineering Computations, 7(1), 83-110.
Delgoshaei, A., Ariffin, M. K. A., & Ali, A. (2017). A multi-period scheduling method for trading-off between skilled-workers allocation and outsource service usage in dynamic CMS. International Journal of Production Research, 55(4), 997-1039.
Delgoshaei, A., Ariffin, M. K. A. M., Leman, Z., Baharudin, B. H. T. B., & Gomes, C. (2016b). Review of evolution of cellular manufacturing system’s approaches: Material transferring models. International Journal of Precision Engineering and Manufacturing, 17(1), 131-149.
Elmaghraby, S. E., & Herroelen, W. S. (1990). The scheduling of activities to maximize the net present value of projects. European Journal of Operational Research, 49(1), 35-49.
Hartmann, S., & Briskorn, D. (2010). A survey of variants and extensions of the resource-constrained project scheduling problem. European Journal of Operational Research, 207(1), 1-14. doi:https://doi.org/10.1016/j.ejor.2009.11.005
Hendricks, M. H., Voeten, B., & Kroep, L. H. (2002). Human resource allocation in a multiproject research and development environment. Managing Multiple Projects. Planning, Scheduling, and Allocating Resources for Competitive Advantage.
Jarboui, B., Damak, N., Siarry, P., & Rebai, A. (2008). A combinatorial particle swarm optimization for solving multi-mode resource-constrained project scheduling problems. Applied Mathematics and Computation, 195(1), 299-308.
Ke, H., & Liu, B. (2010). Fuzzy project scheduling problem and its hybrid intelligent algorithm. Applied Mathematical Modelling, 34(2), 301-308.
Kim, K., Yun, Y., Yoon, J., Gen, M., & Yamazaki, G. (2005). Hybrid genetic algorithm with adaptive abilities for resource-constrained multiple project scheduling. Computers in industry, 56(2), 143-160. doi:https://doi.org/10.1016/j.compind.2004.06.006
Kreter, S., Rieck, J., & Zimmermann, J. (2016). Models and solution procedures for the resource-constrained project scheduling problem with general temporal constraints and calendars. European Journal of Operational Research, 251(2), 387-403. doi:https://doi.org/10.1016/j.ejor.2015.11.021
Laslo, Z. (2010). Project portfolio management: An integrated method for resource planning and scheduling to minimize planning/scheduling-dependent expenses. International Journal of Project Management, 28(6), 609-618. doi:https://doi.org/10.1016/j.ijproman.2009.10.001
Lin, C.-M., & Gen, M. (2008). Multi-criteria human resource allocation for solving multistage combinatorial optimization problems using multiobjective hybrid genetic algorithm. Expert Systems with Applications, 34(4), 2480-2490. doi:https://doi.org/10.1016/j.eswa.2007.04.016
Mika, M., Waligóra, G., & Węglarz, J. (2005). Simulated annealing and tabu search for multi-mode resource-constrained project scheduling with positive discounted cash flows and different payment models. European Journal of Operational Research, 164(3), 639-668. doi:https://doi.org/10.1016/j.ejor.2003.10.053
Naber, A., & Kolisch, R. (2014). MIP models for resource-constrained project scheduling with flexible resource profiles. European Journal of Operational Research, 239(2), 335-348. doi:https://doi.org/10.1016/j.ejor.2014.05.036
Papke-Shields, K. E., & Boyer-Wright, K. M. (2017). Strategic planning characteristics applied to project management. International Journal of Project Management, 35(2), 169-179.
Pérez, E., Posada, M., & Lorenzana, A. (2016). Taking advantage of solving the resource constrained multi-project scheduling problems using multi-modal genetic algorithms. Soft Computing, 20(5), 1879-1896.
Rabbani, M., Ravanbakhsh, M., Farrokhi-Asl, H., & Taheri, M. (2017). Using metaheuristic algorithms for solving a hub location problem: application in passive optical network planning. International Journal of Supply and Operations Management, 4(1), 0-0.
Seifi, M., & Tavakkoli-Moghaddam, R. (2008). A new bi-objective model for a multi-mode resource-constrained project scheduling problem with discounted cash flows and four payment models. Int. J. of Engineering, Transaction A: Basic, 21(4), 347-360.
Sharon, A., & Dori, D. (2015). A Project–product model–based approach to planning work breakdown structures of complex system projects. IEEE Systems Journal, 9(2), 366-376.
Vaez, P. (2017). A New Mathematical Model for Simultaneous Lot-sizing and Production Scheduling Problems Considering Earliness/Tardiness Penalties and Setup Costs. International Journal of Supply and Operations Management, 4(2), 167-179.
Van de Vonder, S., Demeulemeester, E., Herroelen, W., & Leus, R. (2005). The use of buffers in project management: The trade-off between stability and makespan. International Journal of Production Economics, 97(2), 227-240.
Van de Vonder, S., Demeulemeester, E., Herroelen, W., & Leus, R. (2006). The trade-off between stability and makespan in resource-constrained project scheduling. International Journal of Production Research, 44(2), 215-236.
Van Peteghem, V., & Vanhoucke, M. (2010). A genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem. European Journal of Operational Research, 201(2), 409-418.
Vanhoucke, M., & Debels, D. (2008). The impact of various activity assumptions on the lead time and resource utilization of resource-constrained projects. Computers & Industrial Engineering, 54(1), 140-154. doi:https://doi.org/10.1016/j.cie.2007.07.001
Ward, S., & Chapman, C. (2003). Transforming project risk management into project uncertainty management. International Journal of Project Management, 21(2), 97-105. doi:https://doi.org/10.1016/S0263-7863(01)00080-1
Węglarz, J., Józefowska, J., Mika, M., & Waligóra, G. (2011). Project scheduling with finite or infinite number of activity processing modes–A survey. European Journal of Operational Research, 208(3), 177-205. doi:https://doi.org/10.1016/j.ejor.2010.03.037
Yan, L., Jinsong, B., Xiaofeng, H., & Ye, J. (2009). A heuristic project scheduling approach for quick response to maritime disaster rescue. International Journal of Project Management, 27(6), 620-628. doi:doi.org/10.1016/j.ijproman.2008.10.001
Yu, Wang, S., Wen, F., & Lai, K. K. (2012). Genetic algorithm-based multi-criteria project portfolio selection. Annals of Operations Research, 197(1), 71-86.
Zhou, M., & Askin, R. G. (1998). Formation of general GT cells: an operation-based approach. Computers & industrial engineering, 34(1), 147-157.
ZIAEE, M. (2017). Modeling and solving the distributed and flexible job shop scheduling problem with WIPs supply planning and bounded processing times.
  • 34
  • 1
  • 2
  • 3
  • 4
  • 5

Journal: Journal of Project Management | Year: 2019 | Volume: 4 | Issue: 3 | Views: 1644 | Reviews: 0

Related Articles:
  • Developing a new method for modifying over-allocated multi-mode resource co ...
  • Minimizing makespan of a resource-constrained scheduling problem: A hybrid ...
  • Artificial Bee colony for resource constrained project scheduling problem
  • Solving a mixed-integer linear programming model for a multi-skilled projec ...
  • A new improved genetic algorithm approach and a competitive heuristic metho ...

Add Reviews

Name:*
E-Mail:
Review:
Bold Italic Underline Strike | Align left Center Align right | Insert smilies Insert link URLInsert protected URL Select color | Add Hidden Text Insert Quote Convert selected text from selection to Cyrillic (Russian) alphabet Insert spoiler
winkwinkedsmileam
belayfeelfellowlaughing
lollovenorecourse
requestsadtonguewassat
cryingwhatbullyangry
Security Code: *
Include security image CAPCHA.
Refresh Code

® 2010-2025 GrowingScience.Com