How to cite this paper
Habibi, F., Barzinpour, F & Sadjadi, S. (2018). Resource-constrained project scheduling problem: review of past and recent developments.Journal of Project Management, 3(2), 55-88.
Refrences
Abbasi, B., Shadrokh, S., & Arkat, J. (2006). Bi-objective resource-constrained project scheduling with robustness and makespan criteria. Applied mathematics and computation, 180(1), 146-152.
Abello, M. B., & Michalewicz, Z. (2014). Multiobjective resource-constrained project scheduling with a time-varying number of tasks. The Scientific World Journal, 2014.
Abello, M. B., Michalewicz, Z., & Bui, L. T. (2012, June). A reactive-proactive approach for solving dynamic scheduling with time-varying number of tasks. In 2012 IEEE Congress on Evolutionary Computation (pp. 1-10). IEEE.
Afruzi, E. N., Najafi, A. A., Roghanian, E., & Mazinani, M. (2014). A Multi-Objective Imperialist Competitive Algorithm for solving discrete time, cost and quality trade-off problems with mode-identity and resource-constrained situations. Computers & Operations Research, 50, 80-96.
Afshar-Nadjafi, B. (2014a). Multi-mode resource availability cost problem with recruitment and re-lease dates for resources. Applied Mathematical Modelling, 38(21), 5347-5355.
Afshar-Nadjafi, B. (2014b). Resource Constrained Project Scheduling Subject to Due Dates: Preemp-tion Permitted with Penalty. Advances in Operations Research, 2014.
Afshar-Nadjafi, B. (2016). A new proactive approach to construct a robust baseline schedule consid-ering quality factor. International Journal of Industrial and Systems Engineering, 22(1), 63-72.
Afshar-Nadjafi, B., & Majlesi, M. (2014). Resource constrained project scheduling problem with set-up times after preemptive processes. Computers & Chemical Engineering, 69, 16-25.
Agarwal, R., Tiwari, M. K., & Mukherjee, S. K. (2007). Artificial immune system based approach for solving resource constraint project scheduling problem. The International Journal of Advanced Manufacturing Technology, 34(5-6), 584-593.
Ahn, T., & Erenguc, S. S. (1998). The resource constrained project scheduling problem with multiple crashable modes: a heuristic procedure. European Journal of Operational Research, 107(2), 250-259.
Akkan, C., Drexl, A., & Kimms, A. (2005). Network decomposition-based benchmark results for the discrete time–cost tradeoff problem. European Journal of Operational Research, 165(2), 339-358.
Al-Fawzan, M. A., & Haouari, M. (2005). A bi-objective model for robust resource-constrained pro-ject scheduling. International Journal of production economics, 96(2), 175-187.
Aouni, B., d’Avignon, G., & Gagnon, M. (2015). Goal Programming for Multi-Objective Resource-Constrained Project Scheduling. In Handbook on Project Management and Scheduling Vol. 1 (pp. 429-442). Springer International Publishing.
Atli, O., & Kahraman, C. (2014). Resource-constrained project scheduling problem with multiple exe-cution modes and fuzzy/crisp activity durations. Journal of Intelligent & Fuzzy Systems, 26(4), 2001-2020.
Ayodele, M., McCall, J., & Regnier-Coudert, O. (2015, July). Probabilistic Model Enhanced Genetic Algorithm for Multi-Mode Resource Constrained Project Scheduling Problem. In Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computa-tion (pp. 745-746). ACM.
Azizoglu, M., Çetinkaya, F. C., & Pamir, S. K. (2015). LP relaxation-based solution algorithms for the multi-mode project scheduling with a non-renewable resource. European Journal of Industrial En-gineering, 9(4), 450-469.
Ballestín, F. (2007, April). A genetic algorithm for the resource renting problem with minimum and maximum time lags. In European Conference on Evolutionary Computation in Combinatorial Op-timization (pp. 25-35). Springer Berlin Heidelberg.
Ballestín, F. (2008). Different codifications and metaheuristic algorithms for the resource renting problem with minimum and maximum time lags. In Recent Advances in Evolutionary Computation for Combinatorial Optimization (pp. 187-202). Springer Berlin Heidelberg.
Ballestin, F., & Trautmann, N. (2008). An iterated-local-search heuristic for the resource-constrained weighted earliness-tardiness project scheduling problem. International Journal of Production Re-search, 46(22), 6231-6249.
Ballestín, F., Barrios, A., & Valls, V. (2013). Looking for the best modes helps solving the MRCPSP/max. International Journal of Production Research, 51(3), 813-827.
Ballestín, F., Valls, V., & Quintanilla, S. (2009). Scheduling projects with limited number of preemp-tions. Computers & Operations Research, 36(11), 2913-2925.
Bartusch, M., Möhring, R. H., & Radermacher, F. J. (1988). Scheduling project networks with re-source constraints and time windows. Annals of operations Research, 16(1), 199-240.
Berthaut, F., Pellerin, R., Perrier, N., & Hajji, A. (2014). Time-cost trade-offs in resource-constraint project scheduling problems with overlapping modes. International Journal of Project Organisation and Management, 6(3), 215-236.
Beşikci, U., Bilge, Ü., & Ulusoy, G. (2015). Multi-mode resource constrained multi-project schedul-ing and resource portfolio problem. European Journal of Operational Research, 240(1), 22-31.
Bhaskar, T., Pal, M. N., & Pal, A. K. (2011). A heuristic method for RCPSP with fuzzy activity times. European Journal of Operational Research, 208(1), 57-66.
Bianco, L., Caramia, M., & Giordani, S. (2016). Resource levelling in project scheduling with general-ized precedence relationships and variable execution intensities. OR Spectrum, 38(2), 405-425.
Bierwirth, C., & Mattfeld, D. C. (1999). Production scheduling and rescheduling with genetic algo-rithms. Evolutionary computation, 7(1), 1-17.
Blazewicz, J., Lenstra, J. K., & Kan, A. R. (1983). Scheduling subject to resource constraints: classifi-cation and complexity. Discrete Applied Mathematics, 5(1), 11-24.
Boctor, F. F. (1993). Heuristics for scheduling projects with resource restrictions and several resource-duration modes. The International Journal of Production Research, 31(11), 2547-2558.
Boctor, F. F. (1996). A new and efficient heuristic for scheduling projects with resource restrictions and multiple execution modes. European Journal of Operational Research, 90(2), 349-361.
Browning, T. R., & Yassine, A. A. (2010). Resource-constrained multi-project scheduling: Priority rule performance revisited. International Journal of Production Economics, 126(2), 212-228.
Buddhakulsomsiri, J., & Kim, D. S. (2006). Properties of multi-mode resource-constrained project scheduling problems with resource vacations and activity splitting. European Journal of Opera-tional Research, 175(1), 279-295.
Buddhakulsomsiri, J., & Kim, D. S. (2007). Priority rule-based heuristic for multi-mode resource-constrained project scheduling problems with resource vacations and activity splitting. European Journal of Operational Research, 178(2), 374-390.
Can, A., & Ulusoy, G. (2014). Multi-project scheduling with two-stage decomposition. Annals of Op-erations Research, 217(1), 95-116.
Čapek, R., Šůcha, P., & Hanzálek, Z. (2012). Production scheduling with alternative process plans. European Journal of Operational Research, 217(2), 300-311.
Carlier, J., & Moukrim, A. (2015). Storage Resources. In Handbook on Project Management and Scheduling Vol. 1 (pp. 177-189). Springer International Publishing.
Cavalcante, C. C., De Souza, C. C., Savelsbergh, M. W., Wang, Y., & Wolsey, L. A. (2001). Schedul-ing projects with labor constraints. Discrete Applied Mathematics, 112(1), 27-52.
Chai, G., Huang, S., Zhang, G., & Su, Y. (2010, August). Optimization of Bonus-Penalty Structure in Flexible Resources-Constrained Project Scheduling Problems from Both Sides of the Contract. In Business Intelligence and Financial Engineering (BIFE), 2010 Third International Conference on (pp. 109-113). IEEE.
Chakrabortty, R. K., Sarker, R. A., & Essam, D. L. (2014, November). Event based approaches for solving multi-mode resource constraints project scheduling problem. In IFIP International Confer-ence on Computer Information Systems and Industrial Management (pp. 375-386). Springer Berlin Heidelberg.
Chakrabortty, R. K., Sarker, R. A., & Essam, D. L. (2016). Multi-mode resource constrained project scheduling under resource disruptions. Computers & Chemical Engineering, 88, 13-29.
Chakrabortty, R. K., Sarker, R. A., & Essam, D. L. (2017). Resource constrained project scheduling with uncertain activity durations. Computers & Industrial Engineering.
Chanas, S., & Kamburowski, J. (1981). The use of fuzzy variables in PERT. Fuzzy sets and sys-tems, 5(1), 11-19.
Chen, A. H. L., Liang, Y. C., & Padilla, J. D. (2014). An Entropy-Based Upper Bound Methodology for Robust Predictive Multi-Mode RCPSP Schedules. Entropy, 16(9), 5032-5067.
Chen, L., & Zhang, Z. (2014). A Two-Stage Resource-Constrained Project Scheduling Model with Proactive and Reactive Strategies Under Uncertainty. In Proceedings of the Eighth International Conference on Management Science and Engineering Management (pp. 1397-1407). Springer Ber-lin Heidelberg.
Chen, L., & Zhang, Z. (2016). Preemption resource-constrained project scheduling problems with fuzzy random duration and resource availabilities. Journal of Industrial and Production Engineer-ing, 1-10.
Chen, W. N., & Zhang, J. (2012). Scheduling multi-mode projects under uncertainty to optimize cash flows: a Monte Carlo ant colony system approach. Journal of computer science and technolo-gy, 27(5), 950-965.
Chen, W. N., Zhang, J., Liu, O., & Liu, H. L. (2010, July). A Monte-Carlo ant colony system for scheduling multi-mode projects with uncertainties to optimize cash flows. In IEEE Congress on Evolutionary Computation (pp. 1-8). IEEE.
Cheng, J., Fowler, J., Kempf, K., & Mason, S. (2015). Multi-mode resource-constrained project scheduling problems with non-preemptive activity splitting. Computers & Operations Research, 53, 275-287.
Cheng, M. Y., Tran, D. H., & Hoang, N. D. (2016). Fuzzy clustering chaotic-based differential evolu-tion for resource leveling in construction projects. Journal of Civil Engineering and Management, 1-12.
Cheng, M. Y., Tran, D. H., & Wu, Y. W. (2014). Using a fuzzy clustering chaotic-based differential evolution with serial method to solve resource-constrained project scheduling prob-lems. Automation in Construction, 37, 88-97.
Choi, B. C., & Park, M. J. (2015). A continuous time–cost tradeoff problem with multiple milestones and completely ordered jobs. European Journal of Operational Research, 244(3), 748-752.
Chtourou, H., & Haouari, M. (2008). A two-stage-priority-rule-based algorithm for robust resource-constrained project scheduling. Computers & industrial engineering, 55(1), 183-194.
Church, L. K., & Uzsoy, R. (1992). Analysis of periodic and event-driven rescheduling policies in dynamic shops. International Journal of Computer Integrated Manufacturing, 5(3), 153-163.
Colak, E., & Azizoglu, M. (2014). A resource investment problem with time/resource trade-offs. Journal of the Operational Research Society, 65(5), 777-790.
Creemers, S. (2014, December). The resource-constrained project scheduling problem with stochastic activity durations. In 2014 IEEE International Conference on Industrial Engineering and Engineer-ing Management (pp. 453-457). IEEE.
Creemers, S. (2015). Minimizing the expected makespan of a project with stochastic activity durations under resource constraints. Journal of Scheduling, 18(3), 263-273.
Creemers, S., Leus, R., De Reyck, B., & Lambrecht, M. (2008, December). Project scheduling for maximum NPV with variable activity durations and uncertain activity outcomes. In 2008 IEEE In-ternational Conference on Industrial Engineering and Engineering Management (pp. 183-187). IEEE.
Cui, J., & Yu, L. (2014, December). An efficient discrete particle swarm optimization for solving mul-ti-mode resource-constrained project scheduling problem. In 2014 IEEE International Conference on Industrial Engineering and Engineering Management (pp. 858-862). IEEE.
Damak, N., Jarboui, B., & Loukil, T. (2013, May). Non-dominated Sorting Genetic Algorithm-II to solve bi-objective multi-mode resource-constrained project scheduling problem. In Control, Deci-sion and Information Technologies (CoDIT), 2013 International Conference on (pp. 842-846). IEEE.
Damay, J., Quilliot, A., & Sanlaville, E. (2007). Linear programming based algorithms for preemptive and non-preemptive RCPSP. European Journal of Operational Research, 182(3), 1012-1022.
Davis, K. R., Stam, A., & Grzybowski, R. A. (1992). Resource constrained project scheduling with multiple objectives: A decision support approach. Computers & operations research, 19(7), 657-669.
De Reyck, B., & Herroelen, W. (1999). The multi-mode resource-constrained project scheduling prob-lem with generalized precedence relations. European Journal of Operational Research, 119(2), 538-556.
Deblaere, F., Demeulemeester, E., & Herroelen, W. (2011). Reactive scheduling in the multi-mode RCPSP. Computers & Operations Research, 38(1), 63-74.
Delgoshaei, A., Al-Mudhafar, A., & Ariffin, M. (2016). Developing a new method for modifying over-allocated multi-mode resource constraint schedules in the presence of preemptive re-sources. Decision Science Letters, 5(4), 499-518.
Delgoshaei, A., Ariffin, M., Baharudin, B. H. T. B., & Leman, Z. (2015). Minimizing makespan of a resource-constrained scheduling problem: A hybrid greedy and genetic algorithms. International Journal of Industrial Engineering Computations, 6(4), 503-520.
Demeulemeester, E. L., & Herroelen, W. S. (1996). An efficient optimal solution procedure for the preemptive resource-constrained project scheduling problem. European Journal of Operational Re-search, 90(2), 334-348.
Demeulemeester, E., De Reyck, B., Foubert, B., Herroelen, W., & Vanhoucke, A. M. (1998). New computational results on the discrete time/cost trade-off problem in project networks. Journal of the Operational Research Society, 49(11), 1153-1163.
Drexl, A., Nissen, R., Patterson, J. H., & Salewski, F. (2000). ProGen/πx–An instance generator for resource-constrained project scheduling problems with partially renewable resources and further ex-tensions. European Journal of Operational Research, 125(1), 59-72.
Drezet, L. E., & Billaut, J. C. (2008). A project scheduling problem with labour constraints and time-dependent activities requirements. International Journal of Production Economics, 112(1), 217-225.
Elbeltagi, E., Ammar, M., Sanad, H., & Kassab, M. (2016). Overall multiobjective optimization of construction projects scheduling using particle swarm. Engineering, Construction and Architectural Management, 23(3), 265-282.
Elmaghraby, S. E. (1977). Activity networks: Project planning and control by network models. John Wiley & Sons.
Fallah, M., Aryanezhad, M. B., & Ashtiani, B. (2010, December). Preemptive resource constrained project scheduling problem with uncertain resource availabilities: Investigate worth of proactive strategies. In Industrial Engineering and Engineering Management (IEEM), 2010 IEEE Interna-tional Conference on (pp. 646-650). IEEE.
Fink, A., & Homberger, J. (2013). An ant-based coordination mechanism for resource-constrained project scheduling with multiple agents and cash flow objectives. Flexible Services and Manufac-turing Journal, 25(1-2), 94-121.
Ghamginzadeh, A., Najafi, A. A., & Azimia, P. (2014). Solving a multi-objective resource-constrained project scheduling problem using a cuckoo optimization algorithm. Scientia Iranica. Transaction E, Industrial Engineering, 21(6), 2419.
Ghoddousi, P., Ansari, R., & Makui, A. (2017). An improved robust buffer allocation method for the project scheduling problem. Engineering Optimization, 49(4), 718-731.
Göçken, T. (2013). Solution of fuzzy multi-objective project crashing problem. Neural Computing and Applications, 23(7-8), 2167-2175.
Goldratt, E. M. (1997). Critical chain: A business novel. Great Barrington, MA: North River Press.
Golenko-Ginzburg, D., Gonik, A., & Baron, A. (2006). Resource Constrained Project Scheduling Models under Random Disturbances. In Perspectives in Modern Project Scheduling (pp. 53-78). Springer US.
Gomes, H. C., das Neves, F. D. A., & Souza, M. J. F. (2014). Multi-objective metaheuristic algo-rithms for the resource-constrained project scheduling problem with precedence rela-tions. Computers & Operations Research, 44, 92-104.
Gourgand, M., Kemmoe Tchomte, S., & Quilliot, A. (2008). Modelling and solving a multimode and multisite industrial problem: Lagrangean relaxation and heuristic approaches. European Journal of Industrial Engineering, 2(2), 190-206.
Gutjahr, W. J. (2015). Bi-Objective Multi-Mode Project Scheduling Under Risk Aversion. European Journal of Operational Research, 246(2), 421-434.
Habibi, F., Barzinpour, F., Sadjadi, S. (2017). A Multi-objective optimization model for project scheduling with time-varying resource requirements and capacities. Journal of Industrial and Sys-tems Engineering, 10(special issue on scheduling), 92-118.
Hao, X., Lin, L., & Gen, M. (2014). An effective multi-objective EDA for robust resource con-strained project scheduling with uncertain durations. Procedia Computer Science, 36, 571-578.
Haouari, M., & Al-Fawzan, M. A. (2002). A bi-objective model for maximizing the quality in project scheduling (Vol. 14). DIMACS technical report 2002.
Haouari, M., Kooli, A., Néron, E., & Carlier, J. (2014). A preemptive bound for the resource con-strained project scheduling problem. Journal of Scheduling, 17(3), 237-248.
Hapke, M., & Slowinski, R. (1993). A DSS for Ressource—Constrained Project Scheduling under Uncertainty. Journal of Decision Systems, 2(2), 111-128.
Hapke, M., Jaszkiewicz, A., & Slowinski, R. (1994). Fuzzy project scheduling system for software development. Fuzzy Sets and Systems, 67(1), 101-117.
Hapke, M., Jaszkiewicz, A., & Słowiński, R. (1998). Interactive analysis of multiple-criteria project scheduling problems. European Journal of Operational Research, 107(2), 315-324.
Hartmann, S. (2013). Project scheduling with resource capacities and requests varying with time: a case study. Flexible Services and Manufacturing Journal, 25(1-2), 74-93.
Hartmann, S., & Briskorn, D. (2010). A survey of variants and extensions of the resource-constrained project scheduling problem. European Journal of operational research, 207(1), 1-14.
Heon Jun, D., & El-Rayes, K. (2011). Multiobjective optimization of resource leveling and allocation during construction scheduling. Journal of Construction Engineering and Management, 137(12), 1080-1088.
Herroelen, W., & Leus, R. (2005). Project scheduling under uncertainty: Survey and research poten-tials. European journal of operational research, 165(2), 289-306.
Hsu, C. C., & Kim, D. S. (2005). A new heuristic for the multi-mode resource investment prob-lem. Journal of the Operational Research Society, 56(4), 406-413.
Hu, J., & Flood, I. (2012). A multi-objective scheduling model for solving the resource-constrained project scheduling and resource leveling problems. In Interntional Conference on Computing in Civil Engineering (pp. 49-56).
Huang, W., & Ding, L. (2011). Project-scheduling problem with random time-dependent activity du-ration times. IEEE Transactions on Engineering Management, 58(2), 377-387.
Huang, W., Oh, S. K., & Pedrycz, W. (2013). A fuzzy time-dependent project scheduling prob-lem. Information Sciences, 246, 100-114.
Janczura, M. A. R. E. K., & Kuchta, D. O. R. O. T. A. (2012). Proactive and reactive scheduling with fuzzy activity times. World Scientific Proc. Series on Computer Engineering and Information Sci-ence, 7, 495.
Jeang, A. (2014). Project management for uncertainty with multiple objectives optimisation of time, cost and reliability. International Journal of Production Research, 53(5), 1503-1526.
Jing-wen, Z., & Hui-fang, S. (2010, November). Multi-resource constrained discrete time/cost trade-off problem and its improved genetic algorithm. In Management Science and Engineering (IC-MSE), 2010 International Conference on (pp. 123-128). IEEE.
Kadam, S. U., & Kadam, N. S. (2014, January). Solving resource-constrained project scheduling problem by genetic algorithm. In Business and Information Management (ICBIM), 2014 2nd Inter-national Conference on(pp. 159-164). IEEE.
Kadrou, Y., & Najid, N. M. (2006, October). A new heuristic to solve RCPSP with multiple execu-tion modes and multi-skilled labor. In Computational Engineering in Systems Applications, IMACS Multiconference on (Vol. 2, pp. 1302-1309). IEEE.
Kanagasabapathi, B., Rajendran, C., & Ananthanarayanan, K. (2010). Scheduling in resource-constrained multiple projects to minimise the weighted tardiness and weighted earliness of pro-jects. International Journal of Operational Research, 7(3), 334-386.
Kang, C., & Choi, B. C. (2015). An adaptive crashing policy for stochastic time-cost tradeoff prob-lems. Computers & Operations Research, 63, 1-6.
Kaplan, LA (1988). Resource-constrained project scheduling with pre-emption of jobs. Unpublished
Ph.D. dissertation, University of Michigan, Ann Arbor.
Karshenas, S., & Haber, D. (1990). Economic optimization of construction project schedul-ing. Construction Management and Economics, 8(2), 135-146.
Ke, H., & Liu, B. (2005). Project scheduling problem with stochastic activity duration times. Applied Mathematics and Computation, 168(1), 342-353.
Ke, H., & Ma, J. (2014). Modeling project time–cost trade-off in fuzzy random environment. Applied Soft Computing, 19, 80-85.
Khalili, S., Najafi, A. A., & Niaki, S. T. A. (2013). Bi-objective resource constrained project schedul-ing problem with makespan and net present value criteria: two meta-heuristic algorithms. The Inter-national Journal of Advanced Manufacturing Technology, 69(1-4), 617-626.
Khalilzadeh, M. (2015). A honey bee swarm optimization algorithm for minimizing the total costs of resources in MRCPSP. Indian Journal of Science and Technology, 8(11).
Khalilzadeh, M., Kianfar, F., Shirzadeh Chaleshtari, A., Shadrokh, S., & Ranjbar, M. (2012). A modi-fied PSO algorithm for minimizing the total costs of resources in MRCPSP. Mathematical Prob-lems in Engineering, 2012.
Khemakhem, M. A., & Chtourou, H. (2013). Efficient robustness measures for the resource-constrained project scheduling problem. International Journal of Industrial and Systems Engineer-ing, 14(2), 245-267.
Khoshjahan, Y., Najafi, A. A., & Afshar-Nadjafi, B. (2013). Resource constrained project scheduling problem with discounted earliness–tardiness penalties: Mathematical modeling and solving proce-dure. Computers & Industrial Engineering, 66(2), 293-300.
Klerides, E., & Hadjiconstantinou, E. (2010). A decomposition-based stochastic programming ap-proach for the project scheduling problem under time/cost trade-off settings and uncertain dura-tions. Computers & Operations Research, 37(12), 2131-2140.
Knyazeva, M., Bozhenyuk, A., & Rozenberg, I. (2015). Resource-constrained Project Scheduling Approach Under Fuzzy Conditions. Procedia Computer Science, 77, 56-64.
Kogan, K., & Khmelnitsky, E. (1998). Tracking demands in optimal control of managerial systems with continuously-divisible, doubly constrained resources. Journal of Global Optimization, 13(1), 43-59.
Konstantinidis, P. D. (1998). A model to optimize project resource allocation by construction of a bal-anced histogram. European journal of operational research, 104(3), 559-571.
Kreter, S., Rieck, J., & Zimmermann, J. (2016). Models and solution procedures for the resource-constrained project scheduling problem with general temporal constraints and calendars. European Journal of Operational Research, 251(2), 387-403.
Kyriakidis, T. S., Kopanos, G. M., & Georgiadis, M. C. (2012). MILP formulations for single-and multi-mode resource-constrained project scheduling problems. Computers & Chemical Engineer-ing, 36, 369-385.
Lamas, P., & Demeulemeester, E. (2015). A purely proactive scheduling procedure for the resource-constrained project scheduling problem with stochastic activity durations. Journal of Scheduling, 1-20.
Lambrechts, O., Demeulemeester, E., & Herroelen, W. (2008). Proactive and reactive strategies for re-source-constrained project scheduling with uncertain resource availabilities. Journal of schedul-ing, 11(2), 121-136.
Lambrechts, O., Demeulemeester, E., & Herroelen, W. (2011). Time slack-based techniques for robust project scheduling subject to resource uncertainty. Annals of Operations Research, 186(1), 443-464.
Leyman, P., & Vanhoucke, M. (2015). A new scheduling technique for the resource–constrained pro-ject scheduling problem with discounted cash flows. International Journal of Production Re-search, 53(9), 2771-2786.
Leyman, P., & Vanhoucke, M. (2016). Payment models and net present value optimization for re-source-constrained project scheduling. Computers & Industrial Engineering, 91, 139-153.
Leyman, P., & Vanhoucke, M. (2017). Capital-and resource-constrained project scheduling with net present value optimization. European Journal of Operational Research, 256(3), 757-776.
Li, F., Lai, C., & Shou, Y. (2011, December). Particle swarm optimization for preemptive project scheduling with resource constraints. In Industrial Engineering and Engineering Management (IEEM), 2011 IEEE International Conference on (pp. 869-873). IEEE.
Li, H., & Womer, N. K. (2015). Solving stochastic resource-constrained project scheduling problems by closed-loop approximate dynamic programming. European Journal of Operational Re-search, 246(1), 20-33.
Li, H., & Zhang, H. (2013). Ant colony optimization-based multi-mode scheduling under renewable and nonrenewable resource constraints. Automation in Construction, 35, 431-438.
Li, H., Xu, Z., & Demeulemeester, E. (2014). Scheduling policies for the stochastic resource leveling problem. Journal of Construction Engineering and Management, 141(2), 04014072.
Li, Z., Wuliang, P., & Zhongliang, Z. (2010, May). An ant colony system for solving resource leveling problem. In Intelligent Computation Technology and Automation (ICICTA), 2010 International Conference on (Vol. 1, pp. 489-492). IEEE.
Liu, M., Liu, J., Wimmers, M. O., & Zhou, M. (2015). A differential evolution algorithm for resource investment problem with tardiness. In 2015 IEEE Congress on Evolutionary Computation (CEC) (pp. 346-352). IEEE.
Liu, S., Chen, D., & Wang, Y. (2014). Memetic algorithm for multi-mode resource-constrained pro-ject scheduling problems. Journal of Systems Engineering and Electronics, 25(4), 609-617.
Liu, Z., & Zheng, Y. (2008, July). Resource-constrained multiple projects scheduling with the objec-tive of minimizing activities cost. In 2008 Chinese Control and Decision Conference (pp. 1027-1032). IEEE.
Ma, W., Che, Y., Huang, H., & Ke, H. (2015). Resource-constrained project scheduling problem with uncertain durations and renewable resources. International Journal of Machine Learning and Cy-bernetics, 1-9.
Maghsoudlou, H., Afshar-Nadjafi, B., & Niaki, S. T. A. (2016). A multi-objective invasive weeds op-timization algorithm for solving multi-skill multi-mode resource constrained project scheduling problem. Computers & Chemical Engineering, 88, 157-169.
Maniezzo, V., & Mingozzi, A. (1999). The project scheduling problem with irregular starting time costs. Operations Research Letters, 25(4), 175-182.
Menesi, W., & Hegazy, T. (2014). Multimode resource-constrained scheduling and leveling for practi-cal-size projects. Journal of management in engineering, 31(6), 04014092.
Messelis, T., & De Causmaecker, P. (2014). An automatic algorithm selection approach for the multi-mode resource-constrained project scheduling problem. European Journal of Operational Re-search, 233(3), 511-528.
Möhring, R. H. (1984). Minimizing costs of resource requirements in project networks subject to a fixed completion time. Operations Research, 32(1), 89-120.
Möhring, R. H., Schulz, A. S., Stork, F., & Uetz, M. (2001). On project scheduling with irregular starting time costs. Operations Research Letters, 28(4), 149-154.
Möhring, R. H., Schulz, A. S., Stork, F., & Uetz, M. (2003). Solving project scheduling problems by minimum cut computations. Management Science, 49(3), 330-350.
Montoya-Torres, J. R., Solano-Charris, E. L., & Duran-Cantor, C. (2012). MEMETIC ALGORITHM TO MINIMIZE COSTS OF ACTIVITIES IN RCPSP. Dyna, 79(174), 86-95.
Moukrim, A., Quilliot, A., & Toussaint, H. (2015). An effective branch-and-price algorithm for the Preemptive Resource Constrained Project Scheduling Problem based on minimal Interval Order Enumeration. European Journal of Operational Research, 244(2), 360-368.
Nabrzyski, J., & Weglarz, J. (1997, September). On an expert system with multicriteria tabu search for multiobjective project scheduling. In Emerging Technologies and Factory Automation Proceedings, 1997. ETFA'97., 1997 6th International Conference on (pp. 287-291). IEEE.
Najafi, A. A., & Azimi, F. (2009). A priority rule-based heuristic for resource investment project scheduling problem with discounted cash flows and tardiness penalties. Mathematical Problems in Engineering, 2009.
Najafi, A. A., & Niaki, S. T. A. (2005). Resource investment problem with discounted cash flows. INTERNATIONAL JOURNAL OF ENGINEERING-MATERIALS AND ENERGY RE-SEARCH CENTER-, 18(1), 53.
Najafi, A. A., & Niaki, S. T. A. (2006). A genetic algorithm for resource investment problem with discounted cash flows. Applied Mathematics and Computation, 183(2), 1057-1070.
Najafi, A. A., Niaki, S. T. A., & Shahsavar, M. (2009). A parameter-tuned genetic algorithm for the resource investment problem with discounted cash flows and generalized precedence rela-tions. Computers & Operations Research, 36(11), 2994-3001.
Najafi, A. A., Zoraghi, N., & Azimi, F. (2011). Scheduling a project to minimize costs of material re-quirements. World Academy of Science, Engineering and Technology, 78, 134-137.
Neumann, K., & Zimmermann, J. (1999). Resource levelling for projects with schedule-dependent time windows. European Journal of Operational Research, 117(3), 591-605.
Neumann, K., & Zimmermann, J. (2000). Procedures for resource leveling and net present value prob-lems in project scheduling with general temporal and resource constraints. European Journal of Operational Research, 127(2), 425-443.
Neumann, K., Schwindt, C., & Zimmermann, J. (2002). Recent results on resource-constrained project scheduling with time windows: Models, solution methods, and applications. Inst. für Wirtschaftstheorie und Operations-Research.
Nikoofal Sahl Abadi, N., Bagheri, M., & Assadi, M. (2016). Multiobjective model for solving re-source‐leveling problem with discounted cash flows. International Transactions in Operational Re-search.
Nonobe, K., & Ibaraki, T. (2006). A metaheuristic approach to the resource constrained project scheduling with variable activity durations and convex cost functions. In Perspectives in Modern Project Scheduling (pp. 225-248). Springer US.
Nübel, H. (2001). The resource renting problem subject to temporal constraints. OR-Spektrum, 23(3), 359-381.
Nudtasomboon, N., & Randhawa, S. U. (1997). Resource-constrained project scheduling with renew-able and non-renewable resources and time-resource tradeoffs. Computers & Industrial Engineer-ing, 32(1), 227-242.
Palacio, J. D., & Larrea, O. L. (2016). A lexicographic approach to the robust resource‐constrained project scheduling problem. International Transactions in Operational Research.
Pérez, Á., Quintanilla, S., Lino, P., & Valls, V. (2014). A multi-objective approach for a project scheduling problem with due dates and temporal constraints infeasibilities. International Journal of Production Research,52(13), 3950-3965.
Poder, E., Beldiceanu, N., & Sanlaville, E. (2004). Computing a lower approximation of the compul-sory part of a task with varying duration and varying resource consumption. European Journal of Operational Research, 153(1), 239-254.
Ponz‐Tienda, J. L., Pellicer, E., Benlloch‐Marco, J., & Andrés‐Romano, C. (2015). The Fuzzy Project Scheduling Problem with Minimal Generalized Precedence Relations. Computer‐Aided Civil and Infrastructure Engineering,30(11), 872-891.
Prade, H. (1979). Using fuzzy set theory in a scheduling problem: a case study. Fuzzy sets and sys-tems, 2(2), 153-165.
Proon, S., & Jin, M. (2011). A genetic algorithm with neighborhood search for the resource‐constrained project scheduling problem. Naval Research Logistics (NRL), 58(2), 73-82.
Qi, J., Guo, B., Lei, H., & Zhang, T. (2014). Solving resource availability cost problem in project scheduling by pseudo particle swarm optimization. Journal of Systems Engineering and Electron-ics, 25(1), 69-76.
Rafiee, M., Kianfar, F., & Farhadkhani, M. (2014). A multistage stochastic programming approach in project selection and scheduling. The International Journal of Advanced Manufacturing Technolo-gy, 70(9-12), 2125-2137.
Rajeev, S., Kurian, S., & Paul, B. (2015). A modified serial scheduling scheme for resource con-strained project scheduling weighted earliness tardiness problem. International Journal of Infor-mation and Decision Sciences, 7(3), 241-254.
Ranjbar, M., Hosseinabadi, S., & Abasian, F. (2013). Minimizing total weighted late work in the re-source-constrained project scheduling problem. Applied Mathematical Modelling, 37(23), 9776-9785.
Ranjbar, M., Khalilzadeh, M., Kianfar, F., & Etminani, K. (2012). An optimal procedure for minimiz-ing total weighted resource tardiness penalty costs in the resource-constrained project scheduling problem. Computers & Industrial Engineering, 62(1), 264-270.
Rezaeian, J., Soleimani, F., Mohaselafshary, S., & Arab, A. (2015). Using a meta-heuristic algorithm for solving the multi-mode resource-constrained project scheduling problem. International Journal of Operational Research, 24(1), 1-16.
Rostami, S., Creemers, S., & Leus, R. (2017). New strategies for stochastic resource-constrained pro-ject scheduling. Journal of Scheduling, 1-17.
Russell, A. H. (1970). Cash flows in networks. Management Science, 16(5), 357-373.
Sadeh, N., Otsuka, S., & Schnelbach, R. (1993, August). Predictive and reactive scheduling with the Micro-Boss production scheduling and control system. In Proceedings, IJCAI-93 Workshop on Knowledge-Based Production Planning, Scheduling and Control.
Salari, M., Bagherpour, M., & Reihani, M. H. (2015). A time-cost trade-off model by incorporating fuzzy earned value management: A statistical based approach. Journal of Intelligent & Fuzzy Sys-tems, 28(4), 1909-1919.
Santos, M. A., & Tereso, A. P. (2011). On the Multi-mode, Multi-skill Resource Constrained Project Scheduling Problem–A Software Application. In Soft computing in industrial applications (pp. 239-248). Springer Berlin Heidelberg.
Schnell, A., & Hartl, R. F. (2015). On the efficient modeling and solution of the multi-mode resource-constrained project scheduling problem with generalized precedence relations. OR Spectrum, 38(2), 283-303.
Sebt, M. H., Afshar, M. R., & Alipouri, Y. (2016). Hybridization of genetic algorithm and fully in-formed particle swarm for solving the multi-mode resource-constrained project scheduling prob-lem. Engineering Optimization, 1-18.
Sebt, M. H., Afshar, M. R., & Alipouri, Y. (2017). Hybridization of genetic algorithm and fully in-formed particle swarm for solving the multi-mode resource-constrained project scheduling prob-lem. Engineering Optimization, 49(3), 513-530.
Shadrokh, S. (2010). The preemptive resource-constrained project scheduling problem subject to due dates and preemption penalties: An integer programming approach. Journal of Optimization in In-dustrial Engineering, 35-39.
Shadrokh, S., & Kianfar, F. (2005). A genetic algorithm for resource investment problems, enhanced by the revised Akpan method. Scientia Iranica, 12(1), 90-98.
Shadrokh, S., & Kianfar, F. (2007). A genetic algorithm for resource investment project scheduling problem, tardiness permitted with penalty. European Journal of Operational Research, 181(1), 86-101.
Shahsavar, A., Najafi, A. A., & Niaki, S. T. A. (2015). Three self-adaptive multi-objective evolution-ary algorithms for a triple-objective project scheduling problem. Computers & Industrial Engineer-ing, 87, 4-15.
Shavandi, H., Najafi, A. A., & Moslehirad, A. (2012). Fuzzy project scheduling with discounted cash flows. ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RE-SEARCH, 46(1), 219-232.
Shi, Y. J., Qu, F. Z., Chen, W., & Li, B. (2010). An artificial bee colony with random key for re-source-constrained project scheduling. In Life system modeling and intelligent computing (pp. 148-157). Springer Berlin Heidelberg.
Shirzadeh Chaleshtarti, A., Shadrokh, S., & Fathi, Y. (2014). Branch and bound algorithms for re-source constrained project scheduling problem subject to nonrenewable resources with presched-uled procurement. Mathematical Problems in Engineering, 2014.
Shou, Y., Li, Y., & Lai, C. (2015). Hybrid particle swarm optimization for preemptive resource-constrained project scheduling. Neurocomputing, 148, 122-128.
Shukla, S. K., Son, Y. J., & Tiwari, M. K. (2008). Fuzzy-based adaptive sample-sort simulated anneal-ing for resource-constrained project scheduling. The International Journal of Advanced Manufac-turing Technology, 36(9-10), 982-995.
Słowiński, R. (1980). Two approaches to problems of resource allocation among project activities—a comparative study. Journal of the Operational Research Society, 31(8), 711-723.
Słowinski, R. (1981). Multiobjective network scheduling with efficient use of renewable and nonre-newable resources. European Journal of Operational Research, 7(3), 265-273.
Smith, S. F. (1995). Reactive scheduling systems. In Intelligent scheduling systems (pp. 155-192). Springer US.
Sobel, M. J., Szmerekovsky, J. G., & Tilson, V. (2009). Scheduling projects with stochastic activity duration to maximize expected net present value. European Journal of Operational Re-search, 198(3), 697-705.
Song, Y., Liu, J., Wimmers, M. O., & Jiang, Z. (2015, May). A differential evolution algorithm with local search for resource investment project scheduling problems. In 2015 IEEE Congress on Evo-lutionary Computation (CEC) (pp. 1725-1731). IEEE.
Sung, C. S., & Lim, S. K. (1997). A scheduling procedure for a general class of resource-constrained projects. Computers & industrial engineering, 32(1), 9-17.
Suresh, M., Dutta, P., & Jain, K. (2015). Resource Constrained Multi-Project Scheduling Problem with Resource Transfer Times. Asia-Pacific Journal of Operational Research, 32(06), 1550048.
Suwa, H. & Morita, D. (2016). Reactive project scheduling method to enhance project progress under uncertainty. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 10(3), JAMDSM0051-JAMDSM0051.
Tavana, M., Abtahi, A. R., & Khalili-Damghani, K. (2014). A new multi-objective multi-mode model for solving preemptive time–cost–quality trade-off project scheduling problems. Expert Systems with Applications, 41(4), 1830-1846.
Tian, W., Xu, J., & Fu, Z. (2016). On the choice of baseline schedules for the discrete time/resource trade-off problem under stochastic environment. Journal of Difference Equations and Applications, 1-11.
Toffolo, T. A., Santos, H. G., Carvalho, M. A., & Soares, J. A. (2015). An integer programming ap-proach to the multimode resource-constrained multiproject scheduling problem. Journal of Schedul-ing, 1-13.
Tran, D. H., Cheng, M. Y., & Pham, A. D. (2016). Using Fuzzy Clustering Chaotic-based Differential Evolution to solve multiple resources leveling in the multiple projects scheduling prob-lem. Alexandria Engineering Journal.
Tritschler, M., Naber, A., & Kolisch, R. (2017). A hybrid metaheuristic for resource-constrained pro-ject scheduling with flexible resource profiles. European Journal of Operational Research, 262(1), 262-273.
Ulusoy, G., & Özdamar, L. (1996). A framework for an interactive project scheduling system under limited resources. European Journal of Operational Research, 90(2), 362-375.
Ulusoy, G., Sivrikaya-Şerifoğlu, F., & Şahin, Ş. (2001). Four payment models for the multi-mode re-source constrained project scheduling problem with discounted cash flows. Annals of Operations Research, 102(1-4), 237-261.
Valls, V., Laguna, M., Lino, P., Pérez, A., & Quintanilla, S. (1999). Project scheduling with stochastic activity interruptions. In Project scheduling (pp. 333-353). Springer US.
Van de Vonder, S., Ballestin, F., Demeulemeester, E., & Herroelen, W. (2007a). Heuristic procedures for reactive project scheduling. Computers & Industrial Engineering, 52(1), 11-28.
Van De Vonder, S., Demeulemeester, E., & Herroelen, W. (2005). Heuristic procedures for generating stable project baseline schedules. Available at SSRN 875289.
Van de Vonder, S., Demeulemeester, E., & Herroelen, W. (2007b). A classification of predictive-reactive project scheduling procedures. Journal of Scheduling, 10(3), 195-207.
Van de Vonder, S., Demeulemeester, E., Herroelen, W., & Leus, R. (2006a). The trade-off between stability and makespan in resource-constrained project scheduling. International Journal of Produc-tion Research, 44(2), 215-236.
Van de Vonder, S., Demeulemeester, E., Leus, R., & Herroelen, W. (2006b). Proactive-reactive pro-ject scheduling trade-offs and procedures. In Perspectives in Modern Project Scheduling (pp. 25-51). Springer US.
Van Peteghem, V., & Vanhoucke, M. (2010). A genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem. European Journal of Op-erational Research, 201(2), 409-418.
Vandenheede, L., Vanhoucke, M., & Maenhout, B. (2015). A scatter search for the extended resource renting problem. International Journal of Production Research, 1-21.
Vanhoucke, M., & Debels, D. (2008). The impact of various activity assumptions on the lead time and resource utilization of resource-constrained projects. Computers & Industrial Engineering, 54(1), 140-154.
Vanhoucke, M., Demeulemeester, E., & Herroelen, W. (2002). Discrete time/cost trade-offs in project scheduling with time-switch constraints. Journal of the Operational Research Society, 53(7), 741-751.
Vanucci, S. C., Carrano, E. G., Bicalho, R., & Takahashi, R. H. (2012, June). A modified NSGA-II for the Multiobjective Multi-mode Resource-Constrained Project Scheduling Problem. In 2012 IEEE Congress on Evolutionary Computation (pp. 1-7). IEEE.
Vartouni, A. M., & Khanli, L. M. (2014). A hybrid genetic algorithm and fuzzy set applied to multi-mode resource-constrained project scheduling problem. Journal of Intelligent & Fuzzy Sys-tems, 26(3), 1103-1112.
Viana, A., & de Sousa, J. P. (2000). Using metaheuristics in multiobjective resource constrained pro-ject scheduling. European Journal of Operational Research, 120(2), 359-374.
Vieira, G. E., Herrmann, J. W., & Lin, E. (2000). Analytical models to predict the performance of a single-machine system under periodic and event-driven rescheduling strategies. International jour-nal of production research, 38(8), 1899-1915.
Waligóra, G. (2016). Comparative Analysis of Some Metaheuristics for Discrete-Continuous Project Scheduling with Activities of Identical Processing Rates. Asia-Pacific Journal of Operational Re-search, 1650015.
Wang, K. S., Chi, J. H., & Wan, E. H. (1993). Decision making of project under fuzzy infor-mation. Journal of the Chinese Institute of Engineers, 16(4), 533-541.
Wang, L., Fang, C., Mu, C. D., & Liu, M. (2013). A Pareto-archived estimation-of-distribution algo-rithm for multiobjective resource-constrained project scheduling problem. IEEE Transactions on Engineering Management, 60(3), 617-626.
Wang, L., Ip, W. H., & Lee, C. K. (2008, July). Resource constrained project scheduling of construc-tion engineering with genetic algorithm. In 2008 Chinese Control and Decision Conference (pp. 1466-1470). IEEE.
Wang, L., Liu, J., & Zhou, M. (2014a). An Organizational Cooperative Coevolutionary Algorithm for Multimode Resource-Constrained Project Scheduling Problems. In Asia-Pacific Conference on Simulated Evolution and Learning (pp. 680-690). Springer International Publishing.
Wang, W. X., Wang, X., Ge, X. L., & Deng, L. (2014b). Multi-objective optimization model for mul-ti-project scheduling on critical chain. Advances in Engineering Software, 68, 33-39.
Wiesemann, W., Kuhn, D., & Rustem, B. (2010). Maximizing the net present value of a project under uncertainty. European Journal of Operational Research, 202(2), 356-367.
Wollmer, R. D. (1985). Critical path planning under uncertainty. In Mathematical Programming Es-says in Honor of George B. Dantzig Part II(pp. 164-171). Springer Berlin Heidelberg.
Wu, S. D., Storer, R. H., & Pei-Chann, C. (1993). One-machine rescheduling heuristics with efficien-cy and stability as criteria. Computers & Operations Research, 20(1), 1-14.
Wu, S., Wan, H. D., Shukla, S. K., & Li, B. (2011). Chaos-based improved immune algorithm (CBI-IA) for resource-constrained project scheduling problems. Expert Systems with Applications, 38(4), 3387-3395.
Wuliang, P., Min, H., & Yongping, H. (2014). An improved ant algorithm for Multi-mode Resource Constrained Project Scheduling Problem. RAIRO-Operations Research, 48(4), 595-614.
Xiao, J., Wu, Z., & Tang, J. C. (2014, July). Hybridization of electromagnetism with multi-objective evolutionary algorithms for RCPSP. In Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation (pp. 653-660). ACM.
Xiao, J., Wu, Z., Hong, X. X., Tang, J. C., & Tang, Y. (2016). Integration of electromagnetism with multi-objective evolutionary algorithms for RCPSP. European Journal of Operational Re-search, 251(1), 22-35.
Xiong, J., Chen, Y., Liu, J., & Abbass, H. A. (2011, June). An evolutionary multi-objective scenario-based approach for stochastic resource investment project scheduling. In 2011 IEEE Congress of Evolutionary Computation (CEC) (pp. 2767-2774). IEEE.
Xiong, J., Liu, J., Chen, Y., & Abbass, H. A. (2014). A knowledge-based evolutionary multiobjective approach for stochastic extended resource investment project scheduling problems. IEEE Transac-tions on Evolutionary Computation, 18(5), 742-763.
Xu, J., & Feng, C. (2014). Multimode resource-constrained multiple project scheduling problem under fuzzy random environment and its application to a large scale hydropower construction pro-ject. The Scientific World Journal, 2014.
Xu, J., Ma, Y., & Xu, Z. (2015). A Bilevel Model for Project Scheduling in a Fuzzy Random Envi-ronment. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 45(10), 1322-1335.
Yuan, X., Liu, J., & Wimmers, M. O. (2015, May). A multi-agent genetic algorithm with variable neighborhood search for resource investment project scheduling problems. In 2015 IEEE Congress on Evolutionary Computation (CEC) (pp. 23-30). IEEE.
Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.
Zamani, R. (2013). An evolutionary search procedure for optimizing time–cost performance of pro-jects under multiple renewable resource constraints. Computers & Industrial Engineering, 66(2), 451-460.
Zhang, H., Li, H., & Tam, C. M. (2006). Particle swarm optimization for preemptive scheduling under break and resource-constraints. Journal of construction engineering and management, 132(3), 259-267.
Zhang, Z. (2014, July). A MODM Bi-level Model with Fuzzy Random Coefficients for Resource-Constrained Project Scheduling Problems. In Computational Sciences and Optimization (CSO), 2014 Seventh International Joint Conference on (pp. 666-669). IEEE.
Zhenyuan, L., & Hongwei, W. (2006). Heuristic algorithm for RCPSP with the objective of minimiz-ing activities' cost. Journal of Systems Engineering and Electronics, 17(1), 96-102.
Zhu, J., Li, X., & Shen, W. (2011). Effective genetic algorithm for resource-constrained project scheduling with limited preemptions. International Journal of Machine Learning and Cybernet-ics, 2(2), 55-65.
Zhu, X., Ruiz, R., Li, S., & Li, X. (2017). An effective heuristic for project scheduling with resource availability cost. European Journal of Operational Research, 257(3), 746-762.
Zoraghi, N., Shahsavar, A., Abbasi, B., & Van Peteghem, V. (2017). Multi-mode resource-constrained project scheduling problem with material ordering under bonus–penalty poli-cies. Top, 25(1), 49-79.
Abello, M. B., & Michalewicz, Z. (2014). Multiobjective resource-constrained project scheduling with a time-varying number of tasks. The Scientific World Journal, 2014.
Abello, M. B., Michalewicz, Z., & Bui, L. T. (2012, June). A reactive-proactive approach for solving dynamic scheduling with time-varying number of tasks. In 2012 IEEE Congress on Evolutionary Computation (pp. 1-10). IEEE.
Afruzi, E. N., Najafi, A. A., Roghanian, E., & Mazinani, M. (2014). A Multi-Objective Imperialist Competitive Algorithm for solving discrete time, cost and quality trade-off problems with mode-identity and resource-constrained situations. Computers & Operations Research, 50, 80-96.
Afshar-Nadjafi, B. (2014a). Multi-mode resource availability cost problem with recruitment and re-lease dates for resources. Applied Mathematical Modelling, 38(21), 5347-5355.
Afshar-Nadjafi, B. (2014b). Resource Constrained Project Scheduling Subject to Due Dates: Preemp-tion Permitted with Penalty. Advances in Operations Research, 2014.
Afshar-Nadjafi, B. (2016). A new proactive approach to construct a robust baseline schedule consid-ering quality factor. International Journal of Industrial and Systems Engineering, 22(1), 63-72.
Afshar-Nadjafi, B., & Majlesi, M. (2014). Resource constrained project scheduling problem with set-up times after preemptive processes. Computers & Chemical Engineering, 69, 16-25.
Agarwal, R., Tiwari, M. K., & Mukherjee, S. K. (2007). Artificial immune system based approach for solving resource constraint project scheduling problem. The International Journal of Advanced Manufacturing Technology, 34(5-6), 584-593.
Ahn, T., & Erenguc, S. S. (1998). The resource constrained project scheduling problem with multiple crashable modes: a heuristic procedure. European Journal of Operational Research, 107(2), 250-259.
Akkan, C., Drexl, A., & Kimms, A. (2005). Network decomposition-based benchmark results for the discrete time–cost tradeoff problem. European Journal of Operational Research, 165(2), 339-358.
Al-Fawzan, M. A., & Haouari, M. (2005). A bi-objective model for robust resource-constrained pro-ject scheduling. International Journal of production economics, 96(2), 175-187.
Aouni, B., d’Avignon, G., & Gagnon, M. (2015). Goal Programming for Multi-Objective Resource-Constrained Project Scheduling. In Handbook on Project Management and Scheduling Vol. 1 (pp. 429-442). Springer International Publishing.
Atli, O., & Kahraman, C. (2014). Resource-constrained project scheduling problem with multiple exe-cution modes and fuzzy/crisp activity durations. Journal of Intelligent & Fuzzy Systems, 26(4), 2001-2020.
Ayodele, M., McCall, J., & Regnier-Coudert, O. (2015, July). Probabilistic Model Enhanced Genetic Algorithm for Multi-Mode Resource Constrained Project Scheduling Problem. In Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computa-tion (pp. 745-746). ACM.
Azizoglu, M., Çetinkaya, F. C., & Pamir, S. K. (2015). LP relaxation-based solution algorithms for the multi-mode project scheduling with a non-renewable resource. European Journal of Industrial En-gineering, 9(4), 450-469.
Ballestín, F. (2007, April). A genetic algorithm for the resource renting problem with minimum and maximum time lags. In European Conference on Evolutionary Computation in Combinatorial Op-timization (pp. 25-35). Springer Berlin Heidelberg.
Ballestín, F. (2008). Different codifications and metaheuristic algorithms for the resource renting problem with minimum and maximum time lags. In Recent Advances in Evolutionary Computation for Combinatorial Optimization (pp. 187-202). Springer Berlin Heidelberg.
Ballestin, F., & Trautmann, N. (2008). An iterated-local-search heuristic for the resource-constrained weighted earliness-tardiness project scheduling problem. International Journal of Production Re-search, 46(22), 6231-6249.
Ballestín, F., Barrios, A., & Valls, V. (2013). Looking for the best modes helps solving the MRCPSP/max. International Journal of Production Research, 51(3), 813-827.
Ballestín, F., Valls, V., & Quintanilla, S. (2009). Scheduling projects with limited number of preemp-tions. Computers & Operations Research, 36(11), 2913-2925.
Bartusch, M., Möhring, R. H., & Radermacher, F. J. (1988). Scheduling project networks with re-source constraints and time windows. Annals of operations Research, 16(1), 199-240.
Berthaut, F., Pellerin, R., Perrier, N., & Hajji, A. (2014). Time-cost trade-offs in resource-constraint project scheduling problems with overlapping modes. International Journal of Project Organisation and Management, 6(3), 215-236.
Beşikci, U., Bilge, Ü., & Ulusoy, G. (2015). Multi-mode resource constrained multi-project schedul-ing and resource portfolio problem. European Journal of Operational Research, 240(1), 22-31.
Bhaskar, T., Pal, M. N., & Pal, A. K. (2011). A heuristic method for RCPSP with fuzzy activity times. European Journal of Operational Research, 208(1), 57-66.
Bianco, L., Caramia, M., & Giordani, S. (2016). Resource levelling in project scheduling with general-ized precedence relationships and variable execution intensities. OR Spectrum, 38(2), 405-425.
Bierwirth, C., & Mattfeld, D. C. (1999). Production scheduling and rescheduling with genetic algo-rithms. Evolutionary computation, 7(1), 1-17.
Blazewicz, J., Lenstra, J. K., & Kan, A. R. (1983). Scheduling subject to resource constraints: classifi-cation and complexity. Discrete Applied Mathematics, 5(1), 11-24.
Boctor, F. F. (1993). Heuristics for scheduling projects with resource restrictions and several resource-duration modes. The International Journal of Production Research, 31(11), 2547-2558.
Boctor, F. F. (1996). A new and efficient heuristic for scheduling projects with resource restrictions and multiple execution modes. European Journal of Operational Research, 90(2), 349-361.
Browning, T. R., & Yassine, A. A. (2010). Resource-constrained multi-project scheduling: Priority rule performance revisited. International Journal of Production Economics, 126(2), 212-228.
Buddhakulsomsiri, J., & Kim, D. S. (2006). Properties of multi-mode resource-constrained project scheduling problems with resource vacations and activity splitting. European Journal of Opera-tional Research, 175(1), 279-295.
Buddhakulsomsiri, J., & Kim, D. S. (2007). Priority rule-based heuristic for multi-mode resource-constrained project scheduling problems with resource vacations and activity splitting. European Journal of Operational Research, 178(2), 374-390.
Can, A., & Ulusoy, G. (2014). Multi-project scheduling with two-stage decomposition. Annals of Op-erations Research, 217(1), 95-116.
Čapek, R., Šůcha, P., & Hanzálek, Z. (2012). Production scheduling with alternative process plans. European Journal of Operational Research, 217(2), 300-311.
Carlier, J., & Moukrim, A. (2015). Storage Resources. In Handbook on Project Management and Scheduling Vol. 1 (pp. 177-189). Springer International Publishing.
Cavalcante, C. C., De Souza, C. C., Savelsbergh, M. W., Wang, Y., & Wolsey, L. A. (2001). Schedul-ing projects with labor constraints. Discrete Applied Mathematics, 112(1), 27-52.
Chai, G., Huang, S., Zhang, G., & Su, Y. (2010, August). Optimization of Bonus-Penalty Structure in Flexible Resources-Constrained Project Scheduling Problems from Both Sides of the Contract. In Business Intelligence and Financial Engineering (BIFE), 2010 Third International Conference on (pp. 109-113). IEEE.
Chakrabortty, R. K., Sarker, R. A., & Essam, D. L. (2014, November). Event based approaches for solving multi-mode resource constraints project scheduling problem. In IFIP International Confer-ence on Computer Information Systems and Industrial Management (pp. 375-386). Springer Berlin Heidelberg.
Chakrabortty, R. K., Sarker, R. A., & Essam, D. L. (2016). Multi-mode resource constrained project scheduling under resource disruptions. Computers & Chemical Engineering, 88, 13-29.
Chakrabortty, R. K., Sarker, R. A., & Essam, D. L. (2017). Resource constrained project scheduling with uncertain activity durations. Computers & Industrial Engineering.
Chanas, S., & Kamburowski, J. (1981). The use of fuzzy variables in PERT. Fuzzy sets and sys-tems, 5(1), 11-19.
Chen, A. H. L., Liang, Y. C., & Padilla, J. D. (2014). An Entropy-Based Upper Bound Methodology for Robust Predictive Multi-Mode RCPSP Schedules. Entropy, 16(9), 5032-5067.
Chen, L., & Zhang, Z. (2014). A Two-Stage Resource-Constrained Project Scheduling Model with Proactive and Reactive Strategies Under Uncertainty. In Proceedings of the Eighth International Conference on Management Science and Engineering Management (pp. 1397-1407). Springer Ber-lin Heidelberg.
Chen, L., & Zhang, Z. (2016). Preemption resource-constrained project scheduling problems with fuzzy random duration and resource availabilities. Journal of Industrial and Production Engineer-ing, 1-10.
Chen, W. N., & Zhang, J. (2012). Scheduling multi-mode projects under uncertainty to optimize cash flows: a Monte Carlo ant colony system approach. Journal of computer science and technolo-gy, 27(5), 950-965.
Chen, W. N., Zhang, J., Liu, O., & Liu, H. L. (2010, July). A Monte-Carlo ant colony system for scheduling multi-mode projects with uncertainties to optimize cash flows. In IEEE Congress on Evolutionary Computation (pp. 1-8). IEEE.
Cheng, J., Fowler, J., Kempf, K., & Mason, S. (2015). Multi-mode resource-constrained project scheduling problems with non-preemptive activity splitting. Computers & Operations Research, 53, 275-287.
Cheng, M. Y., Tran, D. H., & Hoang, N. D. (2016). Fuzzy clustering chaotic-based differential evolu-tion for resource leveling in construction projects. Journal of Civil Engineering and Management, 1-12.
Cheng, M. Y., Tran, D. H., & Wu, Y. W. (2014). Using a fuzzy clustering chaotic-based differential evolution with serial method to solve resource-constrained project scheduling prob-lems. Automation in Construction, 37, 88-97.
Choi, B. C., & Park, M. J. (2015). A continuous time–cost tradeoff problem with multiple milestones and completely ordered jobs. European Journal of Operational Research, 244(3), 748-752.
Chtourou, H., & Haouari, M. (2008). A two-stage-priority-rule-based algorithm for robust resource-constrained project scheduling. Computers & industrial engineering, 55(1), 183-194.
Church, L. K., & Uzsoy, R. (1992). Analysis of periodic and event-driven rescheduling policies in dynamic shops. International Journal of Computer Integrated Manufacturing, 5(3), 153-163.
Colak, E., & Azizoglu, M. (2014). A resource investment problem with time/resource trade-offs. Journal of the Operational Research Society, 65(5), 777-790.
Creemers, S. (2014, December). The resource-constrained project scheduling problem with stochastic activity durations. In 2014 IEEE International Conference on Industrial Engineering and Engineer-ing Management (pp. 453-457). IEEE.
Creemers, S. (2015). Minimizing the expected makespan of a project with stochastic activity durations under resource constraints. Journal of Scheduling, 18(3), 263-273.
Creemers, S., Leus, R., De Reyck, B., & Lambrecht, M. (2008, December). Project scheduling for maximum NPV with variable activity durations and uncertain activity outcomes. In 2008 IEEE In-ternational Conference on Industrial Engineering and Engineering Management (pp. 183-187). IEEE.
Cui, J., & Yu, L. (2014, December). An efficient discrete particle swarm optimization for solving mul-ti-mode resource-constrained project scheduling problem. In 2014 IEEE International Conference on Industrial Engineering and Engineering Management (pp. 858-862). IEEE.
Damak, N., Jarboui, B., & Loukil, T. (2013, May). Non-dominated Sorting Genetic Algorithm-II to solve bi-objective multi-mode resource-constrained project scheduling problem. In Control, Deci-sion and Information Technologies (CoDIT), 2013 International Conference on (pp. 842-846). IEEE.
Damay, J., Quilliot, A., & Sanlaville, E. (2007). Linear programming based algorithms for preemptive and non-preemptive RCPSP. European Journal of Operational Research, 182(3), 1012-1022.
Davis, K. R., Stam, A., & Grzybowski, R. A. (1992). Resource constrained project scheduling with multiple objectives: A decision support approach. Computers & operations research, 19(7), 657-669.
De Reyck, B., & Herroelen, W. (1999). The multi-mode resource-constrained project scheduling prob-lem with generalized precedence relations. European Journal of Operational Research, 119(2), 538-556.
Deblaere, F., Demeulemeester, E., & Herroelen, W. (2011). Reactive scheduling in the multi-mode RCPSP. Computers & Operations Research, 38(1), 63-74.
Delgoshaei, A., Al-Mudhafar, A., & Ariffin, M. (2016). Developing a new method for modifying over-allocated multi-mode resource constraint schedules in the presence of preemptive re-sources. Decision Science Letters, 5(4), 499-518.
Delgoshaei, A., Ariffin, M., Baharudin, B. H. T. B., & Leman, Z. (2015). Minimizing makespan of a resource-constrained scheduling problem: A hybrid greedy and genetic algorithms. International Journal of Industrial Engineering Computations, 6(4), 503-520.
Demeulemeester, E. L., & Herroelen, W. S. (1996). An efficient optimal solution procedure for the preemptive resource-constrained project scheduling problem. European Journal of Operational Re-search, 90(2), 334-348.
Demeulemeester, E., De Reyck, B., Foubert, B., Herroelen, W., & Vanhoucke, A. M. (1998). New computational results on the discrete time/cost trade-off problem in project networks. Journal of the Operational Research Society, 49(11), 1153-1163.
Drexl, A., Nissen, R., Patterson, J. H., & Salewski, F. (2000). ProGen/πx–An instance generator for resource-constrained project scheduling problems with partially renewable resources and further ex-tensions. European Journal of Operational Research, 125(1), 59-72.
Drezet, L. E., & Billaut, J. C. (2008). A project scheduling problem with labour constraints and time-dependent activities requirements. International Journal of Production Economics, 112(1), 217-225.
Elbeltagi, E., Ammar, M., Sanad, H., & Kassab, M. (2016). Overall multiobjective optimization of construction projects scheduling using particle swarm. Engineering, Construction and Architectural Management, 23(3), 265-282.
Elmaghraby, S. E. (1977). Activity networks: Project planning and control by network models. John Wiley & Sons.
Fallah, M., Aryanezhad, M. B., & Ashtiani, B. (2010, December). Preemptive resource constrained project scheduling problem with uncertain resource availabilities: Investigate worth of proactive strategies. In Industrial Engineering and Engineering Management (IEEM), 2010 IEEE Interna-tional Conference on (pp. 646-650). IEEE.
Fink, A., & Homberger, J. (2013). An ant-based coordination mechanism for resource-constrained project scheduling with multiple agents and cash flow objectives. Flexible Services and Manufac-turing Journal, 25(1-2), 94-121.
Ghamginzadeh, A., Najafi, A. A., & Azimia, P. (2014). Solving a multi-objective resource-constrained project scheduling problem using a cuckoo optimization algorithm. Scientia Iranica. Transaction E, Industrial Engineering, 21(6), 2419.
Ghoddousi, P., Ansari, R., & Makui, A. (2017). An improved robust buffer allocation method for the project scheduling problem. Engineering Optimization, 49(4), 718-731.
Göçken, T. (2013). Solution of fuzzy multi-objective project crashing problem. Neural Computing and Applications, 23(7-8), 2167-2175.
Goldratt, E. M. (1997). Critical chain: A business novel. Great Barrington, MA: North River Press.
Golenko-Ginzburg, D., Gonik, A., & Baron, A. (2006). Resource Constrained Project Scheduling Models under Random Disturbances. In Perspectives in Modern Project Scheduling (pp. 53-78). Springer US.
Gomes, H. C., das Neves, F. D. A., & Souza, M. J. F. (2014). Multi-objective metaheuristic algo-rithms for the resource-constrained project scheduling problem with precedence rela-tions. Computers & Operations Research, 44, 92-104.
Gourgand, M., Kemmoe Tchomte, S., & Quilliot, A. (2008). Modelling and solving a multimode and multisite industrial problem: Lagrangean relaxation and heuristic approaches. European Journal of Industrial Engineering, 2(2), 190-206.
Gutjahr, W. J. (2015). Bi-Objective Multi-Mode Project Scheduling Under Risk Aversion. European Journal of Operational Research, 246(2), 421-434.
Habibi, F., Barzinpour, F., Sadjadi, S. (2017). A Multi-objective optimization model for project scheduling with time-varying resource requirements and capacities. Journal of Industrial and Sys-tems Engineering, 10(special issue on scheduling), 92-118.
Hao, X., Lin, L., & Gen, M. (2014). An effective multi-objective EDA for robust resource con-strained project scheduling with uncertain durations. Procedia Computer Science, 36, 571-578.
Haouari, M., & Al-Fawzan, M. A. (2002). A bi-objective model for maximizing the quality in project scheduling (Vol. 14). DIMACS technical report 2002.
Haouari, M., Kooli, A., Néron, E., & Carlier, J. (2014). A preemptive bound for the resource con-strained project scheduling problem. Journal of Scheduling, 17(3), 237-248.
Hapke, M., & Slowinski, R. (1993). A DSS for Ressource—Constrained Project Scheduling under Uncertainty. Journal of Decision Systems, 2(2), 111-128.
Hapke, M., Jaszkiewicz, A., & Slowinski, R. (1994). Fuzzy project scheduling system for software development. Fuzzy Sets and Systems, 67(1), 101-117.
Hapke, M., Jaszkiewicz, A., & Słowiński, R. (1998). Interactive analysis of multiple-criteria project scheduling problems. European Journal of Operational Research, 107(2), 315-324.
Hartmann, S. (2013). Project scheduling with resource capacities and requests varying with time: a case study. Flexible Services and Manufacturing Journal, 25(1-2), 74-93.
Hartmann, S., & Briskorn, D. (2010). A survey of variants and extensions of the resource-constrained project scheduling problem. European Journal of operational research, 207(1), 1-14.
Heon Jun, D., & El-Rayes, K. (2011). Multiobjective optimization of resource leveling and allocation during construction scheduling. Journal of Construction Engineering and Management, 137(12), 1080-1088.
Herroelen, W., & Leus, R. (2005). Project scheduling under uncertainty: Survey and research poten-tials. European journal of operational research, 165(2), 289-306.
Hsu, C. C., & Kim, D. S. (2005). A new heuristic for the multi-mode resource investment prob-lem. Journal of the Operational Research Society, 56(4), 406-413.
Hu, J., & Flood, I. (2012). A multi-objective scheduling model for solving the resource-constrained project scheduling and resource leveling problems. In Interntional Conference on Computing in Civil Engineering (pp. 49-56).
Huang, W., & Ding, L. (2011). Project-scheduling problem with random time-dependent activity du-ration times. IEEE Transactions on Engineering Management, 58(2), 377-387.
Huang, W., Oh, S. K., & Pedrycz, W. (2013). A fuzzy time-dependent project scheduling prob-lem. Information Sciences, 246, 100-114.
Janczura, M. A. R. E. K., & Kuchta, D. O. R. O. T. A. (2012). Proactive and reactive scheduling with fuzzy activity times. World Scientific Proc. Series on Computer Engineering and Information Sci-ence, 7, 495.
Jeang, A. (2014). Project management for uncertainty with multiple objectives optimisation of time, cost and reliability. International Journal of Production Research, 53(5), 1503-1526.
Jing-wen, Z., & Hui-fang, S. (2010, November). Multi-resource constrained discrete time/cost trade-off problem and its improved genetic algorithm. In Management Science and Engineering (IC-MSE), 2010 International Conference on (pp. 123-128). IEEE.
Kadam, S. U., & Kadam, N. S. (2014, January). Solving resource-constrained project scheduling problem by genetic algorithm. In Business and Information Management (ICBIM), 2014 2nd Inter-national Conference on(pp. 159-164). IEEE.
Kadrou, Y., & Najid, N. M. (2006, October). A new heuristic to solve RCPSP with multiple execu-tion modes and multi-skilled labor. In Computational Engineering in Systems Applications, IMACS Multiconference on (Vol. 2, pp. 1302-1309). IEEE.
Kanagasabapathi, B., Rajendran, C., & Ananthanarayanan, K. (2010). Scheduling in resource-constrained multiple projects to minimise the weighted tardiness and weighted earliness of pro-jects. International Journal of Operational Research, 7(3), 334-386.
Kang, C., & Choi, B. C. (2015). An adaptive crashing policy for stochastic time-cost tradeoff prob-lems. Computers & Operations Research, 63, 1-6.
Kaplan, LA (1988). Resource-constrained project scheduling with pre-emption of jobs. Unpublished
Ph.D. dissertation, University of Michigan, Ann Arbor.
Karshenas, S., & Haber, D. (1990). Economic optimization of construction project schedul-ing. Construction Management and Economics, 8(2), 135-146.
Ke, H., & Liu, B. (2005). Project scheduling problem with stochastic activity duration times. Applied Mathematics and Computation, 168(1), 342-353.
Ke, H., & Ma, J. (2014). Modeling project time–cost trade-off in fuzzy random environment. Applied Soft Computing, 19, 80-85.
Khalili, S., Najafi, A. A., & Niaki, S. T. A. (2013). Bi-objective resource constrained project schedul-ing problem with makespan and net present value criteria: two meta-heuristic algorithms. The Inter-national Journal of Advanced Manufacturing Technology, 69(1-4), 617-626.
Khalilzadeh, M. (2015). A honey bee swarm optimization algorithm for minimizing the total costs of resources in MRCPSP. Indian Journal of Science and Technology, 8(11).
Khalilzadeh, M., Kianfar, F., Shirzadeh Chaleshtari, A., Shadrokh, S., & Ranjbar, M. (2012). A modi-fied PSO algorithm for minimizing the total costs of resources in MRCPSP. Mathematical Prob-lems in Engineering, 2012.
Khemakhem, M. A., & Chtourou, H. (2013). Efficient robustness measures for the resource-constrained project scheduling problem. International Journal of Industrial and Systems Engineer-ing, 14(2), 245-267.
Khoshjahan, Y., Najafi, A. A., & Afshar-Nadjafi, B. (2013). Resource constrained project scheduling problem with discounted earliness–tardiness penalties: Mathematical modeling and solving proce-dure. Computers & Industrial Engineering, 66(2), 293-300.
Klerides, E., & Hadjiconstantinou, E. (2010). A decomposition-based stochastic programming ap-proach for the project scheduling problem under time/cost trade-off settings and uncertain dura-tions. Computers & Operations Research, 37(12), 2131-2140.
Knyazeva, M., Bozhenyuk, A., & Rozenberg, I. (2015). Resource-constrained Project Scheduling Approach Under Fuzzy Conditions. Procedia Computer Science, 77, 56-64.
Kogan, K., & Khmelnitsky, E. (1998). Tracking demands in optimal control of managerial systems with continuously-divisible, doubly constrained resources. Journal of Global Optimization, 13(1), 43-59.
Konstantinidis, P. D. (1998). A model to optimize project resource allocation by construction of a bal-anced histogram. European journal of operational research, 104(3), 559-571.
Kreter, S., Rieck, J., & Zimmermann, J. (2016). Models and solution procedures for the resource-constrained project scheduling problem with general temporal constraints and calendars. European Journal of Operational Research, 251(2), 387-403.
Kyriakidis, T. S., Kopanos, G. M., & Georgiadis, M. C. (2012). MILP formulations for single-and multi-mode resource-constrained project scheduling problems. Computers & Chemical Engineer-ing, 36, 369-385.
Lamas, P., & Demeulemeester, E. (2015). A purely proactive scheduling procedure for the resource-constrained project scheduling problem with stochastic activity durations. Journal of Scheduling, 1-20.
Lambrechts, O., Demeulemeester, E., & Herroelen, W. (2008). Proactive and reactive strategies for re-source-constrained project scheduling with uncertain resource availabilities. Journal of schedul-ing, 11(2), 121-136.
Lambrechts, O., Demeulemeester, E., & Herroelen, W. (2011). Time slack-based techniques for robust project scheduling subject to resource uncertainty. Annals of Operations Research, 186(1), 443-464.
Leyman, P., & Vanhoucke, M. (2015). A new scheduling technique for the resource–constrained pro-ject scheduling problem with discounted cash flows. International Journal of Production Re-search, 53(9), 2771-2786.
Leyman, P., & Vanhoucke, M. (2016). Payment models and net present value optimization for re-source-constrained project scheduling. Computers & Industrial Engineering, 91, 139-153.
Leyman, P., & Vanhoucke, M. (2017). Capital-and resource-constrained project scheduling with net present value optimization. European Journal of Operational Research, 256(3), 757-776.
Li, F., Lai, C., & Shou, Y. (2011, December). Particle swarm optimization for preemptive project scheduling with resource constraints. In Industrial Engineering and Engineering Management (IEEM), 2011 IEEE International Conference on (pp. 869-873). IEEE.
Li, H., & Womer, N. K. (2015). Solving stochastic resource-constrained project scheduling problems by closed-loop approximate dynamic programming. European Journal of Operational Re-search, 246(1), 20-33.
Li, H., & Zhang, H. (2013). Ant colony optimization-based multi-mode scheduling under renewable and nonrenewable resource constraints. Automation in Construction, 35, 431-438.
Li, H., Xu, Z., & Demeulemeester, E. (2014). Scheduling policies for the stochastic resource leveling problem. Journal of Construction Engineering and Management, 141(2), 04014072.
Li, Z., Wuliang, P., & Zhongliang, Z. (2010, May). An ant colony system for solving resource leveling problem. In Intelligent Computation Technology and Automation (ICICTA), 2010 International Conference on (Vol. 1, pp. 489-492). IEEE.
Liu, M., Liu, J., Wimmers, M. O., & Zhou, M. (2015). A differential evolution algorithm for resource investment problem with tardiness. In 2015 IEEE Congress on Evolutionary Computation (CEC) (pp. 346-352). IEEE.
Liu, S., Chen, D., & Wang, Y. (2014). Memetic algorithm for multi-mode resource-constrained pro-ject scheduling problems. Journal of Systems Engineering and Electronics, 25(4), 609-617.
Liu, Z., & Zheng, Y. (2008, July). Resource-constrained multiple projects scheduling with the objec-tive of minimizing activities cost. In 2008 Chinese Control and Decision Conference (pp. 1027-1032). IEEE.
Ma, W., Che, Y., Huang, H., & Ke, H. (2015). Resource-constrained project scheduling problem with uncertain durations and renewable resources. International Journal of Machine Learning and Cy-bernetics, 1-9.
Maghsoudlou, H., Afshar-Nadjafi, B., & Niaki, S. T. A. (2016). A multi-objective invasive weeds op-timization algorithm for solving multi-skill multi-mode resource constrained project scheduling problem. Computers & Chemical Engineering, 88, 157-169.
Maniezzo, V., & Mingozzi, A. (1999). The project scheduling problem with irregular starting time costs. Operations Research Letters, 25(4), 175-182.
Menesi, W., & Hegazy, T. (2014). Multimode resource-constrained scheduling and leveling for practi-cal-size projects. Journal of management in engineering, 31(6), 04014092.
Messelis, T., & De Causmaecker, P. (2014). An automatic algorithm selection approach for the multi-mode resource-constrained project scheduling problem. European Journal of Operational Re-search, 233(3), 511-528.
Möhring, R. H. (1984). Minimizing costs of resource requirements in project networks subject to a fixed completion time. Operations Research, 32(1), 89-120.
Möhring, R. H., Schulz, A. S., Stork, F., & Uetz, M. (2001). On project scheduling with irregular starting time costs. Operations Research Letters, 28(4), 149-154.
Möhring, R. H., Schulz, A. S., Stork, F., & Uetz, M. (2003). Solving project scheduling problems by minimum cut computations. Management Science, 49(3), 330-350.
Montoya-Torres, J. R., Solano-Charris, E. L., & Duran-Cantor, C. (2012). MEMETIC ALGORITHM TO MINIMIZE COSTS OF ACTIVITIES IN RCPSP. Dyna, 79(174), 86-95.
Moukrim, A., Quilliot, A., & Toussaint, H. (2015). An effective branch-and-price algorithm for the Preemptive Resource Constrained Project Scheduling Problem based on minimal Interval Order Enumeration. European Journal of Operational Research, 244(2), 360-368.
Nabrzyski, J., & Weglarz, J. (1997, September). On an expert system with multicriteria tabu search for multiobjective project scheduling. In Emerging Technologies and Factory Automation Proceedings, 1997. ETFA'97., 1997 6th International Conference on (pp. 287-291). IEEE.
Najafi, A. A., & Azimi, F. (2009). A priority rule-based heuristic for resource investment project scheduling problem with discounted cash flows and tardiness penalties. Mathematical Problems in Engineering, 2009.
Najafi, A. A., & Niaki, S. T. A. (2005). Resource investment problem with discounted cash flows. INTERNATIONAL JOURNAL OF ENGINEERING-MATERIALS AND ENERGY RE-SEARCH CENTER-, 18(1), 53.
Najafi, A. A., & Niaki, S. T. A. (2006). A genetic algorithm for resource investment problem with discounted cash flows. Applied Mathematics and Computation, 183(2), 1057-1070.
Najafi, A. A., Niaki, S. T. A., & Shahsavar, M. (2009). A parameter-tuned genetic algorithm for the resource investment problem with discounted cash flows and generalized precedence rela-tions. Computers & Operations Research, 36(11), 2994-3001.
Najafi, A. A., Zoraghi, N., & Azimi, F. (2011). Scheduling a project to minimize costs of material re-quirements. World Academy of Science, Engineering and Technology, 78, 134-137.
Neumann, K., & Zimmermann, J. (1999). Resource levelling for projects with schedule-dependent time windows. European Journal of Operational Research, 117(3), 591-605.
Neumann, K., & Zimmermann, J. (2000). Procedures for resource leveling and net present value prob-lems in project scheduling with general temporal and resource constraints. European Journal of Operational Research, 127(2), 425-443.
Neumann, K., Schwindt, C., & Zimmermann, J. (2002). Recent results on resource-constrained project scheduling with time windows: Models, solution methods, and applications. Inst. für Wirtschaftstheorie und Operations-Research.
Nikoofal Sahl Abadi, N., Bagheri, M., & Assadi, M. (2016). Multiobjective model for solving re-source‐leveling problem with discounted cash flows. International Transactions in Operational Re-search.
Nonobe, K., & Ibaraki, T. (2006). A metaheuristic approach to the resource constrained project scheduling with variable activity durations and convex cost functions. In Perspectives in Modern Project Scheduling (pp. 225-248). Springer US.
Nübel, H. (2001). The resource renting problem subject to temporal constraints. OR-Spektrum, 23(3), 359-381.
Nudtasomboon, N., & Randhawa, S. U. (1997). Resource-constrained project scheduling with renew-able and non-renewable resources and time-resource tradeoffs. Computers & Industrial Engineer-ing, 32(1), 227-242.
Palacio, J. D., & Larrea, O. L. (2016). A lexicographic approach to the robust resource‐constrained project scheduling problem. International Transactions in Operational Research.
Pérez, Á., Quintanilla, S., Lino, P., & Valls, V. (2014). A multi-objective approach for a project scheduling problem with due dates and temporal constraints infeasibilities. International Journal of Production Research,52(13), 3950-3965.
Poder, E., Beldiceanu, N., & Sanlaville, E. (2004). Computing a lower approximation of the compul-sory part of a task with varying duration and varying resource consumption. European Journal of Operational Research, 153(1), 239-254.
Ponz‐Tienda, J. L., Pellicer, E., Benlloch‐Marco, J., & Andrés‐Romano, C. (2015). The Fuzzy Project Scheduling Problem with Minimal Generalized Precedence Relations. Computer‐Aided Civil and Infrastructure Engineering,30(11), 872-891.
Prade, H. (1979). Using fuzzy set theory in a scheduling problem: a case study. Fuzzy sets and sys-tems, 2(2), 153-165.
Proon, S., & Jin, M. (2011). A genetic algorithm with neighborhood search for the resource‐constrained project scheduling problem. Naval Research Logistics (NRL), 58(2), 73-82.
Qi, J., Guo, B., Lei, H., & Zhang, T. (2014). Solving resource availability cost problem in project scheduling by pseudo particle swarm optimization. Journal of Systems Engineering and Electron-ics, 25(1), 69-76.
Rafiee, M., Kianfar, F., & Farhadkhani, M. (2014). A multistage stochastic programming approach in project selection and scheduling. The International Journal of Advanced Manufacturing Technolo-gy, 70(9-12), 2125-2137.
Rajeev, S., Kurian, S., & Paul, B. (2015). A modified serial scheduling scheme for resource con-strained project scheduling weighted earliness tardiness problem. International Journal of Infor-mation and Decision Sciences, 7(3), 241-254.
Ranjbar, M., Hosseinabadi, S., & Abasian, F. (2013). Minimizing total weighted late work in the re-source-constrained project scheduling problem. Applied Mathematical Modelling, 37(23), 9776-9785.
Ranjbar, M., Khalilzadeh, M., Kianfar, F., & Etminani, K. (2012). An optimal procedure for minimiz-ing total weighted resource tardiness penalty costs in the resource-constrained project scheduling problem. Computers & Industrial Engineering, 62(1), 264-270.
Rezaeian, J., Soleimani, F., Mohaselafshary, S., & Arab, A. (2015). Using a meta-heuristic algorithm for solving the multi-mode resource-constrained project scheduling problem. International Journal of Operational Research, 24(1), 1-16.
Rostami, S., Creemers, S., & Leus, R. (2017). New strategies for stochastic resource-constrained pro-ject scheduling. Journal of Scheduling, 1-17.
Russell, A. H. (1970). Cash flows in networks. Management Science, 16(5), 357-373.
Sadeh, N., Otsuka, S., & Schnelbach, R. (1993, August). Predictive and reactive scheduling with the Micro-Boss production scheduling and control system. In Proceedings, IJCAI-93 Workshop on Knowledge-Based Production Planning, Scheduling and Control.
Salari, M., Bagherpour, M., & Reihani, M. H. (2015). A time-cost trade-off model by incorporating fuzzy earned value management: A statistical based approach. Journal of Intelligent & Fuzzy Sys-tems, 28(4), 1909-1919.
Santos, M. A., & Tereso, A. P. (2011). On the Multi-mode, Multi-skill Resource Constrained Project Scheduling Problem–A Software Application. In Soft computing in industrial applications (pp. 239-248). Springer Berlin Heidelberg.
Schnell, A., & Hartl, R. F. (2015). On the efficient modeling and solution of the multi-mode resource-constrained project scheduling problem with generalized precedence relations. OR Spectrum, 38(2), 283-303.
Sebt, M. H., Afshar, M. R., & Alipouri, Y. (2016). Hybridization of genetic algorithm and fully in-formed particle swarm for solving the multi-mode resource-constrained project scheduling prob-lem. Engineering Optimization, 1-18.
Sebt, M. H., Afshar, M. R., & Alipouri, Y. (2017). Hybridization of genetic algorithm and fully in-formed particle swarm for solving the multi-mode resource-constrained project scheduling prob-lem. Engineering Optimization, 49(3), 513-530.
Shadrokh, S. (2010). The preemptive resource-constrained project scheduling problem subject to due dates and preemption penalties: An integer programming approach. Journal of Optimization in In-dustrial Engineering, 35-39.
Shadrokh, S., & Kianfar, F. (2005). A genetic algorithm for resource investment problems, enhanced by the revised Akpan method. Scientia Iranica, 12(1), 90-98.
Shadrokh, S., & Kianfar, F. (2007). A genetic algorithm for resource investment project scheduling problem, tardiness permitted with penalty. European Journal of Operational Research, 181(1), 86-101.
Shahsavar, A., Najafi, A. A., & Niaki, S. T. A. (2015). Three self-adaptive multi-objective evolution-ary algorithms for a triple-objective project scheduling problem. Computers & Industrial Engineer-ing, 87, 4-15.
Shavandi, H., Najafi, A. A., & Moslehirad, A. (2012). Fuzzy project scheduling with discounted cash flows. ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RE-SEARCH, 46(1), 219-232.
Shi, Y. J., Qu, F. Z., Chen, W., & Li, B. (2010). An artificial bee colony with random key for re-source-constrained project scheduling. In Life system modeling and intelligent computing (pp. 148-157). Springer Berlin Heidelberg.
Shirzadeh Chaleshtarti, A., Shadrokh, S., & Fathi, Y. (2014). Branch and bound algorithms for re-source constrained project scheduling problem subject to nonrenewable resources with presched-uled procurement. Mathematical Problems in Engineering, 2014.
Shou, Y., Li, Y., & Lai, C. (2015). Hybrid particle swarm optimization for preemptive resource-constrained project scheduling. Neurocomputing, 148, 122-128.
Shukla, S. K., Son, Y. J., & Tiwari, M. K. (2008). Fuzzy-based adaptive sample-sort simulated anneal-ing for resource-constrained project scheduling. The International Journal of Advanced Manufac-turing Technology, 36(9-10), 982-995.
Słowiński, R. (1980). Two approaches to problems of resource allocation among project activities—a comparative study. Journal of the Operational Research Society, 31(8), 711-723.
Słowinski, R. (1981). Multiobjective network scheduling with efficient use of renewable and nonre-newable resources. European Journal of Operational Research, 7(3), 265-273.
Smith, S. F. (1995). Reactive scheduling systems. In Intelligent scheduling systems (pp. 155-192). Springer US.
Sobel, M. J., Szmerekovsky, J. G., & Tilson, V. (2009). Scheduling projects with stochastic activity duration to maximize expected net present value. European Journal of Operational Re-search, 198(3), 697-705.
Song, Y., Liu, J., Wimmers, M. O., & Jiang, Z. (2015, May). A differential evolution algorithm with local search for resource investment project scheduling problems. In 2015 IEEE Congress on Evo-lutionary Computation (CEC) (pp. 1725-1731). IEEE.
Sung, C. S., & Lim, S. K. (1997). A scheduling procedure for a general class of resource-constrained projects. Computers & industrial engineering, 32(1), 9-17.
Suresh, M., Dutta, P., & Jain, K. (2015). Resource Constrained Multi-Project Scheduling Problem with Resource Transfer Times. Asia-Pacific Journal of Operational Research, 32(06), 1550048.
Suwa, H. & Morita, D. (2016). Reactive project scheduling method to enhance project progress under uncertainty. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 10(3), JAMDSM0051-JAMDSM0051.
Tavana, M., Abtahi, A. R., & Khalili-Damghani, K. (2014). A new multi-objective multi-mode model for solving preemptive time–cost–quality trade-off project scheduling problems. Expert Systems with Applications, 41(4), 1830-1846.
Tian, W., Xu, J., & Fu, Z. (2016). On the choice of baseline schedules for the discrete time/resource trade-off problem under stochastic environment. Journal of Difference Equations and Applications, 1-11.
Toffolo, T. A., Santos, H. G., Carvalho, M. A., & Soares, J. A. (2015). An integer programming ap-proach to the multimode resource-constrained multiproject scheduling problem. Journal of Schedul-ing, 1-13.
Tran, D. H., Cheng, M. Y., & Pham, A. D. (2016). Using Fuzzy Clustering Chaotic-based Differential Evolution to solve multiple resources leveling in the multiple projects scheduling prob-lem. Alexandria Engineering Journal.
Tritschler, M., Naber, A., & Kolisch, R. (2017). A hybrid metaheuristic for resource-constrained pro-ject scheduling with flexible resource profiles. European Journal of Operational Research, 262(1), 262-273.
Ulusoy, G., & Özdamar, L. (1996). A framework for an interactive project scheduling system under limited resources. European Journal of Operational Research, 90(2), 362-375.
Ulusoy, G., Sivrikaya-Şerifoğlu, F., & Şahin, Ş. (2001). Four payment models for the multi-mode re-source constrained project scheduling problem with discounted cash flows. Annals of Operations Research, 102(1-4), 237-261.
Valls, V., Laguna, M., Lino, P., Pérez, A., & Quintanilla, S. (1999). Project scheduling with stochastic activity interruptions. In Project scheduling (pp. 333-353). Springer US.
Van de Vonder, S., Ballestin, F., Demeulemeester, E., & Herroelen, W. (2007a). Heuristic procedures for reactive project scheduling. Computers & Industrial Engineering, 52(1), 11-28.
Van De Vonder, S., Demeulemeester, E., & Herroelen, W. (2005). Heuristic procedures for generating stable project baseline schedules. Available at SSRN 875289.
Van de Vonder, S., Demeulemeester, E., & Herroelen, W. (2007b). A classification of predictive-reactive project scheduling procedures. Journal of Scheduling, 10(3), 195-207.
Van de Vonder, S., Demeulemeester, E., Herroelen, W., & Leus, R. (2006a). The trade-off between stability and makespan in resource-constrained project scheduling. International Journal of Produc-tion Research, 44(2), 215-236.
Van de Vonder, S., Demeulemeester, E., Leus, R., & Herroelen, W. (2006b). Proactive-reactive pro-ject scheduling trade-offs and procedures. In Perspectives in Modern Project Scheduling (pp. 25-51). Springer US.
Van Peteghem, V., & Vanhoucke, M. (2010). A genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem. European Journal of Op-erational Research, 201(2), 409-418.
Vandenheede, L., Vanhoucke, M., & Maenhout, B. (2015). A scatter search for the extended resource renting problem. International Journal of Production Research, 1-21.
Vanhoucke, M., & Debels, D. (2008). The impact of various activity assumptions on the lead time and resource utilization of resource-constrained projects. Computers & Industrial Engineering, 54(1), 140-154.
Vanhoucke, M., Demeulemeester, E., & Herroelen, W. (2002). Discrete time/cost trade-offs in project scheduling with time-switch constraints. Journal of the Operational Research Society, 53(7), 741-751.
Vanucci, S. C., Carrano, E. G., Bicalho, R., & Takahashi, R. H. (2012, June). A modified NSGA-II for the Multiobjective Multi-mode Resource-Constrained Project Scheduling Problem. In 2012 IEEE Congress on Evolutionary Computation (pp. 1-7). IEEE.
Vartouni, A. M., & Khanli, L. M. (2014). A hybrid genetic algorithm and fuzzy set applied to multi-mode resource-constrained project scheduling problem. Journal of Intelligent & Fuzzy Sys-tems, 26(3), 1103-1112.
Viana, A., & de Sousa, J. P. (2000). Using metaheuristics in multiobjective resource constrained pro-ject scheduling. European Journal of Operational Research, 120(2), 359-374.
Vieira, G. E., Herrmann, J. W., & Lin, E. (2000). Analytical models to predict the performance of a single-machine system under periodic and event-driven rescheduling strategies. International jour-nal of production research, 38(8), 1899-1915.
Waligóra, G. (2016). Comparative Analysis of Some Metaheuristics for Discrete-Continuous Project Scheduling with Activities of Identical Processing Rates. Asia-Pacific Journal of Operational Re-search, 1650015.
Wang, K. S., Chi, J. H., & Wan, E. H. (1993). Decision making of project under fuzzy infor-mation. Journal of the Chinese Institute of Engineers, 16(4), 533-541.
Wang, L., Fang, C., Mu, C. D., & Liu, M. (2013). A Pareto-archived estimation-of-distribution algo-rithm for multiobjective resource-constrained project scheduling problem. IEEE Transactions on Engineering Management, 60(3), 617-626.
Wang, L., Ip, W. H., & Lee, C. K. (2008, July). Resource constrained project scheduling of construc-tion engineering with genetic algorithm. In 2008 Chinese Control and Decision Conference (pp. 1466-1470). IEEE.
Wang, L., Liu, J., & Zhou, M. (2014a). An Organizational Cooperative Coevolutionary Algorithm for Multimode Resource-Constrained Project Scheduling Problems. In Asia-Pacific Conference on Simulated Evolution and Learning (pp. 680-690). Springer International Publishing.
Wang, W. X., Wang, X., Ge, X. L., & Deng, L. (2014b). Multi-objective optimization model for mul-ti-project scheduling on critical chain. Advances in Engineering Software, 68, 33-39.
Wiesemann, W., Kuhn, D., & Rustem, B. (2010). Maximizing the net present value of a project under uncertainty. European Journal of Operational Research, 202(2), 356-367.
Wollmer, R. D. (1985). Critical path planning under uncertainty. In Mathematical Programming Es-says in Honor of George B. Dantzig Part II(pp. 164-171). Springer Berlin Heidelberg.
Wu, S. D., Storer, R. H., & Pei-Chann, C. (1993). One-machine rescheduling heuristics with efficien-cy and stability as criteria. Computers & Operations Research, 20(1), 1-14.
Wu, S., Wan, H. D., Shukla, S. K., & Li, B. (2011). Chaos-based improved immune algorithm (CBI-IA) for resource-constrained project scheduling problems. Expert Systems with Applications, 38(4), 3387-3395.
Wuliang, P., Min, H., & Yongping, H. (2014). An improved ant algorithm for Multi-mode Resource Constrained Project Scheduling Problem. RAIRO-Operations Research, 48(4), 595-614.
Xiao, J., Wu, Z., & Tang, J. C. (2014, July). Hybridization of electromagnetism with multi-objective evolutionary algorithms for RCPSP. In Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation (pp. 653-660). ACM.
Xiao, J., Wu, Z., Hong, X. X., Tang, J. C., & Tang, Y. (2016). Integration of electromagnetism with multi-objective evolutionary algorithms for RCPSP. European Journal of Operational Re-search, 251(1), 22-35.
Xiong, J., Chen, Y., Liu, J., & Abbass, H. A. (2011, June). An evolutionary multi-objective scenario-based approach for stochastic resource investment project scheduling. In 2011 IEEE Congress of Evolutionary Computation (CEC) (pp. 2767-2774). IEEE.
Xiong, J., Liu, J., Chen, Y., & Abbass, H. A. (2014). A knowledge-based evolutionary multiobjective approach for stochastic extended resource investment project scheduling problems. IEEE Transac-tions on Evolutionary Computation, 18(5), 742-763.
Xu, J., & Feng, C. (2014). Multimode resource-constrained multiple project scheduling problem under fuzzy random environment and its application to a large scale hydropower construction pro-ject. The Scientific World Journal, 2014.
Xu, J., Ma, Y., & Xu, Z. (2015). A Bilevel Model for Project Scheduling in a Fuzzy Random Envi-ronment. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 45(10), 1322-1335.
Yuan, X., Liu, J., & Wimmers, M. O. (2015, May). A multi-agent genetic algorithm with variable neighborhood search for resource investment project scheduling problems. In 2015 IEEE Congress on Evolutionary Computation (CEC) (pp. 23-30). IEEE.
Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.
Zamani, R. (2013). An evolutionary search procedure for optimizing time–cost performance of pro-jects under multiple renewable resource constraints. Computers & Industrial Engineering, 66(2), 451-460.
Zhang, H., Li, H., & Tam, C. M. (2006). Particle swarm optimization for preemptive scheduling under break and resource-constraints. Journal of construction engineering and management, 132(3), 259-267.
Zhang, Z. (2014, July). A MODM Bi-level Model with Fuzzy Random Coefficients for Resource-Constrained Project Scheduling Problems. In Computational Sciences and Optimization (CSO), 2014 Seventh International Joint Conference on (pp. 666-669). IEEE.
Zhenyuan, L., & Hongwei, W. (2006). Heuristic algorithm for RCPSP with the objective of minimiz-ing activities' cost. Journal of Systems Engineering and Electronics, 17(1), 96-102.
Zhu, J., Li, X., & Shen, W. (2011). Effective genetic algorithm for resource-constrained project scheduling with limited preemptions. International Journal of Machine Learning and Cybernet-ics, 2(2), 55-65.
Zhu, X., Ruiz, R., Li, S., & Li, X. (2017). An effective heuristic for project scheduling with resource availability cost. European Journal of Operational Research, 257(3), 746-762.
Zoraghi, N., Shahsavar, A., Abbasi, B., & Van Peteghem, V. (2017). Multi-mode resource-constrained project scheduling problem with material ordering under bonus–penalty poli-cies. Top, 25(1), 49-79.