How to cite this paper
Chawla, V., Chanda, A & Angra, S. (2018). Scheduling of multi load AGVs in FMS by modified memetic particle swarm optimization algorithm.Journal of Project Management, 3(1), 39-54.
Refrences
Akturk, M. S., & Yilmaz, H. (1996). Scheduling of automated guided vehicles in a decision making hierarchy. International Journal of Production Research, 34(2), 577-591.
Egbelu, P. J., & Tanchoco, J. M. A. (1986). Potentials for bi-directional guide-path for automated guided vehicle based systems. International Journal of Production Research, 24(5), 1075-1097.
Erol, R., Sahin, C., Baykasoglu, A., & Kaplanoglu, V. (2012). A multi-agent based approach to dy-namic scheduling of machines and automated guided vehicles in manufacturing systems. Applied soft computing, 12(6), 1720-1732.
Fazlollahtabar, H., Saidi-Mehrabad, M., & Balakrishnan, J. (2015). Mathematical optimization for ear-liness/tardiness minimization in a multiple automated guided vehicle manufacturing system via in-tegrated heuristic algorithms. Robotics and Autonomous Systems, 72, 131-138.
Fleischmann, B., Gnutzmann, S., & Sandvoß, E. (2004). Dynamic vehicle routing based on online traffic information. Transportation science, 38(4), 420-433.
Gaskins, R. J., & Tanchoco, J. M. (1987). Flow path design for automated guided vehicle sys-tems. International Journal of Production Research, 25(5), 667-676.
Gaskins, R. J., Tanchoco, J. M. A., & Taghaboni, F. (1989). Virtual flow paths for free-ranging auto-mated guided vehicle systems. The International Journal of Production Research 27(1), 91-100.
Grunow, M., Günther, H. O., & Lehmann, M. (2005). Dispatching multi-load AGVs in highly auto-mated seaport container terminals. Container Terminals and Automated Transport Systems Part I, 231-255.
Ho, Y. C., & Liao, T. W. (2009). Zone design and control for vehicle collision prevention and load balancing in a zone control AGV system. Computers & Industrial Engineering, 56(1), 417-432.
Jerald, J., Asokan, P., Saravanan, R., & Rani, A. D. C. (2006). Simultaneous scheduling of parts and automated guided vehicles in an FMS environment using adaptive genetic algorithm. The Interna-tional Journal of Advanced Manufacturing Technology, 29(5), 584-589.
Kumar, N. S., & Sridharan, R. (2010). Simulation-based metamodels for the analysis of scheduling decisions in a flexible manufacturing system operating in a tool-sharing environment. The Interna-tional Journal of Advanced Manufacturing Technology, 51(1-4), 341-355.
Levitin, G., & Abezgaouz, R. (2003). Optimal routing of multiple-load AGV subject to LIFO loading constraints. Computers & Operations Research, 30(3), 397-410.
Mantel, R. J., & Landeweerd, H. R. (1995). Design and operational control of an AGV sys-tem. International Journal of Production Economics, 41(1-3), 257-266.
Meersmans, P. J. M. (2002). Optimization of container handling systems.
Nayyar, P., & Khator, S. K. (1993). Operational control of multi-load vehicles in an automated guid-ed vehicle system. Computers & industrial engineering, 25(1-4), 503-506.
Powell, W. B., Towns, M. T., & Marar, A. (2000). On the value of optimal myopic solutions for dy-namic routing and scheduling problems in the presence of user noncompliance. Transportation Sci-ence, 34(1), 67-85.
Qiu, L., Hsu, W. J., Huang, S. Y., & Wang, H. (2002). Scheduling and routing algorithms for AGVs: a survey. International Journal of Production Research, 40(3), 745-760.
Rashidi, H. (2010). Scheduling in container terminals using Network Simplex Algorithm. Journal of Optimization in Industrial Engineering, 9-16.
Rashidi, H., & Tsang, E. (2015). Vehicle Scheduling in Port Automation: Advanced Algorithms for Minimum Cost Flow Problems. CRC Press.
Sadaghiani, J., Boroujerdi, S., Mirhabibi, M., & Sadaghiani, P. (2014). A Pareto archive floating search procedure for solving multi-objective flexible job shop scheduling problem. Decision Sci-ence Letters, 3(2), 157-168.
Ulusoy, G., Sivrikaya-Şerifoǧlu, F., & Bilge, Ü. (1997). A genetic algorithm approach to the simulta-neous scheduling of machines and automated guided vehicles. Computers & Operations Re-search, 24(4), 335-351.
Umar, U. A., Ariffin, M. K. A., Ismail, N., & Tang, S. H. (2015). Hybrid multiobjective genetic algo-rithms for integrated dynamic scheduling and routing of jobs and automated-guided vehicle (AGV) in flexible manufacturing systems (FMS) environment. The International Journal of Ad-vanced Manufacturing Technology, 81(9-12), 2123-2141.
Van der Meer, R. (2000). Operational control of internal transport(No. TTS; T2000/5).
Veeravalli, B., Rajesh, G., & Viswanadham, N. (2002). Design and analysis of optimal material distri-bution policies in flexible manufacturing systems using a single AGV. International journal of pro-duction research, 40(12), 2937-2954.
Yang, C., Choi, Y., & Ha, T. (2004). Simulation-based performance evaluation of transport vehicles at automated container terminals. OR spectrum, 26(2), 149-170.
Egbelu, P. J., & Tanchoco, J. M. A. (1986). Potentials for bi-directional guide-path for automated guided vehicle based systems. International Journal of Production Research, 24(5), 1075-1097.
Erol, R., Sahin, C., Baykasoglu, A., & Kaplanoglu, V. (2012). A multi-agent based approach to dy-namic scheduling of machines and automated guided vehicles in manufacturing systems. Applied soft computing, 12(6), 1720-1732.
Fazlollahtabar, H., Saidi-Mehrabad, M., & Balakrishnan, J. (2015). Mathematical optimization for ear-liness/tardiness minimization in a multiple automated guided vehicle manufacturing system via in-tegrated heuristic algorithms. Robotics and Autonomous Systems, 72, 131-138.
Fleischmann, B., Gnutzmann, S., & Sandvoß, E. (2004). Dynamic vehicle routing based on online traffic information. Transportation science, 38(4), 420-433.
Gaskins, R. J., & Tanchoco, J. M. (1987). Flow path design for automated guided vehicle sys-tems. International Journal of Production Research, 25(5), 667-676.
Gaskins, R. J., Tanchoco, J. M. A., & Taghaboni, F. (1989). Virtual flow paths for free-ranging auto-mated guided vehicle systems. The International Journal of Production Research 27(1), 91-100.
Grunow, M., Günther, H. O., & Lehmann, M. (2005). Dispatching multi-load AGVs in highly auto-mated seaport container terminals. Container Terminals and Automated Transport Systems Part I, 231-255.
Ho, Y. C., & Liao, T. W. (2009). Zone design and control for vehicle collision prevention and load balancing in a zone control AGV system. Computers & Industrial Engineering, 56(1), 417-432.
Jerald, J., Asokan, P., Saravanan, R., & Rani, A. D. C. (2006). Simultaneous scheduling of parts and automated guided vehicles in an FMS environment using adaptive genetic algorithm. The Interna-tional Journal of Advanced Manufacturing Technology, 29(5), 584-589.
Kumar, N. S., & Sridharan, R. (2010). Simulation-based metamodels for the analysis of scheduling decisions in a flexible manufacturing system operating in a tool-sharing environment. The Interna-tional Journal of Advanced Manufacturing Technology, 51(1-4), 341-355.
Levitin, G., & Abezgaouz, R. (2003). Optimal routing of multiple-load AGV subject to LIFO loading constraints. Computers & Operations Research, 30(3), 397-410.
Mantel, R. J., & Landeweerd, H. R. (1995). Design and operational control of an AGV sys-tem. International Journal of Production Economics, 41(1-3), 257-266.
Meersmans, P. J. M. (2002). Optimization of container handling systems.
Nayyar, P., & Khator, S. K. (1993). Operational control of multi-load vehicles in an automated guid-ed vehicle system. Computers & industrial engineering, 25(1-4), 503-506.
Powell, W. B., Towns, M. T., & Marar, A. (2000). On the value of optimal myopic solutions for dy-namic routing and scheduling problems in the presence of user noncompliance. Transportation Sci-ence, 34(1), 67-85.
Qiu, L., Hsu, W. J., Huang, S. Y., & Wang, H. (2002). Scheduling and routing algorithms for AGVs: a survey. International Journal of Production Research, 40(3), 745-760.
Rashidi, H. (2010). Scheduling in container terminals using Network Simplex Algorithm. Journal of Optimization in Industrial Engineering, 9-16.
Rashidi, H., & Tsang, E. (2015). Vehicle Scheduling in Port Automation: Advanced Algorithms for Minimum Cost Flow Problems. CRC Press.
Sadaghiani, J., Boroujerdi, S., Mirhabibi, M., & Sadaghiani, P. (2014). A Pareto archive floating search procedure for solving multi-objective flexible job shop scheduling problem. Decision Sci-ence Letters, 3(2), 157-168.
Ulusoy, G., Sivrikaya-Şerifoǧlu, F., & Bilge, Ü. (1997). A genetic algorithm approach to the simulta-neous scheduling of machines and automated guided vehicles. Computers & Operations Re-search, 24(4), 335-351.
Umar, U. A., Ariffin, M. K. A., Ismail, N., & Tang, S. H. (2015). Hybrid multiobjective genetic algo-rithms for integrated dynamic scheduling and routing of jobs and automated-guided vehicle (AGV) in flexible manufacturing systems (FMS) environment. The International Journal of Ad-vanced Manufacturing Technology, 81(9-12), 2123-2141.
Van der Meer, R. (2000). Operational control of internal transport(No. TTS; T2000/5).
Veeravalli, B., Rajesh, G., & Viswanadham, N. (2002). Design and analysis of optimal material distri-bution policies in flexible manufacturing systems using a single AGV. International journal of pro-duction research, 40(12), 2937-2954.
Yang, C., Choi, Y., & Ha, T. (2004). Simulation-based performance evaluation of transport vehicles at automated container terminals. OR spectrum, 26(2), 149-170.