How to cite this paper
Li, J & Guan, Z. (2024). A multi-objective fuzzy flexible job shop scheduling problem considering the maximization of processing quality.International Journal of Industrial Engineering Computations , 15(2), 491-502.
Refrences
Bansal, J. C., Sharma, H., Jadon, S. S., & Clerc, M. (2014). Spider monkey optimization algorithm for numerical optimization. Memetic computing, 6, 31-47.
Caldeira, R. H., Gnanavelbabu, A., & Vaidyanathan, T. (2020). An effective backtracking search algorithm for multi-objective flexible job shop scheduling considering new job arrivals and energy consumption. Computers & Industrial Engineering, 149, 106863.
Chaoyong, Z., Yunqing, R., Peigen, L., & Xinyu, S. (2007). Bilevel genetic algorithm for the flexible job-shop scheduling problem. Journal of mechanical engineering, 43(4), 119-124.
Czyzżak, P., & Jaszkiewicz, A. (1998). Pareto simulated annealing—a metaheuristic technique for multiple‐objective combinatorial optimization. Journal of multi‐criteria decision analysis, 7(1), 34-47.
Gao, K. Z., Suganthan, P. N., Pan, Q. K., Chua, T. J., Chong, C. S., & Cai, T. X. (2016). An improved artificial bee colony algorithm for flexible job-shop scheduling problem with fuzzy processing time. Expert Systems with Applications, 65, 52-67.
García Gómez, P., González-Rodríguez, I., & Vela, C. R. (2023). Enhanced memetic search for reducing energy consumption in fuzzy flexible job shops. Integrated Computer-Aided Engineering, 30(2), 151-167.
Han, Y., Gong, D., Jin, Y., & Pan, Q. K. (2016). Evolutionary multi-objective blocking lot-streaming flow shop scheduling with interval processing time. Applied Soft Computing, 42, 229-245.
Joo, B. J., Shim, S. O., Chua, T. J., & Cai, T. X. (2018). Multi-level job scheduling under processing time uncertainty. Computers & Industrial Engineering, 120, 480-487.
Kong, W., Ding, J., Chai, T., Zheng, X., & Yang, S. (2013, April). A multiobjective particle swarm optimization algorithm for load scheduling in electric smelting furnaces. In 2013 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES) (pp. 188-195). IEEE.
Li, X., Gao, L., Wang, W., Wang, C., & Wen, L. (2019). Particle swarm optimization hybridized with genetic algorithm for uncertain integrated process planning and scheduling with interval processing time. Computers & Industrial Engineering, 135, 1036-1046.
Lin, J., Zhu, L., & Wang, Z. J. (2019). A hybrid multi-verse optimization for the fuzzy flexible job-shop scheduling problem. Computers & Industrial Engineering, 127, 1089-1100.
Pan, Z., Lei, D., & Wang, L. (2021). A bi-population evolutionary algorithm with feedback for energy-efficient fuzzy flexible job shop scheduling. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52(8), 5295-5307.
Sassi, J., Alaya, I., Borne, P., & Tagina, M. (2022). A decomposition-based artificial bee colony algorithm for the multi-objective flexible jobshop scheduling problem. Engineering Optimization, 54(3), 524-538.
Wang, L., Zhou, G., Xu, Y., & Liu, M. (2013). A hybrid artificial bee colony algorithm for the fuzzy flexible job-shop scheduling problem. International Journal of Production Research, 51(12), 3593-3608.
Xu, W., Ji, Z., & Wang, Y. (2018). A flower pollination algorithm for flexible job shop scheduling with fuzzy processing time. Modern Physics Letters B, 32(34n36), 1840113.
Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE transactions on Evolutionary Computation, 3(4), 257-271.
Caldeira, R. H., Gnanavelbabu, A., & Vaidyanathan, T. (2020). An effective backtracking search algorithm for multi-objective flexible job shop scheduling considering new job arrivals and energy consumption. Computers & Industrial Engineering, 149, 106863.
Chaoyong, Z., Yunqing, R., Peigen, L., & Xinyu, S. (2007). Bilevel genetic algorithm for the flexible job-shop scheduling problem. Journal of mechanical engineering, 43(4), 119-124.
Czyzżak, P., & Jaszkiewicz, A. (1998). Pareto simulated annealing—a metaheuristic technique for multiple‐objective combinatorial optimization. Journal of multi‐criteria decision analysis, 7(1), 34-47.
Gao, K. Z., Suganthan, P. N., Pan, Q. K., Chua, T. J., Chong, C. S., & Cai, T. X. (2016). An improved artificial bee colony algorithm for flexible job-shop scheduling problem with fuzzy processing time. Expert Systems with Applications, 65, 52-67.
García Gómez, P., González-Rodríguez, I., & Vela, C. R. (2023). Enhanced memetic search for reducing energy consumption in fuzzy flexible job shops. Integrated Computer-Aided Engineering, 30(2), 151-167.
Han, Y., Gong, D., Jin, Y., & Pan, Q. K. (2016). Evolutionary multi-objective blocking lot-streaming flow shop scheduling with interval processing time. Applied Soft Computing, 42, 229-245.
Joo, B. J., Shim, S. O., Chua, T. J., & Cai, T. X. (2018). Multi-level job scheduling under processing time uncertainty. Computers & Industrial Engineering, 120, 480-487.
Kong, W., Ding, J., Chai, T., Zheng, X., & Yang, S. (2013, April). A multiobjective particle swarm optimization algorithm for load scheduling in electric smelting furnaces. In 2013 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES) (pp. 188-195). IEEE.
Li, X., Gao, L., Wang, W., Wang, C., & Wen, L. (2019). Particle swarm optimization hybridized with genetic algorithm for uncertain integrated process planning and scheduling with interval processing time. Computers & Industrial Engineering, 135, 1036-1046.
Lin, J., Zhu, L., & Wang, Z. J. (2019). A hybrid multi-verse optimization for the fuzzy flexible job-shop scheduling problem. Computers & Industrial Engineering, 127, 1089-1100.
Pan, Z., Lei, D., & Wang, L. (2021). A bi-population evolutionary algorithm with feedback for energy-efficient fuzzy flexible job shop scheduling. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52(8), 5295-5307.
Sassi, J., Alaya, I., Borne, P., & Tagina, M. (2022). A decomposition-based artificial bee colony algorithm for the multi-objective flexible jobshop scheduling problem. Engineering Optimization, 54(3), 524-538.
Wang, L., Zhou, G., Xu, Y., & Liu, M. (2013). A hybrid artificial bee colony algorithm for the fuzzy flexible job-shop scheduling problem. International Journal of Production Research, 51(12), 3593-3608.
Xu, W., Ji, Z., & Wang, Y. (2018). A flower pollination algorithm for flexible job shop scheduling with fuzzy processing time. Modern Physics Letters B, 32(34n36), 1840113.
Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE transactions on Evolutionary Computation, 3(4), 257-271.