How to cite this paper
Özbel, B & Baykasoğlu, A. (2023). A matheuristic based solution approach for the general lot sizing and scheduling problem with sequence dependent changeovers and back ordering.International Journal of Industrial Engineering Computations , 14(1), 115-128.
Refrences
Almada-Lobo, B., Klabjan, D., Antónia Carravilla, M., & Oliveira, J. F. (2007). Single machine multi-product capacitated lot sizing with sequence-dependent setups. International Journal of Production Research, 45(20), 4873-4894. https://doi.org/10.1080/00207540601094465
Babaei, M., Mohammadi, M., & Ghomi, S. F. (2014). A genetic algorithm for the simultaneous lot sizing and scheduling problem in capacitated flow shop with complex setups and backlogging. The International Journal of Advanced Manufacturing Technology, 70(1-4), 125-134. https://doi.org/10.1007/s00170-013-5252-y
Baykasoğlu, A., & Akpinar, S. (2015). Weighted Superposition Attraction (WSA): A swarm intelligence algorithm for optimization problems - Part 2: constrained optimization, Applied Soft Computing, 37, 396-415. https://doi.org/10.1016/j.asoc.2015.08.052
Belvaux, G., & Wolsey, L. A. (2001). Modelling practical lot-sizing problems as mixed-integer programs. Management Science, 47(7), 993-1007. https://doi.org/10.1287/mnsc.47.7.993.9800
Carvalho, D. M., & Nascimento, M. C. (2022). Hybrid matheuristics to solve the integrated lot sizing and scheduling problem on parallel machines with sequence-dependent and non-triangular setup. European Journal of Operational Research, 296(1), 158-173. https://doi.org/10.1016/j.ejor.2021.03.050
Copil, K., Wörbelauer, M., Meyr, H., & Tempelmeier, H. (2017). Simultaneous lotsizing and scheduling problems: a classification and review of models. OR spectrum, 39(1), 1-64. https://doi.org/10.1007/s00291-015-0429-4
Díaz-Madroñero, M., Mula, J., & Peidro, D. (2014). A review of discrete-time optimization models for tactical production planning. International Journal of Production Research, 52(17), 5171-5205. https://doi.org/10.1080/00207543.2014.899721
Drexl, A., & Kimms, A. (1997). Lot sizing and scheduling—survey and extensions. European Journal of operational research, 99(2), 221-235. https://doi.org/10.1016/S0377-2217(97)00030-1
Fandel, G., & Stammen-Hegene, C. (2006). Simultaneous lot sizing and scheduling for multi-product multi-level production. International Journal of Production Economics, 104(2), 308-316. https://doi.org/10.1016/j.ijpe.2005.04.011
Ferreira, D., Clark, A. R., Almada-Lobo, B., & Morabito, R. (2012). Single-stage formulations for synchronised two-stage lot sizing and scheduling in soft drink production. International Journal of Production Economics, 136(2), 255-265. https://doi.org/10.1016/j.ijpe.2011.11.028
Figueira, G., Santos, M. O., & Almada-Lobo, B. (2013). A hybrid VNS approach for the short-term production planning and scheduling: A case study in the pulp and paper industry. Computers & Operations Research, 40(7), 1804-1818. https://doi.org/10.1016/j.cor.2013.01.015
Fleischmann, B., & Meyr, H. (1997). The general lotsizing and scheduling problem. Operations-Research-Spektrum, 19(1), 11-21. https://doi.org/10.1007/BF01539800
Furlan, M., Almada-Lobo, B., Santos, M., & Morabito, R. (2015). Unequal individual genetic algorithm with intelligent diversification for the lot-scheduling problem in integrated mills using multiple-paper machines. Computers & Operations Research, 59, 33-50. https://doi.org/10.1016/j.cor.2014.12.008
Goerler, A., Lalla-Ruiz, E., & Voß, S. (2020). Late Acceptance Hill-Climbing Matheuristic for the General Lot Sizing and Scheduling Problem with Rich Constraints. Algorithms, 13(6), 138. https://doi.org/10.3390/a13060138
Guimarães, L., Klabjan, D., & Almada-Lobo, B. (2013). Pricing, relaxing and fixing under lot sizing and scheduling. European Journal of Operational Research, 230(2), 399-411. https://doi.org/10.1016/j.ejor.2013.04.030
Guimarães, L., Klabjan, D., & Almada-Lobo, B. (2014). Modeling lotsizing and scheduling problems with sequence dependent setups. European Journal of Operational Research, 239(3), 644-662.
Jans, R., & Degraeve, Z. (2008). Modeling industrial lot sizing problems: a review. International Journal of Production Research, 46(6), 1619-1643. https://doi.org/10.1080/00207540600902262
Kaczmarczyk, W. (2020). Valid inequalities for proportional lot-sizing and scheduling problem with fictitious microperiods. International Journal of Production Economics, 219, 236-247. https://doi.org/10.1016/j.ijpe.2019.06.005
Karimi, B., Ghomi, S. F., & Wilson, J. M. (2003). The capacitated lot sizing problem: a review of models and algorithms. Omega, 31(5), 365-378. https://doi.org/10.1016/S0305-0483(03)00059-8
Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671-680. https://doi.org/10.1126/science.220.4598.671
Koçlar A, Süral H. (2005). A note on “The general lot sizing and scheduling problem”. OR Spectrum, 27(1), 145-146. https://doi.org/10.1007/s00291-004-0181-7
Lee, Y., & Lee, K. (2022). New integer optimization models and an approximate dynamic programming algorithm for the lot-sizing and scheduling problem with sequence-dependent setups. European Journal of Operational Research, 302(1), 230-243. https://doi.org/10.1016/j.ejor.2021.12.032
Maravelias, C. T., & Sung, C. (2009). Integration of production planning and scheduling: Overview, challenges and opportunities. Computers & Chemical Engineering, 33(12), 1919-1930. https://doi.org/10.1016/j.compchemeng.2009.06.007
Meyr, H. (2004). Simultane Losgrößen- und Reihenfolgeplanung bei mehrstufiger kontinuierlicher Fertigung. Z. Betriebswirtschaft, 74, 585–610.
Pochet, Y. (2001). Mathematical programming models and formulations for deterministic production planning problems. In Computational combinatorial optimization (pp. 57-111). Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45586-8_3
Pochet, Y., & Wolsey, L. A. (2006). Production planning by mixed integer programming. Springer Science & Business Media.
Ponnambalam, S. G., & Reddy, M. (2003). A GA-SA multiobjective hybrid search algorithm for integrating lot sizing and sequencing in flow-line scheduling. The International Journal of Advanced Manufacturing Technology, 21(2), 126-137. https://doi.org/10.1007/s001700300015
Ramezanian, R., & Saidi-Mehrabad, M. (2013). Hybrid simulated annealing and MIP-based heuristics for stochastic lot-sizing and scheduling problem in capacitated multi-stage production system. Applied Mathematical Modelling, 37(7), 5134-5147. https://doi.org/10.1016/j.apm.2012.10.024
Santos, M. O., Massago, S., & Almada-Lobo, B. (2010). Infeasibility handling in genetic algorithm using nested domains for production planning. Computers & operations research, 37(6), 1113-1122. https://doi.org/10.1016/j.cor.2009.09.020
Toledo, C. F. M., de Oliveira, L., de Freitas Pereira, R., Franca, P. M., & Morabito, R. (2014). A genetic algorithm/mathematical programming approach to solve a two-level soft drink production problem. Computers & Operations Research, 48, 40-52. https://doi.org/10.1016/j.cor.2014.02.012
Transchel, S., Minner, S., Kallrath, J., Löhndorf, N., & Eberhard, U. (2011). A hybrid general lot-sizing and scheduling formulation for a production process with a two-stage product structure. International Journal of Production Research, 49(9), 2463-2480. https://doi.org/10.1080/00207543.2010.532910
Wolsey, L. A. (2002). Solving multi-item lot-sizing problems with an MIP solver using classification and reformulation. Management Science, 48(12), 1587-1602. https://doi.org/10.1287/mnsc.48.12.1587.442
Babaei, M., Mohammadi, M., & Ghomi, S. F. (2014). A genetic algorithm for the simultaneous lot sizing and scheduling problem in capacitated flow shop with complex setups and backlogging. The International Journal of Advanced Manufacturing Technology, 70(1-4), 125-134. https://doi.org/10.1007/s00170-013-5252-y
Baykasoğlu, A., & Akpinar, S. (2015). Weighted Superposition Attraction (WSA): A swarm intelligence algorithm for optimization problems - Part 2: constrained optimization, Applied Soft Computing, 37, 396-415. https://doi.org/10.1016/j.asoc.2015.08.052
Belvaux, G., & Wolsey, L. A. (2001). Modelling practical lot-sizing problems as mixed-integer programs. Management Science, 47(7), 993-1007. https://doi.org/10.1287/mnsc.47.7.993.9800
Carvalho, D. M., & Nascimento, M. C. (2022). Hybrid matheuristics to solve the integrated lot sizing and scheduling problem on parallel machines with sequence-dependent and non-triangular setup. European Journal of Operational Research, 296(1), 158-173. https://doi.org/10.1016/j.ejor.2021.03.050
Copil, K., Wörbelauer, M., Meyr, H., & Tempelmeier, H. (2017). Simultaneous lotsizing and scheduling problems: a classification and review of models. OR spectrum, 39(1), 1-64. https://doi.org/10.1007/s00291-015-0429-4
Díaz-Madroñero, M., Mula, J., & Peidro, D. (2014). A review of discrete-time optimization models for tactical production planning. International Journal of Production Research, 52(17), 5171-5205. https://doi.org/10.1080/00207543.2014.899721
Drexl, A., & Kimms, A. (1997). Lot sizing and scheduling—survey and extensions. European Journal of operational research, 99(2), 221-235. https://doi.org/10.1016/S0377-2217(97)00030-1
Fandel, G., & Stammen-Hegene, C. (2006). Simultaneous lot sizing and scheduling for multi-product multi-level production. International Journal of Production Economics, 104(2), 308-316. https://doi.org/10.1016/j.ijpe.2005.04.011
Ferreira, D., Clark, A. R., Almada-Lobo, B., & Morabito, R. (2012). Single-stage formulations for synchronised two-stage lot sizing and scheduling in soft drink production. International Journal of Production Economics, 136(2), 255-265. https://doi.org/10.1016/j.ijpe.2011.11.028
Figueira, G., Santos, M. O., & Almada-Lobo, B. (2013). A hybrid VNS approach for the short-term production planning and scheduling: A case study in the pulp and paper industry. Computers & Operations Research, 40(7), 1804-1818. https://doi.org/10.1016/j.cor.2013.01.015
Fleischmann, B., & Meyr, H. (1997). The general lotsizing and scheduling problem. Operations-Research-Spektrum, 19(1), 11-21. https://doi.org/10.1007/BF01539800
Furlan, M., Almada-Lobo, B., Santos, M., & Morabito, R. (2015). Unequal individual genetic algorithm with intelligent diversification for the lot-scheduling problem in integrated mills using multiple-paper machines. Computers & Operations Research, 59, 33-50. https://doi.org/10.1016/j.cor.2014.12.008
Goerler, A., Lalla-Ruiz, E., & Voß, S. (2020). Late Acceptance Hill-Climbing Matheuristic for the General Lot Sizing and Scheduling Problem with Rich Constraints. Algorithms, 13(6), 138. https://doi.org/10.3390/a13060138
Guimarães, L., Klabjan, D., & Almada-Lobo, B. (2013). Pricing, relaxing and fixing under lot sizing and scheduling. European Journal of Operational Research, 230(2), 399-411. https://doi.org/10.1016/j.ejor.2013.04.030
Guimarães, L., Klabjan, D., & Almada-Lobo, B. (2014). Modeling lotsizing and scheduling problems with sequence dependent setups. European Journal of Operational Research, 239(3), 644-662.
Jans, R., & Degraeve, Z. (2008). Modeling industrial lot sizing problems: a review. International Journal of Production Research, 46(6), 1619-1643. https://doi.org/10.1080/00207540600902262
Kaczmarczyk, W. (2020). Valid inequalities for proportional lot-sizing and scheduling problem with fictitious microperiods. International Journal of Production Economics, 219, 236-247. https://doi.org/10.1016/j.ijpe.2019.06.005
Karimi, B., Ghomi, S. F., & Wilson, J. M. (2003). The capacitated lot sizing problem: a review of models and algorithms. Omega, 31(5), 365-378. https://doi.org/10.1016/S0305-0483(03)00059-8
Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671-680. https://doi.org/10.1126/science.220.4598.671
Koçlar A, Süral H. (2005). A note on “The general lot sizing and scheduling problem”. OR Spectrum, 27(1), 145-146. https://doi.org/10.1007/s00291-004-0181-7
Lee, Y., & Lee, K. (2022). New integer optimization models and an approximate dynamic programming algorithm for the lot-sizing and scheduling problem with sequence-dependent setups. European Journal of Operational Research, 302(1), 230-243. https://doi.org/10.1016/j.ejor.2021.12.032
Maravelias, C. T., & Sung, C. (2009). Integration of production planning and scheduling: Overview, challenges and opportunities. Computers & Chemical Engineering, 33(12), 1919-1930. https://doi.org/10.1016/j.compchemeng.2009.06.007
Meyr, H. (2004). Simultane Losgrößen- und Reihenfolgeplanung bei mehrstufiger kontinuierlicher Fertigung. Z. Betriebswirtschaft, 74, 585–610.
Pochet, Y. (2001). Mathematical programming models and formulations for deterministic production planning problems. In Computational combinatorial optimization (pp. 57-111). Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45586-8_3
Pochet, Y., & Wolsey, L. A. (2006). Production planning by mixed integer programming. Springer Science & Business Media.
Ponnambalam, S. G., & Reddy, M. (2003). A GA-SA multiobjective hybrid search algorithm for integrating lot sizing and sequencing in flow-line scheduling. The International Journal of Advanced Manufacturing Technology, 21(2), 126-137. https://doi.org/10.1007/s001700300015
Ramezanian, R., & Saidi-Mehrabad, M. (2013). Hybrid simulated annealing and MIP-based heuristics for stochastic lot-sizing and scheduling problem in capacitated multi-stage production system. Applied Mathematical Modelling, 37(7), 5134-5147. https://doi.org/10.1016/j.apm.2012.10.024
Santos, M. O., Massago, S., & Almada-Lobo, B. (2010). Infeasibility handling in genetic algorithm using nested domains for production planning. Computers & operations research, 37(6), 1113-1122. https://doi.org/10.1016/j.cor.2009.09.020
Toledo, C. F. M., de Oliveira, L., de Freitas Pereira, R., Franca, P. M., & Morabito, R. (2014). A genetic algorithm/mathematical programming approach to solve a two-level soft drink production problem. Computers & Operations Research, 48, 40-52. https://doi.org/10.1016/j.cor.2014.02.012
Transchel, S., Minner, S., Kallrath, J., Löhndorf, N., & Eberhard, U. (2011). A hybrid general lot-sizing and scheduling formulation for a production process with a two-stage product structure. International Journal of Production Research, 49(9), 2463-2480. https://doi.org/10.1080/00207543.2010.532910
Wolsey, L. A. (2002). Solving multi-item lot-sizing problems with an MIP solver using classification and reformulation. Management Science, 48(12), 1587-1602. https://doi.org/10.1287/mnsc.48.12.1587.442