How to cite this paper
Alvarez, G. (2022). Integrated modeling of the peer-to-peer markets in the energy industry.International Journal of Industrial Engineering Computations , 13(1), 101-118.
Refrences
Alvarez, G. E. (2020). Integrated scheduling from a diversity of sources applied to the Argentine electric power and natural gas systems. Computers & Chemical Engineering, 134, 106691. https://doi.org/10.1016/j.compchemeng.2019.106691
Ardani, K., Cook, J. J., Fu, R., & Margolis, R. (2018). Cost-reduction Roadmap for Residential Solar Photovoltaics (PV), 2017-2030. National Renewable Energy Laboratory. https://prod-edxapp.edx-cdn.org/assets/courseware/v1/507592ed43b3717c77aaf903ee14cc75/asset-v1:SDGAcademyX+CA001+1T2019+type@asset+block/3.S_NREL__2018_._Cost-reduction_roadmap_for_residential_solar_photovoltaics__PV___2017-2030.pdf
Bahaj, A. S., Myers, L., & James, P. A. B. (2007). Urban energy generation: Influence of micro-wind turbine output on electricity consumption in buildings. Energy and Buildings, 39(2), 154–165. https://doi.org/10.1016/j.enbuild.2006.06.001
Basnet, A., & Zhong, J. (2020). Integrating gas energy storage system in a peer-to-peer community energy market for enhanced operation. International Journal of Electrical Power & Energy Systems, 118, 105789. https://doi.org/10.1016/j.ijepes.2019.105789
Bell, K., & Gill, S. (2018). Delivering a highly distributed electricity system: Technical, regulatory and policy challenges. Energy Policy, 113(October 2017), 765–777. https://doi.org/10.1016/j.enpol.2017.11.039
Biswas, B., & Gupta, R. (2019). Analysis of barriers to implement blockchain in industry and service sectors. Computers & Industrial Engineering, 136, 225–241. https://doi.org/10.1016/j.cie.2019.07.005
Bussieck, M., & Meeraus, A. (2004). General algebraic modeling system (GAMS). Applied Optimization, 88, 137–158. https://doi.org/10.1007/978-1-4613-0215-5_8
De Martini, P., Kristov, L., & Schwartz, L. (2015). Distribution systems in a high distributed energy resources future.
Dileep, G. (2020). A survey on smart grid technologies and applications. Renewable Energy, 146, 2589–2625. https://doi.org/10.1016/j.renene.2019.08.092
El-hawary, M. E. (2014). The Smart Grid—State-of-the-art and Future Trends. Electric Power Components and Systems, 42(3–4), 239–250. https://doi.org/10.1080/15325008.2013.868558
Gharavi, H., & Ghafurian, R. (2011). Smart grid: The electric energy system of the future. Proceedings of the IEEE. https://doi.org/10.1109/JPROC.2011.2124210
Guido, L. M. (2018). Technologies, communication and energy in Argentina: Smart Grid in the province of Santa Fe. Questión, 1(60), 104. https://doi.org/10.24215/16696581e104
Hasan, H., AlHadhrami, E., AlDhaheri, A., Salah, K., & Jayaraman, R. (2019). Smart contract-based approach for efficient shipment management. Computers & Industrial Engineering, 136, 149–159. https://doi.org/10.1016/j.cie.2019.07.022
Hayes, B. P., Thakur, S., & Breslin, J. G. (2020). Co-simulation of electricity distribution networks and peer to peer energy trading platforms. International Journal of Electrical Power & Energy Systems, 115, 105419. https://doi.org/10.1016/j.ijepes.2019.105419
Huang, Y.-F., Werner, S., Huang, J., Kashyap, N., & Gupta, V. (2012). State Estimation in Electric Power Grids: Meeting New Challenges Presented by the Requirements of the Future Grid. IEEE Signal Processing Magazine, 29(5), 33–43. https://doi.org/10.1109/MSP.2012.2187037
Hug, G., Kar, S., & Wu, C. (2015). Consensus + Innovations Approach for Distributed Multiagent Coordination in a Microgrid. IEEE Transactions on Smart Grid, 6(4), 1893–1903. https://doi.org/10.1109/TSG.2015.2409053
IBM ILOG CPLEX Optimizer. Version 12.3.0.0. Jul 2011. (20 C.E.).
IEA. (2019). World Energy Investment 2019.
Ipakchi, A., & Albuyeh, F. (2009). Grid of the future. IEEE Power and Energy Magazine, 7(2), 52–62. https://doi.org/10.1109/MPE.2008.931384
Joas, F., Pahle, M., Flachsland, C., & Joas, A. (2016). Which goals are driving the Energiewende? Making sense of the German Energy Transformation. Energy Policy, 95, 42–51. https://doi.org/10.1016/j.enpol.2016.04.003
Johnston, J. (2017). Peer-to-Peer Energy Matching: Transparency, Choice, and Locational Grid Pricing. In Innovation and Disruption at the Grid’s Edge (pp. 319–330). Elsevier. https://doi.org/10.1016/B978-0-12-811758-3.00016-4
Kang, J., Yu, R., Huang, X., Maharjan, S., Zhang, Y., & Hossain, E. (2017). Enabling Localized Peer-to-Peer Electricity Trading Among Plug-in Hybrid Electric Vehicles Using Consortium Blockchains. IEEE Transactions on Industrial Informatics, 13(6), 3154–3164. https://doi.org/10.1109/TII.2017.2709784
Khorasany, M., Mishra, Y., & Ledwich, G. (2019). A Decentralised Bilateral Energy Trading System for Peer-to-Peer Electricity Markets. IEEE Transactions on Industrial Electronics, 0046(c), 1–1. https://doi.org/10.1109/tie.2019.2931229
Kristov, L. (2019). The Bottom-Up (R)Evolution of the Electric Power System: The Pathway to the Integrated-Decentralized System. IEEE Power and Energy Magazine, 17(2), 42–49. https://doi.org/10.1109/MPE.2018.2885204
Kusakana, K. (2019). Optimal Peer-to-Peer energy sharing between prosumers using hydrokinetic, diesel generator and pumped hydro storage. Journal of Energy Storage, 26, 101048. https://doi.org/10.1016/j.est.2019.101048
Li, Z., Bahramirad, S., Paaso, A., Yan, M., & Shahidehpour, M. (2019). Blockchain for decentralized transactive energy management system in networked microgrids. Electricity Journal, 32(4), 58–72. https://doi.org/10.1016/j.tej.2019.03.008
Lima, R. M., & Grossmann, I. E. (2011). Computational advances in solving mixed integer linear programming problems. Chemical Engineering Greetings to Prof. Sauro Pierucci on Occasion of His 65th Birthday, 151–160. http://repository.cmu.edu/cgi/viewcontent.cgi?article=1294&context=cheme
Lin, J., Pipattanasomporn, M., & Rahman, S. (2019). Comparative analysis of auction mechanisms and bidding strategies for P2P solar transactive energy markets. Applied Energy, 255, 113687. https://doi.org/10.1016/j.apenergy.2019.113687
Liu, N., Yu, X., Wang, C., Li, C., Ma, L., & Lei, J. (2017). An Energy-Sharing Model with Price-Based Demand Response for Microgrids of Peer-to-Peer Prosumers. IEEE Transactions on Power Systems, 32(5), 3569–3583. https://doi.org/10.1109/TPWRS.2017.2649558
Liu, Y., Wu, L., & Li, J. (2019). Peer-to-peer (P2P) electricity trading in distribution systems of the future. Electricity Journal, 32(4), 2–6. https://doi.org/10.1016/j.tej.2019.03.002
Long, C., Wu, J., Zhou, Y., & Jenkins, N. (2018). Peer-to-peer energy sharing through a two-stage aggregated battery control in a community Microgrid. Applied Energy, 226(March), 261–276. https://doi.org/10.1016/j.apenergy.2018.05.097
Moret, F., & Pinson, P. (2019). Energy Collectives: A Community and Fairness Based Approach to Future Electricity Markets. IEEE Transactions on Power Systems, 34(5), 3994–4004. https://doi.org/10.1109/TPWRS.2018.2808961
Nakayama, K., Moslemi, R., & Sharma, R. (2019). Transactive Energy Management with Blockchain Smart Contracts for P2P Multi-Settlement Markets. 2019 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), 1–5. https://doi.org/10.1109/ISGT.2019.8791652
Park, C., & Yong, T. (2017). Comparative review and discussion on P2P electricity trading. Energy Procedia, 128, 3–9. https://doi.org/10.1016/j.egypro.2017.09.003
Reka, S. S., & Dragicevic, T. (2018). Future effectual role of energy delivery: A comprehensive review of Internet of Things and smart grid. Renewable and Sustainable Energy Reviews, 91, 90–108. https://doi.org/10.1016/j.rser.2018.03.089
Ribeiro, P., Polinder, H., & Verkerk, M. (2012). Planning and Designing Smart Grids: Philosophical Considerations. IEEE Technology and Society Magazine, 31(3), 34–43. https://doi.org/10.1109/MTS.2012.2211771
Rodrigues, D. L., Ye, X., Xia, X., & Zhu, B. (2020). Battery energy storage sizing optimisation for different ownership structures in a peer-to-peer energy sharing community. Applied Energy, 262, 114498. https://doi.org/10.1016/j.apenergy.2020.114498
Schröder, A., Kunz, F., Meiss, J., Mendelevitch, R. von, & Hirschhausen, C. (2013). Current and prospective costs of electricity generation until 2050. http://hdl.handle.net/10419/80348%0D
Slowik, P., Pavlenko, N., & Lutsey, N. (2016). Assessment of next-generation electric vehicle technologies. White Paper. www. theicct. org/sites/default/files/publications/Next%25 20Gen%25 20EV%25 20Tech_whitepaper_ICCT_31102016. pdf
Sorin, E., Bobo, L., & Pinson, P. (2019). Consensus-Based Approach to Peer-to-Peer Electricity Markets With Product Differentiation. IEEE Transactions on Power Systems, 34(2), 994–1004. https://doi.org/10.1109/TPWRS.2018.2872880
Talpone, J. I., Puleston, P. F., Cendoya, M. G. Battaiotto, P. E. (2016). Rol de las energías alternativas en la perspectiva de generación eléctrica en la República Argentina. II Congreso de Energías Sustentables, 7.
Tushar, W., Saha, T. K., Yuen, C., Azim, M. I., Morstyn, T., Poor, H. V., Niyato, D., & Bean, R. (2020). A coalition formation game framework for peer-to-peer energy trading. Applied Energy, 261, 114436. https://doi.org/10.1016/j.apenergy.2019.114436
Tushar, W., Saha, T. K., Yuen, C., Morstyn, T., McCulloch, M. D., Poor, H. V., & Wood, K. L. (2019). A motivational game-theoretic approach for peer-to-peer energy trading in the smart grid. Applied Energy, 243, 10–20. https://doi.org/10.1016/j.apenergy.2019.03.111
U.S. Department of Energy. (2017). Transforming the Nation’s Electricity System: The Second Installment of the QER. In QUADRENNIAL ENERGY REVIEW: SECOND INSTALLMENT (p. 40). https://www.energy.gov/sites/prod/files/2017/02/f34/Chapter I--Transforming the Nation%27s Electricity System.pdf
Wandhare, R. G., & Agarwal, V. (2014). Novel Stability Enhancing Control Strategy for Centralized PV-Grid Systems for Smart Grid Applications. IEEE Transactions on Smart Grid, 5(3), 1389–1396. https://doi.org/10.1109/TSG.2013.2279605
Yebiyo, M., Mercado, R. A., Gillich, A., Chaer, I., Day, A. R., & Paurine, A. (2020). Novel economic modelling of a peer-to-peer electricity market with the inclusion of distributed energy storage—The possible case of a more robust and better electricity grid. The Electricity Journal, 33(2), 106709. https://doi.org/10.1016/j.tej.2020.106709
Zhou, K., Yang, S., Chen, Z., & Ding, S. (2014). Optimal load distribution model of microgrid in the smart grid environment. Renewable and Sustainable Energy Reviews, 35, 304–310. https://doi.org/10.1016/j.rser.2014.04.028
Zhou, S., Zou, F., Wu, Z., Gu, W., Hong, Q., & Booth, C. (2020). A smart community energy management scheme considering user dominated demand side response and P2P trading. International Journal of Electrical Power & Energy Systems, 114, 105378. https://doi.org/10.1016/j.ijepes.2019.105378
Ardani, K., Cook, J. J., Fu, R., & Margolis, R. (2018). Cost-reduction Roadmap for Residential Solar Photovoltaics (PV), 2017-2030. National Renewable Energy Laboratory. https://prod-edxapp.edx-cdn.org/assets/courseware/v1/507592ed43b3717c77aaf903ee14cc75/asset-v1:SDGAcademyX+CA001+1T2019+type@asset+block/3.S_NREL__2018_._Cost-reduction_roadmap_for_residential_solar_photovoltaics__PV___2017-2030.pdf
Bahaj, A. S., Myers, L., & James, P. A. B. (2007). Urban energy generation: Influence of micro-wind turbine output on electricity consumption in buildings. Energy and Buildings, 39(2), 154–165. https://doi.org/10.1016/j.enbuild.2006.06.001
Basnet, A., & Zhong, J. (2020). Integrating gas energy storage system in a peer-to-peer community energy market for enhanced operation. International Journal of Electrical Power & Energy Systems, 118, 105789. https://doi.org/10.1016/j.ijepes.2019.105789
Bell, K., & Gill, S. (2018). Delivering a highly distributed electricity system: Technical, regulatory and policy challenges. Energy Policy, 113(October 2017), 765–777. https://doi.org/10.1016/j.enpol.2017.11.039
Biswas, B., & Gupta, R. (2019). Analysis of barriers to implement blockchain in industry and service sectors. Computers & Industrial Engineering, 136, 225–241. https://doi.org/10.1016/j.cie.2019.07.005
Bussieck, M., & Meeraus, A. (2004). General algebraic modeling system (GAMS). Applied Optimization, 88, 137–158. https://doi.org/10.1007/978-1-4613-0215-5_8
De Martini, P., Kristov, L., & Schwartz, L. (2015). Distribution systems in a high distributed energy resources future.
Dileep, G. (2020). A survey on smart grid technologies and applications. Renewable Energy, 146, 2589–2625. https://doi.org/10.1016/j.renene.2019.08.092
El-hawary, M. E. (2014). The Smart Grid—State-of-the-art and Future Trends. Electric Power Components and Systems, 42(3–4), 239–250. https://doi.org/10.1080/15325008.2013.868558
Gharavi, H., & Ghafurian, R. (2011). Smart grid: The electric energy system of the future. Proceedings of the IEEE. https://doi.org/10.1109/JPROC.2011.2124210
Guido, L. M. (2018). Technologies, communication and energy in Argentina: Smart Grid in the province of Santa Fe. Questión, 1(60), 104. https://doi.org/10.24215/16696581e104
Hasan, H., AlHadhrami, E., AlDhaheri, A., Salah, K., & Jayaraman, R. (2019). Smart contract-based approach for efficient shipment management. Computers & Industrial Engineering, 136, 149–159. https://doi.org/10.1016/j.cie.2019.07.022
Hayes, B. P., Thakur, S., & Breslin, J. G. (2020). Co-simulation of electricity distribution networks and peer to peer energy trading platforms. International Journal of Electrical Power & Energy Systems, 115, 105419. https://doi.org/10.1016/j.ijepes.2019.105419
Huang, Y.-F., Werner, S., Huang, J., Kashyap, N., & Gupta, V. (2012). State Estimation in Electric Power Grids: Meeting New Challenges Presented by the Requirements of the Future Grid. IEEE Signal Processing Magazine, 29(5), 33–43. https://doi.org/10.1109/MSP.2012.2187037
Hug, G., Kar, S., & Wu, C. (2015). Consensus + Innovations Approach for Distributed Multiagent Coordination in a Microgrid. IEEE Transactions on Smart Grid, 6(4), 1893–1903. https://doi.org/10.1109/TSG.2015.2409053
IBM ILOG CPLEX Optimizer. Version 12.3.0.0. Jul 2011. (20 C.E.).
IEA. (2019). World Energy Investment 2019.
Ipakchi, A., & Albuyeh, F. (2009). Grid of the future. IEEE Power and Energy Magazine, 7(2), 52–62. https://doi.org/10.1109/MPE.2008.931384
Joas, F., Pahle, M., Flachsland, C., & Joas, A. (2016). Which goals are driving the Energiewende? Making sense of the German Energy Transformation. Energy Policy, 95, 42–51. https://doi.org/10.1016/j.enpol.2016.04.003
Johnston, J. (2017). Peer-to-Peer Energy Matching: Transparency, Choice, and Locational Grid Pricing. In Innovation and Disruption at the Grid’s Edge (pp. 319–330). Elsevier. https://doi.org/10.1016/B978-0-12-811758-3.00016-4
Kang, J., Yu, R., Huang, X., Maharjan, S., Zhang, Y., & Hossain, E. (2017). Enabling Localized Peer-to-Peer Electricity Trading Among Plug-in Hybrid Electric Vehicles Using Consortium Blockchains. IEEE Transactions on Industrial Informatics, 13(6), 3154–3164. https://doi.org/10.1109/TII.2017.2709784
Khorasany, M., Mishra, Y., & Ledwich, G. (2019). A Decentralised Bilateral Energy Trading System for Peer-to-Peer Electricity Markets. IEEE Transactions on Industrial Electronics, 0046(c), 1–1. https://doi.org/10.1109/tie.2019.2931229
Kristov, L. (2019). The Bottom-Up (R)Evolution of the Electric Power System: The Pathway to the Integrated-Decentralized System. IEEE Power and Energy Magazine, 17(2), 42–49. https://doi.org/10.1109/MPE.2018.2885204
Kusakana, K. (2019). Optimal Peer-to-Peer energy sharing between prosumers using hydrokinetic, diesel generator and pumped hydro storage. Journal of Energy Storage, 26, 101048. https://doi.org/10.1016/j.est.2019.101048
Li, Z., Bahramirad, S., Paaso, A., Yan, M., & Shahidehpour, M. (2019). Blockchain for decentralized transactive energy management system in networked microgrids. Electricity Journal, 32(4), 58–72. https://doi.org/10.1016/j.tej.2019.03.008
Lima, R. M., & Grossmann, I. E. (2011). Computational advances in solving mixed integer linear programming problems. Chemical Engineering Greetings to Prof. Sauro Pierucci on Occasion of His 65th Birthday, 151–160. http://repository.cmu.edu/cgi/viewcontent.cgi?article=1294&context=cheme
Lin, J., Pipattanasomporn, M., & Rahman, S. (2019). Comparative analysis of auction mechanisms and bidding strategies for P2P solar transactive energy markets. Applied Energy, 255, 113687. https://doi.org/10.1016/j.apenergy.2019.113687
Liu, N., Yu, X., Wang, C., Li, C., Ma, L., & Lei, J. (2017). An Energy-Sharing Model with Price-Based Demand Response for Microgrids of Peer-to-Peer Prosumers. IEEE Transactions on Power Systems, 32(5), 3569–3583. https://doi.org/10.1109/TPWRS.2017.2649558
Liu, Y., Wu, L., & Li, J. (2019). Peer-to-peer (P2P) electricity trading in distribution systems of the future. Electricity Journal, 32(4), 2–6. https://doi.org/10.1016/j.tej.2019.03.002
Long, C., Wu, J., Zhou, Y., & Jenkins, N. (2018). Peer-to-peer energy sharing through a two-stage aggregated battery control in a community Microgrid. Applied Energy, 226(March), 261–276. https://doi.org/10.1016/j.apenergy.2018.05.097
Moret, F., & Pinson, P. (2019). Energy Collectives: A Community and Fairness Based Approach to Future Electricity Markets. IEEE Transactions on Power Systems, 34(5), 3994–4004. https://doi.org/10.1109/TPWRS.2018.2808961
Nakayama, K., Moslemi, R., & Sharma, R. (2019). Transactive Energy Management with Blockchain Smart Contracts for P2P Multi-Settlement Markets. 2019 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), 1–5. https://doi.org/10.1109/ISGT.2019.8791652
Park, C., & Yong, T. (2017). Comparative review and discussion on P2P electricity trading. Energy Procedia, 128, 3–9. https://doi.org/10.1016/j.egypro.2017.09.003
Reka, S. S., & Dragicevic, T. (2018). Future effectual role of energy delivery: A comprehensive review of Internet of Things and smart grid. Renewable and Sustainable Energy Reviews, 91, 90–108. https://doi.org/10.1016/j.rser.2018.03.089
Ribeiro, P., Polinder, H., & Verkerk, M. (2012). Planning and Designing Smart Grids: Philosophical Considerations. IEEE Technology and Society Magazine, 31(3), 34–43. https://doi.org/10.1109/MTS.2012.2211771
Rodrigues, D. L., Ye, X., Xia, X., & Zhu, B. (2020). Battery energy storage sizing optimisation for different ownership structures in a peer-to-peer energy sharing community. Applied Energy, 262, 114498. https://doi.org/10.1016/j.apenergy.2020.114498
Schröder, A., Kunz, F., Meiss, J., Mendelevitch, R. von, & Hirschhausen, C. (2013). Current and prospective costs of electricity generation until 2050. http://hdl.handle.net/10419/80348%0D
Slowik, P., Pavlenko, N., & Lutsey, N. (2016). Assessment of next-generation electric vehicle technologies. White Paper. www. theicct. org/sites/default/files/publications/Next%25 20Gen%25 20EV%25 20Tech_whitepaper_ICCT_31102016. pdf
Sorin, E., Bobo, L., & Pinson, P. (2019). Consensus-Based Approach to Peer-to-Peer Electricity Markets With Product Differentiation. IEEE Transactions on Power Systems, 34(2), 994–1004. https://doi.org/10.1109/TPWRS.2018.2872880
Talpone, J. I., Puleston, P. F., Cendoya, M. G. Battaiotto, P. E. (2016). Rol de las energías alternativas en la perspectiva de generación eléctrica en la República Argentina. II Congreso de Energías Sustentables, 7.
Tushar, W., Saha, T. K., Yuen, C., Azim, M. I., Morstyn, T., Poor, H. V., Niyato, D., & Bean, R. (2020). A coalition formation game framework for peer-to-peer energy trading. Applied Energy, 261, 114436. https://doi.org/10.1016/j.apenergy.2019.114436
Tushar, W., Saha, T. K., Yuen, C., Morstyn, T., McCulloch, M. D., Poor, H. V., & Wood, K. L. (2019). A motivational game-theoretic approach for peer-to-peer energy trading in the smart grid. Applied Energy, 243, 10–20. https://doi.org/10.1016/j.apenergy.2019.03.111
U.S. Department of Energy. (2017). Transforming the Nation’s Electricity System: The Second Installment of the QER. In QUADRENNIAL ENERGY REVIEW: SECOND INSTALLMENT (p. 40). https://www.energy.gov/sites/prod/files/2017/02/f34/Chapter I--Transforming the Nation%27s Electricity System.pdf
Wandhare, R. G., & Agarwal, V. (2014). Novel Stability Enhancing Control Strategy for Centralized PV-Grid Systems for Smart Grid Applications. IEEE Transactions on Smart Grid, 5(3), 1389–1396. https://doi.org/10.1109/TSG.2013.2279605
Yebiyo, M., Mercado, R. A., Gillich, A., Chaer, I., Day, A. R., & Paurine, A. (2020). Novel economic modelling of a peer-to-peer electricity market with the inclusion of distributed energy storage—The possible case of a more robust and better electricity grid. The Electricity Journal, 33(2), 106709. https://doi.org/10.1016/j.tej.2020.106709
Zhou, K., Yang, S., Chen, Z., & Ding, S. (2014). Optimal load distribution model of microgrid in the smart grid environment. Renewable and Sustainable Energy Reviews, 35, 304–310. https://doi.org/10.1016/j.rser.2014.04.028
Zhou, S., Zou, F., Wu, Z., Gu, W., Hong, Q., & Booth, C. (2020). A smart community energy management scheme considering user dominated demand side response and P2P trading. International Journal of Electrical Power & Energy Systems, 114, 105378. https://doi.org/10.1016/j.ijepes.2019.105378