Processing, Please wait...

  • Home
  • About Us
  • Search:
  • Advanced Search

Growing Science » International Journal of Industrial Engineering Computations » A robust moving average iterative weighting method to analyze the effect of outliers on the response surface design

Journals

  • IJIEC (726)
  • MSL (2637)
  • DSL (649)
  • CCL (495)
  • USCM (1092)
  • ESM (404)
  • AC (557)
  • JPM (247)
  • IJDS (912)
  • JFS (91)
  • HE (21)
  • SCI (11)

IJIEC Volumes

    • Volume 1 (17)
      • Issue 1 (9)
      • Issue 2 (8)
    • Volume 2 (68)
      • Issue 1 (12)
      • Issue 2 (20)
      • Issue 3 (20)
      • Issue 4 (16)
    • Volume 3 (76)
      • Issue 1 (9)
      • Issue 2 (15)
      • Issue 3 (20)
      • Issue 4 (12)
      • Issue 5 (20)
    • Volume 4 (50)
      • Issue 1 (14)
      • Issue 2 (10)
      • Issue 3 (12)
      • Issue 4 (14)
    • Volume 5 (47)
      • Issue 1 (13)
      • Issue 2 (12)
      • Issue 3 (12)
      • Issue 4 (10)
    • Volume 6 (39)
      • Issue 1 (7)
      • Issue 2 (12)
      • Issue 3 (10)
      • Issue 4 (10)
    • Volume 7 (47)
      • Issue 1 (10)
      • Issue 2 (14)
      • Issue 3 (10)
      • Issue 4 (13)
    • Volume 8 (30)
      • Issue 1 (9)
      • Issue 2 (7)
      • Issue 3 (8)
      • Issue 4 (6)
    • Volume 9 (32)
      • Issue 1 (9)
      • Issue 2 (6)
      • Issue 3 (7)
      • Issue 4 (10)
    • Volume 10 (34)
      • Issue 1 (8)
      • Issue 2 (10)
      • Issue 3 (8)
      • Issue 4 (8)
    • Volume 11 (36)
      • Issue 1 (9)
      • Issue 2 (8)
      • Issue 3 (9)
      • Issue 4 (10)
    • Volume 12 (29)
      • Issue 1 (9)
      • Issue 2 (6)
      • Issue 3 (8)
      • Issue 4 (6)
    • Volume 13 (41)
      • Issue 1 (10)
      • Issue 2 (8)
      • Issue 3 (10)
      • Issue 4 (13)
    • Volume 14 (50)
      • Issue 1 (11)
      • Issue 2 (15)
      • Issue 3 (9)
      • Issue 4 (15)
    • Volume 15 (55)
      • Issue 1 (19)
      • Issue 2 (15)
      • Issue 3 (12)
      • Issue 4 (9)
    • Volume 16 (75)
      • Issue 1 (12)
      • Issue 2 (15)
      • Issue 3 (19)
      • Issue 4 (29)

Keywords

Supply chain management(163)
Jordan(161)
Vietnam(148)
Customer satisfaction(120)
Performance(113)
Supply chain(108)
Service quality(98)
Tehran Stock Exchange(94)
Competitive advantage(93)
SMEs(86)
optimization(84)
Financial performance(83)
Trust(81)
TOPSIS(80)
Job satisfaction(79)
Sustainability(79)
Factor analysis(78)
Social media(78)
Knowledge Management(77)
Genetic Algorithm(76)


» Show all keywords

Authors

Naser Azad(82)
Mohammad Reza Iravani(64)
Zeplin Jiwa Husada Tarigan(59)
Endri Endri(45)
Muhammad Alshurideh(42)
Hotlan Siagian(39)
Jumadil Saputra(36)
Muhammad Turki Alshurideh(35)
Dmaithan Almajali(35)
Barween Al Kurdi(32)
Ahmad Makui(32)
Basrowi Basrowi(31)
Hassan Ghodrati(31)
Mohammad Khodaei Valahzaghard(30)
Shankar Chakraborty(29)
Ni Nyoman Kerti Yasa(29)
Sulieman Ibraheem Shelash Al-Hawary(28)
Prasadja Ricardianto(28)
Sautma Ronni Basana(27)
Haitham M. Alzoubi(27)


» Show all authors

Countries

Iran(2168)
Indonesia(1276)
Jordan(783)
India(780)
Vietnam(500)
Saudi Arabia(438)
Malaysia(438)
United Arab Emirates(220)
China(181)
Thailand(151)
United States(109)
Turkey(102)
Ukraine(99)
Egypt(95)
Canada(91)
Pakistan(84)
Peru(83)
United Kingdom(78)
Nigeria(77)
Morocco(73)


» Show all countries

International Journal of Industrial Engineering Computations

ISSN 1923-2934 (Online) - ISSN 1923-2926 (Print)
Quarterly Publication
Volume 2 Issue 4 pp. 851-862 , 2011

A robust moving average iterative weighting method to analyze the effect of outliers on the response surface design Pages 851-862 Right click to download the paper Download PDF

Authors: Mahdi Bashiri, Amir Moslemi

DOI: 10.5267/j.ijiec.2011.05.001

Keywords: Ordinary least square, Outliers, Response surface design

Abstract: The paper discusses about the effect of outliers and trends on the response surface design fitted to the experiments results. The common way to analyze the response surface is to fit the polynomial regression to the response variable by ordinary least square method and to find the significant controllable variables by ANOVA. In this case, the outliers can have confusing effect on the regression model, which derives the experiment results and lead to wrong interpretation of the data. The proposed moving average iterative method (MAIW) of this paper is a robust approach to decrease the effect of these faulty points by considering the previous data to detect the outliers or detect the probable trends in residuals. The iterative weighting method is used to estimate the coefficients of the regression model and a numerical example illustrates the proposed approach.

How to cite this paper
Bashiri, M & Moslemi, A. (2011). A robust moving average iterative weighting method to analyze the effect of outliers on the response surface design.International Journal of Industrial Engineering Computations , 2(4), 851-862.

Refrences
Bashiri, M., Hejazi, T.H, & Badri, H. (2009). Multiple simulation response surfaces for robust optimization in inventory system, 6th International Industrial Engineering Conference. Tehran

Bertsimas, D. & Shioda, R. (2007).Classification and regression via integer optimization. Operations Research, 55, 252-271.

Bickela, D. R. & Frühwirthb, R. (2006). On a fast, robust estimator of the mode: Comparisons to other robust estimators with applications. Computational Statistics & Data Analysis, 50, 3500-3530.

Cummins, D.J. & Andrews, C.W. (1995).Iteratively reweighted partial least squares: A performance analysis by Monte Carlo simulation. Journal of Chemometrics, 9, 489-507.

Hejazi, T. H., Bashiri, M., Noghondarian, K. & Atkinson, A.C. (2010). Multiresponse optimization with consideration of probabilistic covariates. Quality and Reliability Engineering International, DOI: 10.1002/qre.1133.

Dornheim, H. & Brazauskas, V. (2011). Robust-efficient fitting of mixed linear models: Methodology and theory. Journal of Statistical Planning and Inference, 141, 1422–1435.

Huber, P.J. (1981). Robust Statistics.New York: John Wiley & Sons.

Hund, E., Massart, D. L. & Smeyers-Verbeke, J. (2002). Robust regression and outlier detection in the evaluation of robustness tests with different experimental designs. Analytica Chimica Acta, 463, 53–73.

Kazemzadeh, R. B., Bashiri, M., Atkinson, A. C. & Noorossana, R. (2008). A general framework for multiresponse optimization problems based on goal programming. European Journal of Operational Research, 189, 421-429.

Maronna, R. A., Martin, R. D. & Yohai, V. J. (2006). Robust statistics: Theory and Methods. New York: John Wiley and Sons.

Massart, D. L., Kaufman, L., Rousseeuw, P. J. & Leroy, A. (1986). Least median of squares: a robust method for outlier and model error detection in regression and calibration, AnalyticaChimica Acta,187, 171-179.

Morgenthaler, S. & Schumacher, M.M. (1999). Robust analysis of a response surface design. Chemometrics and intelligent laboratory systems, 47, 127-141.

Nguyena, T. D. & Welsch, R. (2010). Outlier detection and least trimmed squares approximation usingsemi-definite programming. Computational Statistics and Data Analysis, 54, 3212-3226.

Ortiz, M. C., Sarabia, L. A. & Herrero, A. (2006). Robust regression techniques A useful alternative for detection of outlier data. Talanta, 70, 499-512.

Pop, H. F. & Sârbu, C. (1996). A New Fuzzy Regression Algorithm. Analytical Chemistry, 68, 771-778.

Rousseeuw, P. J. (1984). Least median of squares regression, Journal of the American statistical association, 79, 871-880.

Rousseeuw, P. J. & Leroy, A. M. (1987). Robust regression and outlier detection. New York: John Wiley and Sons.

Rousseeuw, P. J., van Driessen, K., (2006). Computing LTS regression for large data sets. Data Mining and Knowledge Discovery, 12, 29-45.

Serneels, S., Croux, C., Filzmoser, P. &. Van Espen, P.J. (2005). Partial robust M-regression, Chemometrics and Intelligent Laboratory Systems, 79, 55-64.

Siegel, A. F. (1982). Robust regression using repeated medians. Biometrika, 69, 242-244.

Wiensa, D. P. & Wu, E. K. H., (2010). A comparative study of robust designs for M-estimated regression models. Computational Statistics and Data Analysis, 54, 1683-1695.

Wisnowskia, J. W., Montgomery D. C. & Simpson, J. R. (2001). A Comparative analysis of multipleoutlier detection procedures in thelinear regression model. Computational Statistics & Data Analysis, 36, 351-382.

Zioutas, G., & Avramidis, A. (2005). Deleting outliers in robust regression with mixed integer programming. Acta Mathematicae Applicatae Sinica, 21, 323-334.
  • 0
  • 1
  • 2
  • 3
  • 4
  • 5

Journal: International Journal of Industrial Engineering Computations | Year: 2011 | Volume: 2 | Issue: 4 | Views: 2345 | Reviews: 0

Related Articles:
  • Optimization of multiple performance characteristics in turning using Taguc ...
  • Application of desirability function for optimizing the performance charact ...
  • A Semi parametric approach to dual modeling
  • Statistical modeling of main cutting force produced by wet turning using so ...
  • Surface roughness model and parametric optimization in finish turning using ...

Add Reviews

Name:*
E-Mail:
Review:
Bold Italic Underline Strike | Align left Center Align right | Insert smilies Insert link URLInsert protected URL Select color | Add Hidden Text Insert Quote Convert selected text from selection to Cyrillic (Russian) alphabet Insert spoiler
winkwinkedsmileam
belayfeelfellowlaughing
lollovenorecourse
requestsadtonguewassat
cryingwhatbullyangry
Security Code: *
Include security image CAPCHA.
Refresh Code

® 2010-2025 GrowingScience.Com