How to cite this paper
Pantoja-Benavides, G & Álvarez-Martínez, D. (2022). A hybrid approach of simulation and metaheuristic for the polyhedra packing problem.International Journal of Industrial Engineering Computations , 13(1), 81-100.
Refrences
Allen, S. D., Burke, E. K., & Kendall, G. (2011). A hybrid placement strategy for the three-dimensional strip packing problem. European Journal of Operational Research, 209(3), 219-227.
Alvarez-Valdes, R., Martinez, A., & Tamarit, J. M. (2013). A branch & bound algorithm for cutting and packing irregularly shaped pieces. International Journal of Production Economics, 145(2), 463-477.
Alvarez-Valdés, R., Parreño, F., & Tamarit, J. M. (2008). Reactive GRASP for the strip-packing problem. Computers & Operations Research, 35(4), 1065-1083.
Araújo, L. J., Özcan, E., Atkin, J. A., & Baumers, M. (2019). Analysis of irregular three-dimensional packing problems in additive manufacturing: a new taxonomy and dataset. International Journal of Production Research, 57(18), 5920-5934.
Araújo, L. J., Panesar, A., Özcan, E., Atkin, J., Baumers, M., & Ashcroft, I. (2020). An experimental analysis of deepest bottom-left-fill packing methods for additive manufacturing. International Journal of Production Research, 58(22), 6917-6933.
Barber, C. B., Dobkin, D. P., & Huhdanpaa, H. (1996). The quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software (TOMS), 22(4), 469-483.
Bennell, J. A., & Oliveira, J. F. (2008). The geometry of nesting problems: A tutorial. European Journal of Operational Research, 184(2), 397-415.
Bortfeldt, A. (2006). A genetic algorithm for the two-dimensional strip packing problem with rectangular pieces. European Journal of Operational Research, 172(3), 814-837.
Bortfeldt, A., & Mack, D. (2007). A heuristic for the three-dimensional strip packing problem. European Journal of Operational Research, 183(3), 1267-1279.
Chazelle, B., Edelsbrunner, H., & Guibas, L. J. (1989). The complexity of cutting complexes. Discrete & Computational Geometry, 4(2), 139-181.
Chernov, N., Stoyan, Y., & Romanova, T. (2010). Mathematical model and efficient algorithms for object packing problem. Computational Geometry, 43(5), 535-553.
Cherri, L. H., Mundim, L. R., Andretta, M., Toledo, F. M., Oliveira, J. F., & Carravilla, M. A. (2016). Robust mixed-integer linear programming models for the irregular strip packing problem. European Journal of Operational Research, 253(3), 570-583.
Chica, M., Juan Pérez, A. A., Cordon, O., & Kelton, D. (2017). Why simheuristics? Benefits, limitations, and best practices when combining metaheuristics with simulation. Benefits, Limitations, and Best Practices When Combining Metaheuristics with Simulation (January 1, 2017). doi: 10.2139/ssrn.2919208.
Dyckhoff, H. (1990). A typology of cutting and packing problems. European Journal of Operational Research, 44(2), 145-159.
Egeblad, J., Garavelli, C., Lisi, S., & Pisinger, D. (2010). Heuristics for container loading of furniture. European Journal of Operational Research, 200(3), 881-892.
Egeblad, J., Nielsen, B. K., & Brazil, M. (2009). Translational packing of arbitrary polytopes. Computational Geometry, 42(4), 269-288.
Egeblad, J., Nielsen, B. K., & Odgaard, A. (2007). Fast neighborhood search for two-and three-dimensional nesting problems. European Journal of Operational Research, 183(3), 1249-1266.
Fischer, K., Gärtner, B., & Kutz, M. (2003, September). Fast smallest-enclosing-ball computation in high dimensions. In European Symposium on Algorithms (pp. 630-641). Springer, Berlin, Heidelberg.
Gebhardt, A., & Hötter, J. S. (2016). Additive manufacturing: 3D printing for prototyping and manufacturing. Carl Hanser Verlag GmbH Co KG.
Gendreau, M., & Potvin, J. Y. (Eds.). (2010). Handbook of metaheuristics (Vol. 2, p. 9). New York: Springer.
Gogate, A. S., & Pande, S. S. (2008). Intelligent layout planning for rapid prototyping. International Journal of Production Research, 46(20), 5607-5631.
Gomes, A. M., & Oliveira, J. F. (2006). Solving irregular strip packing problems by hybridising simulated annealing and linear programming. European Journal of Operational Research, 171(3), 811-829.
Hague*, R., Mansour, S., & Saleh, N. (2004). Material and design considerations for rapid manufacturing. International Journal of Production Research, 42(22), 4691-4708.
LaValle, S. M. (2006). Planning algorithms. Cambridge university press.
Leung, S. C., Lin, Y., & Zhang, D. (2012). Extended local search algorithm based on nonlinear programming for two-dimensional irregular strip packing problem. Computers & Operations Research, 39(3), 678-686.
Liu, X., Liu, J. M., & Cao, A. X. (2015). HAPE3D—a new constructive algorithm for the 3D irregular packing problem. Frontiers of Information Technology & Electronic Engineering, 16(5), 380-390.
Liu, X., & Ye, J. W. (2011). Heuristic algorithm based on the principle of minimum total potential energy (HAPE): a new algorithm for nesting problems. Journal of Zhejiang University-SCIENCE A, 12(11), 860-872.
Lucas, T. W., Kelton, W. D., Sanchez, P. J., Sanchez, S. M., & Anderson, B. L. (2015). Changing the paradigm: Simulation, now a method of first resort. Naval Research Logistics (NRL), 62(4), 293-303.
Ma, Y., Chen, Z., Hu, W., & Wang, W. (2018, August). Packing irregular objects in 3D space via hybrid optimization. In Computer Graphics Forum (Vol. 37, No. 5, pp. 49-59).
Martello, S., Monaci, M., & Vigo, D. (2003). An exact approach to the strip-packing problem. INFORMS Journal on Computing, 15(3), 310-319.
Martínez, D. A., Alvarez-Valdes, R., & Parreño, F. (2015). A grasp algorithm for the container loading problem with multi-drop constraints. Pesquisa Operacional, 35, 1-24.
Martínez-Franco, J. C., & Álvarez-Martínez, D. (2018, December). Physx as a middleware for dynamic simulations in the container loading problem. In 2018 Winter Simulation Conference (WSC) (pp. 2933-2940). IEEE.
Martínez, J. C., Cuellar, D., & Álvarez-Martínez, D. (2018). Review of Dynamic Stability Metrics and a Mechanical Model Integrated with Open Source Tools for the Container Loading Problem. Electronic Notes in Discrete Mathematics, 69, 325-332.
Martínez, J. C., Cuellar, D., Céspedes, E., & Martínez, D. (2018). Packagecargo-open source tool based on optimization and simulation for the container loading problem with dynamic stability. In 2018 International Conference on Industrial Engineering and Operations Management (pp. 2363-2370).
Milenkovic, V. J., & Daniels, K. (1999). Translational polygon containment and minimal enclosure using mathematical programming. International Transactions in Operational Research, 6(5), 525-554.
Romanova, T., Bennell, J., Stoyan, Y., & Pankratov, A. (2018). Packing of concave polyhedra with continuous rotations using nonlinear optimisation. European Journal of Operational Research, 268(1), 37-53.
Stoyan, Y., Pankratov, A., & Romanova, T. (2016). Quasi-phi-functions and optimal packing of ellipses. Journal of Global Optimization, 65(2), 283-307.
Stoyan, Y., Gil, M., Romanova, T., Ternoy, J., & Scheithauer, G. (2002). Construction of a-function for two convex polytopes. Applicationes Mathematicae, 29(2), 199-218.
Stoyan, Y. G., Gil, M., Pankratov, A., & Scheithauer, G. (2004). Packing non-convex polytopes into a parallelepiped. Preprint MATH-NM-06-2004: Technische Universität of Dresden.
Stoyan, Y. G., Gil, N. I., Scheithauer, G., Pankratov, A., & Magdalina, I. (2005). Packing of convex polytopes into a parallelepiped. Optimization, 54(2), 215-235.
Talbi, E. G. (2009). Metaheuristics: from design to implementation (Vol. 74). John Wiley & Sons.
Wäscher, G., Haußner, H., & Schumann, H. (2007). An improved typology of cutting and packing problems. European journal of operational research, 183(3), 1109-1130.
Wei, L., Oon, W. C., Zhu, W., & Lim, A. (2012). A reference length approach for the 3D strip packing problem. European Journal of Operational Research, 220(1), 37-47.
Wong, K.V., & Hernandez, A. (2012). A review of additive manufacturing. ISRN Mechanical Engineering, 1.
Zhang, C., & Chen, T. (2001). Efficient feature extraction for 2d/3d objects in mesh representation. In Proceedings 2001 International Conference on Image Processing (Cat. No. 01CH37205), Vol. 3, IEEE, pp. 935–938.
Alvarez-Valdes, R., Martinez, A., & Tamarit, J. M. (2013). A branch & bound algorithm for cutting and packing irregularly shaped pieces. International Journal of Production Economics, 145(2), 463-477.
Alvarez-Valdés, R., Parreño, F., & Tamarit, J. M. (2008). Reactive GRASP for the strip-packing problem. Computers & Operations Research, 35(4), 1065-1083.
Araújo, L. J., Özcan, E., Atkin, J. A., & Baumers, M. (2019). Analysis of irregular three-dimensional packing problems in additive manufacturing: a new taxonomy and dataset. International Journal of Production Research, 57(18), 5920-5934.
Araújo, L. J., Panesar, A., Özcan, E., Atkin, J., Baumers, M., & Ashcroft, I. (2020). An experimental analysis of deepest bottom-left-fill packing methods for additive manufacturing. International Journal of Production Research, 58(22), 6917-6933.
Barber, C. B., Dobkin, D. P., & Huhdanpaa, H. (1996). The quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software (TOMS), 22(4), 469-483.
Bennell, J. A., & Oliveira, J. F. (2008). The geometry of nesting problems: A tutorial. European Journal of Operational Research, 184(2), 397-415.
Bortfeldt, A. (2006). A genetic algorithm for the two-dimensional strip packing problem with rectangular pieces. European Journal of Operational Research, 172(3), 814-837.
Bortfeldt, A., & Mack, D. (2007). A heuristic for the three-dimensional strip packing problem. European Journal of Operational Research, 183(3), 1267-1279.
Chazelle, B., Edelsbrunner, H., & Guibas, L. J. (1989). The complexity of cutting complexes. Discrete & Computational Geometry, 4(2), 139-181.
Chernov, N., Stoyan, Y., & Romanova, T. (2010). Mathematical model and efficient algorithms for object packing problem. Computational Geometry, 43(5), 535-553.
Cherri, L. H., Mundim, L. R., Andretta, M., Toledo, F. M., Oliveira, J. F., & Carravilla, M. A. (2016). Robust mixed-integer linear programming models for the irregular strip packing problem. European Journal of Operational Research, 253(3), 570-583.
Chica, M., Juan Pérez, A. A., Cordon, O., & Kelton, D. (2017). Why simheuristics? Benefits, limitations, and best practices when combining metaheuristics with simulation. Benefits, Limitations, and Best Practices When Combining Metaheuristics with Simulation (January 1, 2017). doi: 10.2139/ssrn.2919208.
Dyckhoff, H. (1990). A typology of cutting and packing problems. European Journal of Operational Research, 44(2), 145-159.
Egeblad, J., Garavelli, C., Lisi, S., & Pisinger, D. (2010). Heuristics for container loading of furniture. European Journal of Operational Research, 200(3), 881-892.
Egeblad, J., Nielsen, B. K., & Brazil, M. (2009). Translational packing of arbitrary polytopes. Computational Geometry, 42(4), 269-288.
Egeblad, J., Nielsen, B. K., & Odgaard, A. (2007). Fast neighborhood search for two-and three-dimensional nesting problems. European Journal of Operational Research, 183(3), 1249-1266.
Fischer, K., Gärtner, B., & Kutz, M. (2003, September). Fast smallest-enclosing-ball computation in high dimensions. In European Symposium on Algorithms (pp. 630-641). Springer, Berlin, Heidelberg.
Gebhardt, A., & Hötter, J. S. (2016). Additive manufacturing: 3D printing for prototyping and manufacturing. Carl Hanser Verlag GmbH Co KG.
Gendreau, M., & Potvin, J. Y. (Eds.). (2010). Handbook of metaheuristics (Vol. 2, p. 9). New York: Springer.
Gogate, A. S., & Pande, S. S. (2008). Intelligent layout planning for rapid prototyping. International Journal of Production Research, 46(20), 5607-5631.
Gomes, A. M., & Oliveira, J. F. (2006). Solving irregular strip packing problems by hybridising simulated annealing and linear programming. European Journal of Operational Research, 171(3), 811-829.
Hague*, R., Mansour, S., & Saleh, N. (2004). Material and design considerations for rapid manufacturing. International Journal of Production Research, 42(22), 4691-4708.
LaValle, S. M. (2006). Planning algorithms. Cambridge university press.
Leung, S. C., Lin, Y., & Zhang, D. (2012). Extended local search algorithm based on nonlinear programming for two-dimensional irregular strip packing problem. Computers & Operations Research, 39(3), 678-686.
Liu, X., Liu, J. M., & Cao, A. X. (2015). HAPE3D—a new constructive algorithm for the 3D irregular packing problem. Frontiers of Information Technology & Electronic Engineering, 16(5), 380-390.
Liu, X., & Ye, J. W. (2011). Heuristic algorithm based on the principle of minimum total potential energy (HAPE): a new algorithm for nesting problems. Journal of Zhejiang University-SCIENCE A, 12(11), 860-872.
Lucas, T. W., Kelton, W. D., Sanchez, P. J., Sanchez, S. M., & Anderson, B. L. (2015). Changing the paradigm: Simulation, now a method of first resort. Naval Research Logistics (NRL), 62(4), 293-303.
Ma, Y., Chen, Z., Hu, W., & Wang, W. (2018, August). Packing irregular objects in 3D space via hybrid optimization. In Computer Graphics Forum (Vol. 37, No. 5, pp. 49-59).
Martello, S., Monaci, M., & Vigo, D. (2003). An exact approach to the strip-packing problem. INFORMS Journal on Computing, 15(3), 310-319.
Martínez, D. A., Alvarez-Valdes, R., & Parreño, F. (2015). A grasp algorithm for the container loading problem with multi-drop constraints. Pesquisa Operacional, 35, 1-24.
Martínez-Franco, J. C., & Álvarez-Martínez, D. (2018, December). Physx as a middleware for dynamic simulations in the container loading problem. In 2018 Winter Simulation Conference (WSC) (pp. 2933-2940). IEEE.
Martínez, J. C., Cuellar, D., & Álvarez-Martínez, D. (2018). Review of Dynamic Stability Metrics and a Mechanical Model Integrated with Open Source Tools for the Container Loading Problem. Electronic Notes in Discrete Mathematics, 69, 325-332.
Martínez, J. C., Cuellar, D., Céspedes, E., & Martínez, D. (2018). Packagecargo-open source tool based on optimization and simulation for the container loading problem with dynamic stability. In 2018 International Conference on Industrial Engineering and Operations Management (pp. 2363-2370).
Milenkovic, V. J., & Daniels, K. (1999). Translational polygon containment and minimal enclosure using mathematical programming. International Transactions in Operational Research, 6(5), 525-554.
Romanova, T., Bennell, J., Stoyan, Y., & Pankratov, A. (2018). Packing of concave polyhedra with continuous rotations using nonlinear optimisation. European Journal of Operational Research, 268(1), 37-53.
Stoyan, Y., Pankratov, A., & Romanova, T. (2016). Quasi-phi-functions and optimal packing of ellipses. Journal of Global Optimization, 65(2), 283-307.
Stoyan, Y., Gil, M., Romanova, T., Ternoy, J., & Scheithauer, G. (2002). Construction of a-function for two convex polytopes. Applicationes Mathematicae, 29(2), 199-218.
Stoyan, Y. G., Gil, M., Pankratov, A., & Scheithauer, G. (2004). Packing non-convex polytopes into a parallelepiped. Preprint MATH-NM-06-2004: Technische Universität of Dresden.
Stoyan, Y. G., Gil, N. I., Scheithauer, G., Pankratov, A., & Magdalina, I. (2005). Packing of convex polytopes into a parallelepiped. Optimization, 54(2), 215-235.
Talbi, E. G. (2009). Metaheuristics: from design to implementation (Vol. 74). John Wiley & Sons.
Wäscher, G., Haußner, H., & Schumann, H. (2007). An improved typology of cutting and packing problems. European journal of operational research, 183(3), 1109-1130.
Wei, L., Oon, W. C., Zhu, W., & Lim, A. (2012). A reference length approach for the 3D strip packing problem. European Journal of Operational Research, 220(1), 37-47.
Wong, K.V., & Hernandez, A. (2012). A review of additive manufacturing. ISRN Mechanical Engineering, 1.
Zhang, C., & Chen, T. (2001). Efficient feature extraction for 2d/3d objects in mesh representation. In Proceedings 2001 International Conference on Image Processing (Cat. No. 01CH37205), Vol. 3, IEEE, pp. 935–938.