How to cite this paper
Galindres-Guancha, L., Toro-Ocampo, E & Gallego-Rendón, R. (2021). A biobjective capacitated vehicle routing problem using metaheuristic ILS and decomposition.International Journal of Industrial Engineering Computations , 12(3), 293-304.
Refrences
Augerat, P., Naddef, D., Belenguer, J. M., Benavent, E., Corberan, A., & Rinaldi, G. (1995). Computational results with a branch and cut code for the capacitated vehicle routing problem.
Bertazzi, L., Golden, B., & Wang, X. (2015). Min–max vs. min–sum vehicle routing: A worst-case analysis. European Journal of Operational Research, 240(2), 372-381.
Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), 182-197.
Galindres-Guancha, L., Toro-Ocampo, E., & Rendón, R. (2018). Multi-objective MDVRP solution considering route balance and cost using the ILS metaheuristic. International Journal of Industrial Engineering Computations, 9(1), 33-46.
Gallego Rendón, R. A., Toro Ocampo, E. M., & Escobar Zuluaga, A. H. (2015). Técnicas Heurísticas y Metaheurísticas. Universidad Tecnológica de Pereira. Vicerrectoría de Investigaciones, Innovación y Extensión. Ingenierías Eléctrica, Electrónica, Física y Ciencias de la Computación.
Halvorsen-Weare, E. E., & Savelsbergh, M. W. (2016). The bi-objective mixed capacitated general routing problem with different route balance criteria. European Journal of Operational Research, 251(2), 451-465.
Irnich, S., Toth, P., & Vigo, D. (2014). Chapter 1: The family of vehicle routing problems. In Vehicle Routing: Problems, Methods, and Applications, Second Edition (pp. 1-33). Society for Industrial and Applied Mathematics.
Jiang, S., Ong, Y. S., Zhang, J., & Feng, L. (2014). Consistencies and contradictions of performance metrics in multiobjective optimization. IEEE transactions on cybernetics, 44(12), 2391-2404.
Jozefowiez, N., Semet, F., & Talbi, E. G. (2005, October). Enhancements of NSGA II and its application to the vehicle routing problem with route balancing. In International Conference on Artificial Evolution (Evolution Artificielle) (pp. 131-142). Springer, Berlin, Heidelberg.
Lee, T. R., & Ueng, J. H. (1999). A study of vehicle routing problems with load‐balancing. International Journal of Physical Distribution & Logistics Management.
Li, J. Q., Borenstein, D., & Mirchandani, P. B. (2008). Truck scheduling for solid waste collection in the City of Porto Alegre, Brazil. Omega, 36(6), 1133-1149.
Li, K., Wang, R., Zhang, T., & Ishibuchi, H. (2018). Evolutionary many-objective optimization: A comparative study of the state-of-the-art. IEEE Access, 6, 26194-26214.
Lozano, J., González-Gurrola, L. C., Rodríguez-Tello, E., & Lacomme, P. (2016, October). A statistical comparison of objective functions for the vehicle routing problem with route balancing. In 2016 Fifteenth Mexican international conference on artificial intelligence (MICAI) (pp. 130-135). IEEE.
Marler, R. T., & Arora, J. S. (2004). Survey of multi-objective optimization methods for engineering. Structural and multidisciplinary optimization, 26(6), 369-395.
Matl, P., Hartl, R. F., & Vidal, T. (2018). Workload equity in vehicle routing problems: A survey and analysis. Transportation Science, 52(2), 239-260.
Oyola, J., & Løkketangen, A. (2014). GRASP-ASP: An algorithm for the CVRP with route balancing. Journal of Heuristics, 20(4), 361-382.
Reiter, P., & Gutjahr, W. J. (2012). Exact hybrid algorithms for solving a bi-objective vehicle routing problem. Central European Journal of Operations Research, 20(1), 19-43.
Riquelme, N., Von Lücken, C., & Baran, B. (2015, October). Performance metrics in multi-objective optimization. In 2015 Latin American Computing Conference (CLEI) (pp. 1-11). IEEE.
Samanlioglu, F. (2013). A multi-objective mathematical model for the industrial hazardous waste location-routing problem. European Journal of Operational Research, 226(2), 332-340.
Sarpong, B. M., Artigues, C., & Jozefowiez, N. (2013, September). Column generation for bi-objective vehicle routing problems with a min-max objective. In ATMOS-13th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems-2013 (Vol. 33, pp. 137-149). Schloss Dagstuhl―Leibniz-Zentrum fuer Informatik.
Schwarze, S., & Voß, S. (2013). Improved load balancing and resource utilization for the skill vehicle routing problem. Optimization Letters, 7(8), 1805-1823.
Silva, M. M., Subramanian, A., Vidal, T., & Ochi, L. S. (2012). A simple and effective metaheuristic for the minimum latency problem. European Journal of Operational Research, 221(3), 513-520.
Subramanian, A., Ochi, L. S., & Cabral, L. D. A. F. (2008). An Efficient Iterated Local Search Algorithm for the Vehicle Routing Problem with Simultaneous Pickup and Delivery. Proc. of the XL SBPO (CD-ROM), 1569-1580.
Sun, Y., Liang, Y., Zhang, Z., & Wang, J. (2017, June). M-NSGA-II: A memetic algorithm for vehicle routing problem with route balancing. In International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems (pp. 61-71). Springer, Cham.
Tian, Y., Cheng, R., Zhang, X., & Jin, Y. (2017). PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [educational forum]. IEEE Computational Intelligence Magazine, 12(4), 73-87.
Trivedi, A., Srinivasan, D., Sanyal, K., & Ghosh, A. (2016). A survey of multiobjective evolutionary algorithms based on decomposition. IEEE Transactions on Evolutionary Computation, 21(3), 440-462.
Wang, Z., Zhang, Q., Gong, M., & Zhou, A. (2014, July). A replacement strategy for balancing convergence and diversity in MOEA/D. In 2014 IEEE Congress on Evolutionary Computation (CEC) (pp. 2132-2139). IEEE.
Zhang, Q., & Li, H. (2007). MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on evolutionary computation, 11(6), 712-731.
Zhou, A., & Zhang, Q. (2015). Are all the subproblems equally important? Resource allocation in decomposition-based multiobjective evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 20(1), 52-64.
Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE transactions on Evolutionary Computation, 3(4), 257-271.
Bertazzi, L., Golden, B., & Wang, X. (2015). Min–max vs. min–sum vehicle routing: A worst-case analysis. European Journal of Operational Research, 240(2), 372-381.
Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), 182-197.
Galindres-Guancha, L., Toro-Ocampo, E., & Rendón, R. (2018). Multi-objective MDVRP solution considering route balance and cost using the ILS metaheuristic. International Journal of Industrial Engineering Computations, 9(1), 33-46.
Gallego Rendón, R. A., Toro Ocampo, E. M., & Escobar Zuluaga, A. H. (2015). Técnicas Heurísticas y Metaheurísticas. Universidad Tecnológica de Pereira. Vicerrectoría de Investigaciones, Innovación y Extensión. Ingenierías Eléctrica, Electrónica, Física y Ciencias de la Computación.
Halvorsen-Weare, E. E., & Savelsbergh, M. W. (2016). The bi-objective mixed capacitated general routing problem with different route balance criteria. European Journal of Operational Research, 251(2), 451-465.
Irnich, S., Toth, P., & Vigo, D. (2014). Chapter 1: The family of vehicle routing problems. In Vehicle Routing: Problems, Methods, and Applications, Second Edition (pp. 1-33). Society for Industrial and Applied Mathematics.
Jiang, S., Ong, Y. S., Zhang, J., & Feng, L. (2014). Consistencies and contradictions of performance metrics in multiobjective optimization. IEEE transactions on cybernetics, 44(12), 2391-2404.
Jozefowiez, N., Semet, F., & Talbi, E. G. (2005, October). Enhancements of NSGA II and its application to the vehicle routing problem with route balancing. In International Conference on Artificial Evolution (Evolution Artificielle) (pp. 131-142). Springer, Berlin, Heidelberg.
Lee, T. R., & Ueng, J. H. (1999). A study of vehicle routing problems with load‐balancing. International Journal of Physical Distribution & Logistics Management.
Li, J. Q., Borenstein, D., & Mirchandani, P. B. (2008). Truck scheduling for solid waste collection in the City of Porto Alegre, Brazil. Omega, 36(6), 1133-1149.
Li, K., Wang, R., Zhang, T., & Ishibuchi, H. (2018). Evolutionary many-objective optimization: A comparative study of the state-of-the-art. IEEE Access, 6, 26194-26214.
Lozano, J., González-Gurrola, L. C., Rodríguez-Tello, E., & Lacomme, P. (2016, October). A statistical comparison of objective functions for the vehicle routing problem with route balancing. In 2016 Fifteenth Mexican international conference on artificial intelligence (MICAI) (pp. 130-135). IEEE.
Marler, R. T., & Arora, J. S. (2004). Survey of multi-objective optimization methods for engineering. Structural and multidisciplinary optimization, 26(6), 369-395.
Matl, P., Hartl, R. F., & Vidal, T. (2018). Workload equity in vehicle routing problems: A survey and analysis. Transportation Science, 52(2), 239-260.
Oyola, J., & Løkketangen, A. (2014). GRASP-ASP: An algorithm for the CVRP with route balancing. Journal of Heuristics, 20(4), 361-382.
Reiter, P., & Gutjahr, W. J. (2012). Exact hybrid algorithms for solving a bi-objective vehicle routing problem. Central European Journal of Operations Research, 20(1), 19-43.
Riquelme, N., Von Lücken, C., & Baran, B. (2015, October). Performance metrics in multi-objective optimization. In 2015 Latin American Computing Conference (CLEI) (pp. 1-11). IEEE.
Samanlioglu, F. (2013). A multi-objective mathematical model for the industrial hazardous waste location-routing problem. European Journal of Operational Research, 226(2), 332-340.
Sarpong, B. M., Artigues, C., & Jozefowiez, N. (2013, September). Column generation for bi-objective vehicle routing problems with a min-max objective. In ATMOS-13th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems-2013 (Vol. 33, pp. 137-149). Schloss Dagstuhl―Leibniz-Zentrum fuer Informatik.
Schwarze, S., & Voß, S. (2013). Improved load balancing and resource utilization for the skill vehicle routing problem. Optimization Letters, 7(8), 1805-1823.
Silva, M. M., Subramanian, A., Vidal, T., & Ochi, L. S. (2012). A simple and effective metaheuristic for the minimum latency problem. European Journal of Operational Research, 221(3), 513-520.
Subramanian, A., Ochi, L. S., & Cabral, L. D. A. F. (2008). An Efficient Iterated Local Search Algorithm for the Vehicle Routing Problem with Simultaneous Pickup and Delivery. Proc. of the XL SBPO (CD-ROM), 1569-1580.
Sun, Y., Liang, Y., Zhang, Z., & Wang, J. (2017, June). M-NSGA-II: A memetic algorithm for vehicle routing problem with route balancing. In International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems (pp. 61-71). Springer, Cham.
Tian, Y., Cheng, R., Zhang, X., & Jin, Y. (2017). PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [educational forum]. IEEE Computational Intelligence Magazine, 12(4), 73-87.
Trivedi, A., Srinivasan, D., Sanyal, K., & Ghosh, A. (2016). A survey of multiobjective evolutionary algorithms based on decomposition. IEEE Transactions on Evolutionary Computation, 21(3), 440-462.
Wang, Z., Zhang, Q., Gong, M., & Zhou, A. (2014, July). A replacement strategy for balancing convergence and diversity in MOEA/D. In 2014 IEEE Congress on Evolutionary Computation (CEC) (pp. 2132-2139). IEEE.
Zhang, Q., & Li, H. (2007). MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on evolutionary computation, 11(6), 712-731.
Zhou, A., & Zhang, Q. (2015). Are all the subproblems equally important? Resource allocation in decomposition-based multiobjective evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 20(1), 52-64.
Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE transactions on Evolutionary Computation, 3(4), 257-271.