How to cite this paper
Bordón, M., Montagna, J & Corsano, C. (2020). Mixed integer linear programming approaches for solving the raw material allocation, routing and scheduling problems in the forest industry.International Journal of Industrial Engineering Computations , 11(4), 525-548.
Refrences
Audy, J. F., El Hachemi, N., Michel, L., & Rousseau, L. M. (2011). Solving a combined routing and scheduling problem in forestry. In International Conference on Industrial Engineering and Systems Management, May (pp. 25-27).
Audy, J. F., D'Amours, S., & Rönnqvist, M. (2012). Planning methods and decision support systems in vehicle routing problems for timber transportation: a review (Vol. 45). Montreal, Canada: CIRRELT.
Bordón, M. R., Montagna, J. M., & Corsano, G. (2018). An exact mathematical formulation for the optimal log transportation. Forest Policy and Economics, 95, 115-122.
Borges, J. G., Diaz-Balteiro, L., McDill, M. E., & Rodriguez, L. C. (2014). Management of Industrial Forest Plantations. Springer.
Broz, D. R., Rossit, D. A., Rossit, D. G., & Cavallin, A. (2018). The Argentinian forest sector: opportunities and challenges in supply chain management. Uncertain Supply Chain Management, 6(4), 375-392.
Contreras, M. A., Chung, W., & Jones, G. (2008). Applying ant colony optimization metaheuristic to solve forest transportation planning problems with side constraints. Canadian Journal of Forest Research, 38(11), 2896-2910.
D’Amours, S., Rönnqvist, M. & Weintraub, A. (2008). Using operational research for supply chain planning in the forest products industry. INFOR, 46(4), 265–281.
Derigs, U., Pullmann, M., Vogel, U., Oberscheider, M., Gronalt, M., & Hirsch, P. (2012). Multilevel neighborhood search for solving full truckload routing problems arising in timber transportation. Electronic Notes in Discrete Mathematics, 39, 281-288.
El Hachemi, N., Gendreau, M., & Rousseau, L. M. (2011). A hybrid constraint programming approach to the log-truck scheduling problem. Annals of Operations Research, 184(1), 163-178.
El Hachemi, N., Gendreau, M., & Rousseau, L. M. (2013). A heuristic to solve the synchronized log-truck scheduling problem. Computers & Operations Research, 40(3), 666-673.
El Hachemi, N., El Hallaoui, I., Gendreau, M., & Rousseau, L. M. (2014). Flow-based integer linear programs to solve the weekly log-truck scheduling problem. Annals of Operations Research, 232(1), 87-97.
Flisberg, P., Lidén, B., & Rönnqvist, M. (2009). A hybrid method based on linear programming and tabu search for routing of logging trucks. Computers & Operations Research, 36(4), 1122-1144.
Gronalt, M., & Hirsch, P. (2007). Log-truck scheduling with a tabu search strategy. In Metaheuristics (65-88). Springer, Boston, MA.
Haridass, K., Valenzuela, J., Yucekaya, A. D., & McDonald, T. (2014). Scheduling a log transport system using simulated annealing. Information Sciences, 264, 302-316.
Lin, P., Contreras, M. A., Dai, R., & Zhang, J. (2016). A multilevel ACO approach for solving forest transportation planning problems with environmental constraints. Swarm and Evolutionary Computation, 28, 78-87.
Rosenthal, R.E. (2017). GAMS – A user’s guide. GAMS development corporation. Washington, DC.
Audy, J. F., D'Amours, S., & Rönnqvist, M. (2012). Planning methods and decision support systems in vehicle routing problems for timber transportation: a review (Vol. 45). Montreal, Canada: CIRRELT.
Bordón, M. R., Montagna, J. M., & Corsano, G. (2018). An exact mathematical formulation for the optimal log transportation. Forest Policy and Economics, 95, 115-122.
Borges, J. G., Diaz-Balteiro, L., McDill, M. E., & Rodriguez, L. C. (2014). Management of Industrial Forest Plantations. Springer.
Broz, D. R., Rossit, D. A., Rossit, D. G., & Cavallin, A. (2018). The Argentinian forest sector: opportunities and challenges in supply chain management. Uncertain Supply Chain Management, 6(4), 375-392.
Contreras, M. A., Chung, W., & Jones, G. (2008). Applying ant colony optimization metaheuristic to solve forest transportation planning problems with side constraints. Canadian Journal of Forest Research, 38(11), 2896-2910.
D’Amours, S., Rönnqvist, M. & Weintraub, A. (2008). Using operational research for supply chain planning in the forest products industry. INFOR, 46(4), 265–281.
Derigs, U., Pullmann, M., Vogel, U., Oberscheider, M., Gronalt, M., & Hirsch, P. (2012). Multilevel neighborhood search for solving full truckload routing problems arising in timber transportation. Electronic Notes in Discrete Mathematics, 39, 281-288.
El Hachemi, N., Gendreau, M., & Rousseau, L. M. (2011). A hybrid constraint programming approach to the log-truck scheduling problem. Annals of Operations Research, 184(1), 163-178.
El Hachemi, N., Gendreau, M., & Rousseau, L. M. (2013). A heuristic to solve the synchronized log-truck scheduling problem. Computers & Operations Research, 40(3), 666-673.
El Hachemi, N., El Hallaoui, I., Gendreau, M., & Rousseau, L. M. (2014). Flow-based integer linear programs to solve the weekly log-truck scheduling problem. Annals of Operations Research, 232(1), 87-97.
Flisberg, P., Lidén, B., & Rönnqvist, M. (2009). A hybrid method based on linear programming and tabu search for routing of logging trucks. Computers & Operations Research, 36(4), 1122-1144.
Gronalt, M., & Hirsch, P. (2007). Log-truck scheduling with a tabu search strategy. In Metaheuristics (65-88). Springer, Boston, MA.
Haridass, K., Valenzuela, J., Yucekaya, A. D., & McDonald, T. (2014). Scheduling a log transport system using simulated annealing. Information Sciences, 264, 302-316.
Lin, P., Contreras, M. A., Dai, R., & Zhang, J. (2016). A multilevel ACO approach for solving forest transportation planning problems with environmental constraints. Swarm and Evolutionary Computation, 28, 78-87.
Rosenthal, R.E. (2017). GAMS – A user’s guide. GAMS development corporation. Washington, DC.