How to cite this paper
Rossit, D., Tohmé, F., Frutos, M., Safe, M & Vásquez, . (2020). Critical paths of non-permutation and permutation flow shop scheduling problems.International Journal of Industrial Engineering Computations , 11(2), 281-298.
Refrences
Akers Jr, S. B. (1956). Letter to the editor—A graphical approach to production scheduling problems. Operations Research, 4(2), 244-245.
Benavides, A. J., & Ritt, M. (2016). Two simple and effective heuristics for minimizing the makespan in non-permutation flow shops. Computers & Operations Research, 66, 160-169.
Błażewicz, J., Ecker, K. H., Pesch, E., Schmidt, G., & Weglarz, J. (2007). Handbook on scheduling: from theory to applications. Springer Science & Business Media.
Blazewicz, J., Ecker, K. H., Pesch, E., Schmidt, G., & Weglarz, J. (2013). Scheduling computer and manufacturing processes. springer science & Business media.
Conway, R. W., Maxwell, W. L., & Miller, L. W. (2003). Theory of scheduling. Courier Corporation.
Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische mathematik, 1(1), 269-271.
Fomin, F. V., & Kratsch, D. (2010). Exact exponential algorithms. Springer Science & Business Media.
Garey, M. R., Johnson, D. S., & Sethi. R. (1976). The complexity of flowshop and jobshop scheduling. Mathematics of Operations Research. 1(2). 117-129.
Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. R. (1979). Optimization and approximation in deterministic sequencing and scheduling: a survey. Annals of Discrete Mathematics, 5, 287-326.
Johnson, S. M. (1954). Optimal two‐and three‐stage production schedules with setup times included. Naval Research Logistics (NRL), 1(1), 61-68.
Kelley Jr, J. E., & Walker, M. R. (1959, December). Critical-path planning and scheduling. In Papers presented at the December 1-3, 1959, eastern joint IRE-AIEE-ACM computer conference (pp. 160-173). ACM.
Kelley Jr, J. E. (1961). Critical-path planning and scheduling: Mathematical basis. Operations Research, 9(3), 296-320.
Kis, T., & Pesch, E. (2005). A review of exact solution methods for the non-preemptive multiprocessor flowshop problem. European Journal of Operational Research, 164(3), 592-608.
Li, S., & Tang, L. (2005). A tabu search algorithm based on new block properties and speed-up method for permutation flow-shop with finite intermediate storage. Journal of Intelligent Manufacturing, 16(4-5), 463-477.
Liao, C. J., Liao, L. M., & Tseng. C. T. (2006). A performance evaluation of permutation vs. non-permutation schedules in a flowshop. International Journal of Production Research. 44(20). 4297-4309.
Liao, L. M.. & Huang, C. J. (2010). Tabu search for non-permutation flowshop scheduling problem with minimizing total tardiness. Applied Mathematics and Computation, 217(2). 557-567.
Lin, S. W.. & Ying, K. C. (2009). Applying a hybrid simulated annealing and tabu search approach to non-permutation flowshop scheduling problems. International Journal of Production Research, 47(5). 1411-1424.
Nagarajan, V.. & Sviridenko, M. (2009). Tight bounds for permutation flow shop scheduling. Mathematics of Operations Research. 34(2). 417-427.
Nip, K., & Wang, Z. (2013, June). Combination of Two-Machine Flow Shop Scheduling and Shortest Path Problems. In COCOON (pp. 680-687).
Nip, K., Wang, Z., Nobibon, F. T., & Leus, R. (2015). A combination of flow shop scheduling and the shortest path problem. Journal of Combinatorial Optimization, 29(1), 36-52.
Pinedo, M. L. (2002). Scheduling: theory. algorithms. and systems. Springer Science & Business Media.
Potts, C. N., Shmoys, D. B., & Williamson, D. P. (1991). Permutation vs. non-permutation flow shop schedules. Operations Research Letters. 10(5). 281-284.
Rebaine, D. (2005). Flow shop vs. permutation shop with time delays. Computers & Industrial Engineering. 48(2). 357-362.
Rossi, A., & Lanzetta, M. (2013). Scheduling flow lines with buffers by ant colony digraph. Expert Systems with Applications, 40(9), 3328-3340.
Rossi, A., & Lanzetta, M. (2014). Native metaheuristics for non-permutation flowshop scheduling. Journal of Intelligent Manufacturing, 25(6), 1221-1233.
Rossit, D., Tohmé, F., Frutos, M., Bard, J., & Broz, D. (2016). A non-permutation flowshop scheduling problem with lot streaming: A Mathematical model. International Journal of Industrial Engineering Computations, 7(3), 507-516.
Rossit, D. A., Tohmé, F., & Frutos, M. (2018a). The non-permutation flow-shop scheduling problem: a literature review. Omega. 77, 143-153.
Rossit, D. A., Vásquez, Ó. C., Tohmé, F., Frutos, M., & Safe, M. D. (2018b). The dominance flow shop scheduling problem. Electronic Notes in Discrete Mathematics, 69, 21-28.
Rudek, R. (2011). Computational complexity and solution algorithms for flowshop scheduling problems with the learning effect. Computers & Industrial Engineering, 61(1), 20-31.
Shen, L., Gupta, J. N., & Buscher. U. (2014). Flow shop batching and scheduling with sequence-dependent setup times. Journal of Scheduling, 17(4), 353-370.
Taillard, E. (1993). Benchmarks for basic scheduling problems. European journal of operational research, 64(2), 278-285.
Tandon, M., Cummings, P. T., & LeVan, M. D. (1991). Flowshop sequencing with non-permutation schedules. Computers & chemical engineering, 15(8), 601-607.
Vahedi-Nouri, B., Fattahi, P., & Ramezanian, R. (2013). Minimizing total flow time for the non-permutation flow shop scheduling problem with learning effects and availability constraints. Journal of Manufacturing Systems, 32(1), 167-173.
Woeginger, G. J. (2003). Exact algorithms for NP-hard problems: A survey. Lecture Notes in Computer Science, 2570(2003), 185-207.
Xiao, Y., Yuan, Y., Zhang, R. Q., & Konak. A. (2015). Non-permutation flow shop scheduling with order acceptance and weighted tardiness. Applied Mathematics and Computation, 270, 312-333.
Ying, K. C., & Lin, S. W. (2007). Multi-heuristic desirability ant colony system heuristic for non-permutation flowshop scheduling problems. The International Journal of Advanced Manufacturing Technology, 33(7-8), 793-802.
Ying, K. C. (2008). Solving non-permutation flowshop scheduling problems by an effective iterated greedy heuristic. The International Journal of Advanced Manufacturing Technology, 38(3-4), 348-354.
Ying, K. C.. Gupta, J. N., Lin. S. W., & Lee, Z. J. (2010). Permutation and non-permutation schedules for the flowline manufacturing cell with sequence dependent family setups. International Journal of Production Research, 48(8), 2169-2184.
Ziaee, M. (2013). General flowshop scheduling problem with the sequence dependent setup times: A heuristic approach. Information Sciences, 251, 126-135.
Benavides, A. J., & Ritt, M. (2016). Two simple and effective heuristics for minimizing the makespan in non-permutation flow shops. Computers & Operations Research, 66, 160-169.
Błażewicz, J., Ecker, K. H., Pesch, E., Schmidt, G., & Weglarz, J. (2007). Handbook on scheduling: from theory to applications. Springer Science & Business Media.
Blazewicz, J., Ecker, K. H., Pesch, E., Schmidt, G., & Weglarz, J. (2013). Scheduling computer and manufacturing processes. springer science & Business media.
Conway, R. W., Maxwell, W. L., & Miller, L. W. (2003). Theory of scheduling. Courier Corporation.
Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische mathematik, 1(1), 269-271.
Fomin, F. V., & Kratsch, D. (2010). Exact exponential algorithms. Springer Science & Business Media.
Garey, M. R., Johnson, D. S., & Sethi. R. (1976). The complexity of flowshop and jobshop scheduling. Mathematics of Operations Research. 1(2). 117-129.
Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. R. (1979). Optimization and approximation in deterministic sequencing and scheduling: a survey. Annals of Discrete Mathematics, 5, 287-326.
Johnson, S. M. (1954). Optimal two‐and three‐stage production schedules with setup times included. Naval Research Logistics (NRL), 1(1), 61-68.
Kelley Jr, J. E., & Walker, M. R. (1959, December). Critical-path planning and scheduling. In Papers presented at the December 1-3, 1959, eastern joint IRE-AIEE-ACM computer conference (pp. 160-173). ACM.
Kelley Jr, J. E. (1961). Critical-path planning and scheduling: Mathematical basis. Operations Research, 9(3), 296-320.
Kis, T., & Pesch, E. (2005). A review of exact solution methods for the non-preemptive multiprocessor flowshop problem. European Journal of Operational Research, 164(3), 592-608.
Li, S., & Tang, L. (2005). A tabu search algorithm based on new block properties and speed-up method for permutation flow-shop with finite intermediate storage. Journal of Intelligent Manufacturing, 16(4-5), 463-477.
Liao, C. J., Liao, L. M., & Tseng. C. T. (2006). A performance evaluation of permutation vs. non-permutation schedules in a flowshop. International Journal of Production Research. 44(20). 4297-4309.
Liao, L. M.. & Huang, C. J. (2010). Tabu search for non-permutation flowshop scheduling problem with minimizing total tardiness. Applied Mathematics and Computation, 217(2). 557-567.
Lin, S. W.. & Ying, K. C. (2009). Applying a hybrid simulated annealing and tabu search approach to non-permutation flowshop scheduling problems. International Journal of Production Research, 47(5). 1411-1424.
Nagarajan, V.. & Sviridenko, M. (2009). Tight bounds for permutation flow shop scheduling. Mathematics of Operations Research. 34(2). 417-427.
Nip, K., & Wang, Z. (2013, June). Combination of Two-Machine Flow Shop Scheduling and Shortest Path Problems. In COCOON (pp. 680-687).
Nip, K., Wang, Z., Nobibon, F. T., & Leus, R. (2015). A combination of flow shop scheduling and the shortest path problem. Journal of Combinatorial Optimization, 29(1), 36-52.
Pinedo, M. L. (2002). Scheduling: theory. algorithms. and systems. Springer Science & Business Media.
Potts, C. N., Shmoys, D. B., & Williamson, D. P. (1991). Permutation vs. non-permutation flow shop schedules. Operations Research Letters. 10(5). 281-284.
Rebaine, D. (2005). Flow shop vs. permutation shop with time delays. Computers & Industrial Engineering. 48(2). 357-362.
Rossi, A., & Lanzetta, M. (2013). Scheduling flow lines with buffers by ant colony digraph. Expert Systems with Applications, 40(9), 3328-3340.
Rossi, A., & Lanzetta, M. (2014). Native metaheuristics for non-permutation flowshop scheduling. Journal of Intelligent Manufacturing, 25(6), 1221-1233.
Rossit, D., Tohmé, F., Frutos, M., Bard, J., & Broz, D. (2016). A non-permutation flowshop scheduling problem with lot streaming: A Mathematical model. International Journal of Industrial Engineering Computations, 7(3), 507-516.
Rossit, D. A., Tohmé, F., & Frutos, M. (2018a). The non-permutation flow-shop scheduling problem: a literature review. Omega. 77, 143-153.
Rossit, D. A., Vásquez, Ó. C., Tohmé, F., Frutos, M., & Safe, M. D. (2018b). The dominance flow shop scheduling problem. Electronic Notes in Discrete Mathematics, 69, 21-28.
Rudek, R. (2011). Computational complexity and solution algorithms for flowshop scheduling problems with the learning effect. Computers & Industrial Engineering, 61(1), 20-31.
Shen, L., Gupta, J. N., & Buscher. U. (2014). Flow shop batching and scheduling with sequence-dependent setup times. Journal of Scheduling, 17(4), 353-370.
Taillard, E. (1993). Benchmarks for basic scheduling problems. European journal of operational research, 64(2), 278-285.
Tandon, M., Cummings, P. T., & LeVan, M. D. (1991). Flowshop sequencing with non-permutation schedules. Computers & chemical engineering, 15(8), 601-607.
Vahedi-Nouri, B., Fattahi, P., & Ramezanian, R. (2013). Minimizing total flow time for the non-permutation flow shop scheduling problem with learning effects and availability constraints. Journal of Manufacturing Systems, 32(1), 167-173.
Woeginger, G. J. (2003). Exact algorithms for NP-hard problems: A survey. Lecture Notes in Computer Science, 2570(2003), 185-207.
Xiao, Y., Yuan, Y., Zhang, R. Q., & Konak. A. (2015). Non-permutation flow shop scheduling with order acceptance and weighted tardiness. Applied Mathematics and Computation, 270, 312-333.
Ying, K. C., & Lin, S. W. (2007). Multi-heuristic desirability ant colony system heuristic for non-permutation flowshop scheduling problems. The International Journal of Advanced Manufacturing Technology, 33(7-8), 793-802.
Ying, K. C. (2008). Solving non-permutation flowshop scheduling problems by an effective iterated greedy heuristic. The International Journal of Advanced Manufacturing Technology, 38(3-4), 348-354.
Ying, K. C.. Gupta, J. N., Lin. S. W., & Lee, Z. J. (2010). Permutation and non-permutation schedules for the flowline manufacturing cell with sequence dependent family setups. International Journal of Production Research, 48(8), 2169-2184.
Ziaee, M. (2013). General flowshop scheduling problem with the sequence dependent setup times: A heuristic approach. Information Sciences, 251, 126-135.