How to cite this paper
Nipanikar, S., Sargade, V & Guttedar, R. (2018). Optimization of process parameters through GRA, TOPSIS and RSA models.International Journal of Industrial Engineering Computations , 9(1), 137-154.
Refrences
Ali, S. M., Dhar, N. R., & Dey, S. K. (2011). Effect of minimum quantity lubrication (MQL) on cutting performance in turning medium carbon steel by uncoated carbide insert at different speed-feed combinations. Advances in Production Engineering & Management, 6(3).
Attanasio, A., Gelfi, M., Giardini, C., & Remino, C. (2006). Minimal quantity lubrication in turning: effect on tool wear. Wear, 260(3), 333-338.
Dhar, N. R., Islam, S., & Kamruzzaman, M. (2007). Effect of minimum quantity lubrication (MQL) on tool wear, surface roughness and dimensional deviation in turning AISI-4340 steel. Gazi University Journal of Science,20(2), 23-32.
Escamilla-Salazar, I. G., Torres-Treviño, L. M., González-Ortíz, B., & Zambrano, P. C. (2013). Machining optimization using swarm intelligence in titanium (6Al 4V) alloy. The International Journal of Advanced Manufacturing Technology, 67(1-4), 535-544.
Islam, M. N., Anggono, J. M., Pramanik, A., & Boswell, B. (2013). Effect of cooling methods on dimensional accuracy and surface finish of a turned titanium part. The International Journal of Advanced Manufacturing Technology, 69(9-12), 2711-2722.
Khan, M. M. A., Mithu, M. A. H., & Dhar, N. R. (2009). Effects of minimum quantity lubrication on turning AISI 9310 alloy steel using vegetable oil-based cutting fluid. Journal of materials processing Technology, 209(15), 5573-5583.
Khanna, N., & Davim, J. P. (2015). Design-of-experiments application in machining titanium alloys for aerospace structural components. Measurement, 61, 280-290.
Liu, Z., An, Q., Xu, J., Chen, M., & Han, S. (2013). Wear performance of (nc-AlTiN)/(a-Si 3 N 4) coating and (nc-AlCrN)/(a-Si 3 N 4) coating in high-speed machining of titanium alloys under dry and minimum quantity lubrication (MQL) conditions. Wear, 305(1), 249-259.
Ramana, M. V., Vishnu, A. V., Rao, G. K. M., & Rao, D. H. (2012). Experimental Investigations, Optimization Of Process Parameters And Mathematical Modeling In Turning Of Titanium Alloy Under Different Lubricant Conditions. Journal of Engineering (IOSRJEN) www. iosrjen. org ISSN, 2250, 3021.
Revankar, G. D., Shetty, R., Rao, S. S., & Gaitonde, V. N. (2014). Analysis of surface roughness and hardness in titanium alloy machining with polycrystalline diamond tool under different lubricating modes. Materials Research, (AHEAD), 1010-1022.
Sargade, V., Nipanikar, S., & Meshram, S. (2016). Analysis of surface roughness and cutting force during turning of Ti6Al4V ELI in dry environment. International Journal of Industrial Engineering Computations, 7(2), 257-266.
Sharma, V. S., Singh, G., & Sørby, K. (2015). A review on minimum quantity lubrication for machining processes. Materials and Manufacturing Processes, 30(8), 935-953.
Shetty, R., Jose, T. K., Revankar, G. D., Rao, S. S., & Shetty, D. S. (2014). Surface Roughness Analysis during Turning of Ti-6Al-4V under Near Dry Machining using Statistical Tool. International Journal of Current Engineering and Technology, 4(3), 2061-2067.
Wang, P., Zhu, Z., & Wang, Y. (2016). A novel hybrid MCDM model combining the SAW, TOPSIS and GRA methods based on experimental design. Information Sciences, 345, 27-45.
Wu, H., & Guo, L. (2014). Machinability of titanium alloy TC21 under orthogonal turning process. Materials and Manufacturing Processes, 29(11-12), 1441-1445.
Xu, J. Y., Liu, Z. Q., An, Q. L., & Chen, M. (2012, April). Wear Mechanism of High-Speed Turning Ti-6Al-4V with TiAlN and AlTiN Coated Tools in Dry and MQL Conditions. In Advanced Materials Research (Vol. 497, pp. 30-34)
Attanasio, A., Gelfi, M., Giardini, C., & Remino, C. (2006). Minimal quantity lubrication in turning: effect on tool wear. Wear, 260(3), 333-338.
Dhar, N. R., Islam, S., & Kamruzzaman, M. (2007). Effect of minimum quantity lubrication (MQL) on tool wear, surface roughness and dimensional deviation in turning AISI-4340 steel. Gazi University Journal of Science,20(2), 23-32.
Escamilla-Salazar, I. G., Torres-Treviño, L. M., González-Ortíz, B., & Zambrano, P. C. (2013). Machining optimization using swarm intelligence in titanium (6Al 4V) alloy. The International Journal of Advanced Manufacturing Technology, 67(1-4), 535-544.
Islam, M. N., Anggono, J. M., Pramanik, A., & Boswell, B. (2013). Effect of cooling methods on dimensional accuracy and surface finish of a turned titanium part. The International Journal of Advanced Manufacturing Technology, 69(9-12), 2711-2722.
Khan, M. M. A., Mithu, M. A. H., & Dhar, N. R. (2009). Effects of minimum quantity lubrication on turning AISI 9310 alloy steel using vegetable oil-based cutting fluid. Journal of materials processing Technology, 209(15), 5573-5583.
Khanna, N., & Davim, J. P. (2015). Design-of-experiments application in machining titanium alloys for aerospace structural components. Measurement, 61, 280-290.
Liu, Z., An, Q., Xu, J., Chen, M., & Han, S. (2013). Wear performance of (nc-AlTiN)/(a-Si 3 N 4) coating and (nc-AlCrN)/(a-Si 3 N 4) coating in high-speed machining of titanium alloys under dry and minimum quantity lubrication (MQL) conditions. Wear, 305(1), 249-259.
Ramana, M. V., Vishnu, A. V., Rao, G. K. M., & Rao, D. H. (2012). Experimental Investigations, Optimization Of Process Parameters And Mathematical Modeling In Turning Of Titanium Alloy Under Different Lubricant Conditions. Journal of Engineering (IOSRJEN) www. iosrjen. org ISSN, 2250, 3021.
Revankar, G. D., Shetty, R., Rao, S. S., & Gaitonde, V. N. (2014). Analysis of surface roughness and hardness in titanium alloy machining with polycrystalline diamond tool under different lubricating modes. Materials Research, (AHEAD), 1010-1022.
Sargade, V., Nipanikar, S., & Meshram, S. (2016). Analysis of surface roughness and cutting force during turning of Ti6Al4V ELI in dry environment. International Journal of Industrial Engineering Computations, 7(2), 257-266.
Sharma, V. S., Singh, G., & Sørby, K. (2015). A review on minimum quantity lubrication for machining processes. Materials and Manufacturing Processes, 30(8), 935-953.
Shetty, R., Jose, T. K., Revankar, G. D., Rao, S. S., & Shetty, D. S. (2014). Surface Roughness Analysis during Turning of Ti-6Al-4V under Near Dry Machining using Statistical Tool. International Journal of Current Engineering and Technology, 4(3), 2061-2067.
Wang, P., Zhu, Z., & Wang, Y. (2016). A novel hybrid MCDM model combining the SAW, TOPSIS and GRA methods based on experimental design. Information Sciences, 345, 27-45.
Wu, H., & Guo, L. (2014). Machinability of titanium alloy TC21 under orthogonal turning process. Materials and Manufacturing Processes, 29(11-12), 1441-1445.
Xu, J. Y., Liu, Z. Q., An, Q. L., & Chen, M. (2012, April). Wear Mechanism of High-Speed Turning Ti-6Al-4V with TiAlN and AlTiN Coated Tools in Dry and MQL Conditions. In Advanced Materials Research (Vol. 497, pp. 30-34)