How to cite this paper
Fnides, M., Yallese, M., Khattabi, R., Mabrouki, T & Girardin, F. (2017). Modeling and optimization of surface roughness and productivity thru RSM in face milling of AISI 1040 steel using coated carbide inserts.International Journal of Industrial Engineering Computations , 8(4), 493-512.
Refrences
Aman, A., Hari, S., Pradeep, K., & Manmohan, S. (2008). Optimization of multiple quality characteristics for CNC turning under cryogenic cutting environment using desirability function. Journal of Materials Processing Technology, 205(1-3), 42-50.
Aouici, H., Fnides, B., Elbahc, M., Benlahmidia, S. Bensouilah, H., & Yallese, M. A. (2016). Surface roughness evaluation of various cutting materials in hard turning of AISI H11. International Journal of Industrial Engineering Computations, 7(2), 339–352.
Aouici, H., Bouchelaghem, H., Yallese, M.A., Elbah, M. & Fnides, B. (2014). Machinability investigation in hard turning of AISI D3 cold work steel with ceramic tool using response surface methodology. Internatioanl Journal of Advanced Manufacturing Technology, 73(9), 1775-1788.
Aouici, H., Yallese, M.A., Belbah, A., Ameur, M.F., & Elbah, M. (2013). Experimental investigation of cutting parameters influence on surface roughness and cutting forces in hard turning of X38CrMoV5-1 with CBN tool. Sadhana, 38(3), 429-445.
Barua, M.K., & Rao, J.S. (2010). Measurement surface roughness through RSM: effect of coated carbide tool on 6061-t4 aluminum. International Journal of Enterprise Network Management (IJENM), 4(2), 136-153.
Bhaumik, M., & Maity, K. (2017). Effect of machining parameter on the surface roughness of AISI 304 in silicon carbide powder mixed EDM. Decision Science Letters, 6(3), 261-268.
Bhuyan, R., & Routara, B. (2016). Optimization the machining parameters by using VIKOR and Entropy Weight method during EDM process of Al–18% SiCp Metal matrix composite. Decision Science Letters, 5(2), 269-282.
Bouacha, K., Yallese, M.A., Khamel, S., Belhadi, S. (2014). Analysis and optimization of hard turning operation using cubic boron nitride tool. International Journal of Refractory Metals and Hard Materials, 45, 160–178.
Bouzid, L., Boutabba, S., Yallese, M.A, Belhadi, S., Girardin, F. (2014a). Simultaneous optimization of surface roughness and material removal rate for turning of X20Cr13 stainless steel. International Journal of Advanced Manufacturing Technology, 74 (5), 879–891.
Bouzid, L., Yallese, M. A., Belhadi, S., Mabrouki, T., & Boulanouar, L. (2014). RMS-based optimisation of surface roughness when turning AISI 420 stainless steel. International Journal of Materials and Product Technology, 49(4), 224-251.
Bouzid, L., Yallese, M. A., Chaoui, K., Mabrouki, T., & Boulanouar, L. (2015). Mathematical modeling for turning on AISI 420 stainless steel using surface response methodology. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 229(1), 45-61.
Da Silva, R.B., Vieira, J.M., Cardoso, R.N., Carvalho, H.C., Costa, E.S., Machado, A.R.,. De Ávila, R.F. (2011). Tool wear analysis in milling of medium carbon steel with coated cemented carbide inserts using different machining lubrication/cooling systems. Wear, 271(9-10), 2459–2465.
Doniavi, A., Eskanderzade, M., Tahmsebian, M. (2007). Empirical modeling of surface roughness in turning process of 1060 steel using factorial design methodology. Journal of Applied Sciences, 7(17), 2509-2513.
Bagci, E., & Aykut, Ş. (2006). A study of Taguchi optimization method for identifying optimum surface roughness in CNC face milling of cobalt-based alloy (stellite 6). The International Journal of Advanced Manufacturing Technology, 29(9-10), 940-947.
Fnides, B., Boutabba, S., Fnides, M., Aouici, H., & Yallese, M.A. (2013). Cutting tools flank wear and productivity investigation in straight turning of X38CrMoV5-1 (50 HRC). International Journal of Applied Engineering and Technology, 3(1), 1-10.
Fnides, B., Yallese, M.A., Mabrouki, T., & Rigal, J.F. (2009). Surface roughness model in turning hardened hot work steel using mixed ceramic tool. Mechanika, 3(77), 68–73.
John, B. (2013). Application of desirability function for optimizing the performance characteristics of carbonitrided bushes. International Journal of Industrial Engineering Computations, 4(3), 305-314.
Hessainia, Z., Belbah, A., Yallese, M.A., Mabrouki, T., & Rigal, J.F. (2013). On the prediction of surface roughness in the hard turning based on cutting parameters and tool vibrations.Measurement, 46(5), 1671–1681.
Hessainia, Z., Yallese, M.A., Bouzid, L., & Mabrouki, T. (2015). On the application of response surface methodology for predicting and optimizing surface roughness and cutting forces in hard turning by PVD coated insert. International Journal of Industrial Engineering Computations, 6(2), 267–284.
Huang, L., & Chen, J.C. (2001). A multiple regression model to predict in-process surface roughness in turning operation via accelerometer. Journal of Industrial Technology, 17(2), 1-8.
Keblouti, O., Boulanouar, L., Azizia, M. W., & Yallese, M. A. (2016). Modeling and multi-objective optimization of surface roughness and productivity in dry turning of AISI 52100 steel using (TiCN-TiN) coating cermet tools. International Journal of Industrial Engineering Computations, 8(1), 71–84.
Kadirgama, K., Noor, M.M., Rahman, M.M., Rejab, M.R.M., Haron, C.H.C., & Abou-El-Hossein, K.A. (2009). Surface Roughness Prediction Model of 6061-T6 Aluminium Alloy Machining Using Statistical Method. European Journal of Scientific Research, 25(2), 250-256.
Kevin Chou, Y., Evans, C.J., & Barash, M.M. (2003). Experimental investigation on cubic boron nitride turning of hardened AISI 52100 steel. Journal of Materials Processing Technology, 134(1), 1–9.
Khairi, Y., Nukman, Y., Yusof, T.M., Dawal, S.Z., Qin Yang, H., Mahlia, T.M.I., & Tamrin, K.F. (2010). Effect of cutting parameters on the surface roughness of titanium alloys using end milling process. Scientific Research and Essays, 5(11), 1284-1293.
Khrais, S.K., & Lin, Y.J. (2007). Wear mechanisms and tool performance of TiAlN PVD coated inserts during machining of AISI 4140 steel. Wear, 262(1-2), 64–69.
Meddour, I., Yallese, M. A., Khattabi, R., Elbah, M., & Boulanouar, L. (2015). Investigation and modeling of cutting forces and surface roughness when hard turning of AISI 52100 steel with mixed ceramic tool: cutting conditions optimization. The International Journal of Advanced Manufacturing Technology, 77(5-8), 1387-1399.
Mohapatraa, K., Satpathya, M., & Sahooa, S. (2017). Comparison of optimization techniques for MRR and surface roughness in wire EDM process for gear cutting. International Journal of Industrial Engineering Computations, 8(2), 251-262.
Myers, R.H., & Montgomery, D.C. (2002). Response surface methodology: process and product optimization using designed experiments. 2nd ed. John Wiley and Sons, Inc.: New York,
Nayak, I., Rana, J., & Parida, A. (2017). Performance optimization in electro-discharge machining using a suitable multiresponse optimization technique. Decision Science Letters, 6(3), 283-294.
Oktem, H., Erzurumlu, T., & Kurtaran, H. (2005). Application of response surface methodology in the optimization of cutting conditions for surface roughness. Journal of Materials Processing Technology, 170(1-2), 11–16.
Panda, A., Sahoo, A., & Rout, R. (2016). Multi-attribute decision making parametric optimization and modeling in hard turning using ceramic insert through grey relational analysis: A case study. Decision Science Letters, 5(4), 581-592.
Patel, K.M., & Joshi, S.S. (2006). Mechanics of machining of face-milling operation performed using a self-propelled round insert milling cutter. Journal of Materials Processing Technology, 171(1), 68–76.
Richetti, A., Machado, A. R., Da Silva, M. B., Ezugwu, E. O., & Bonney, J. (2004). Influence of the number of inserts for tool life evaluation in face milling of steels. International Journal of Machine Tools and Manufacture, 44(7), 695-700.
Routara, B. C., Bandyopadhyay, A., & Sahoo, P. (2009). Roughness modeling and optimization in CNC end milling using response surface method: effect of workpiece material variation. The International Journal of Advanced Manufacturing Technology, 40(11-12), 1166-1180.
Tebassi, H., Yallese, M., Khettabi, R., Belhadi, S., Meddour, I., & Girardin, F. (2016). Multi-objective optimization of surface roughness, cutting forces, productivity and Power consumption when turning of Inconel 718. International Journal of Industrial Engineering Computations, 7(1), 111-134.
Sahoo, A.K., & Mishra. P.C. (2014). A response surface methodology and desirability approach for predictive modeling and optimization of cutting temperature in machining hardened steel. International Journal of Industrial Engineering Computations, 5(3), 407–416.
Yallese, M.A., Chaoui, K., Zeghib, N., Boulanouar, L. & Rigal, J.F. (2009). Hard machining of hardened bearing steel using cubic boron nitride tool. Journal of Materials Processing Technology, 209(2), 1092-1104.
Aouici, H., Fnides, B., Elbahc, M., Benlahmidia, S. Bensouilah, H., & Yallese, M. A. (2016). Surface roughness evaluation of various cutting materials in hard turning of AISI H11. International Journal of Industrial Engineering Computations, 7(2), 339–352.
Aouici, H., Bouchelaghem, H., Yallese, M.A., Elbah, M. & Fnides, B. (2014). Machinability investigation in hard turning of AISI D3 cold work steel with ceramic tool using response surface methodology. Internatioanl Journal of Advanced Manufacturing Technology, 73(9), 1775-1788.
Aouici, H., Yallese, M.A., Belbah, A., Ameur, M.F., & Elbah, M. (2013). Experimental investigation of cutting parameters influence on surface roughness and cutting forces in hard turning of X38CrMoV5-1 with CBN tool. Sadhana, 38(3), 429-445.
Barua, M.K., & Rao, J.S. (2010). Measurement surface roughness through RSM: effect of coated carbide tool on 6061-t4 aluminum. International Journal of Enterprise Network Management (IJENM), 4(2), 136-153.
Bhaumik, M., & Maity, K. (2017). Effect of machining parameter on the surface roughness of AISI 304 in silicon carbide powder mixed EDM. Decision Science Letters, 6(3), 261-268.
Bhuyan, R., & Routara, B. (2016). Optimization the machining parameters by using VIKOR and Entropy Weight method during EDM process of Al–18% SiCp Metal matrix composite. Decision Science Letters, 5(2), 269-282.
Bouacha, K., Yallese, M.A., Khamel, S., Belhadi, S. (2014). Analysis and optimization of hard turning operation using cubic boron nitride tool. International Journal of Refractory Metals and Hard Materials, 45, 160–178.
Bouzid, L., Boutabba, S., Yallese, M.A, Belhadi, S., Girardin, F. (2014a). Simultaneous optimization of surface roughness and material removal rate for turning of X20Cr13 stainless steel. International Journal of Advanced Manufacturing Technology, 74 (5), 879–891.
Bouzid, L., Yallese, M. A., Belhadi, S., Mabrouki, T., & Boulanouar, L. (2014). RMS-based optimisation of surface roughness when turning AISI 420 stainless steel. International Journal of Materials and Product Technology, 49(4), 224-251.
Bouzid, L., Yallese, M. A., Chaoui, K., Mabrouki, T., & Boulanouar, L. (2015). Mathematical modeling for turning on AISI 420 stainless steel using surface response methodology. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 229(1), 45-61.
Da Silva, R.B., Vieira, J.M., Cardoso, R.N., Carvalho, H.C., Costa, E.S., Machado, A.R.,. De Ávila, R.F. (2011). Tool wear analysis in milling of medium carbon steel with coated cemented carbide inserts using different machining lubrication/cooling systems. Wear, 271(9-10), 2459–2465.
Doniavi, A., Eskanderzade, M., Tahmsebian, M. (2007). Empirical modeling of surface roughness in turning process of 1060 steel using factorial design methodology. Journal of Applied Sciences, 7(17), 2509-2513.
Bagci, E., & Aykut, Ş. (2006). A study of Taguchi optimization method for identifying optimum surface roughness in CNC face milling of cobalt-based alloy (stellite 6). The International Journal of Advanced Manufacturing Technology, 29(9-10), 940-947.
Fnides, B., Boutabba, S., Fnides, M., Aouici, H., & Yallese, M.A. (2013). Cutting tools flank wear and productivity investigation in straight turning of X38CrMoV5-1 (50 HRC). International Journal of Applied Engineering and Technology, 3(1), 1-10.
Fnides, B., Yallese, M.A., Mabrouki, T., & Rigal, J.F. (2009). Surface roughness model in turning hardened hot work steel using mixed ceramic tool. Mechanika, 3(77), 68–73.
John, B. (2013). Application of desirability function for optimizing the performance characteristics of carbonitrided bushes. International Journal of Industrial Engineering Computations, 4(3), 305-314.
Hessainia, Z., Belbah, A., Yallese, M.A., Mabrouki, T., & Rigal, J.F. (2013). On the prediction of surface roughness in the hard turning based on cutting parameters and tool vibrations.Measurement, 46(5), 1671–1681.
Hessainia, Z., Yallese, M.A., Bouzid, L., & Mabrouki, T. (2015). On the application of response surface methodology for predicting and optimizing surface roughness and cutting forces in hard turning by PVD coated insert. International Journal of Industrial Engineering Computations, 6(2), 267–284.
Huang, L., & Chen, J.C. (2001). A multiple regression model to predict in-process surface roughness in turning operation via accelerometer. Journal of Industrial Technology, 17(2), 1-8.
Keblouti, O., Boulanouar, L., Azizia, M. W., & Yallese, M. A. (2016). Modeling and multi-objective optimization of surface roughness and productivity in dry turning of AISI 52100 steel using (TiCN-TiN) coating cermet tools. International Journal of Industrial Engineering Computations, 8(1), 71–84.
Kadirgama, K., Noor, M.M., Rahman, M.M., Rejab, M.R.M., Haron, C.H.C., & Abou-El-Hossein, K.A. (2009). Surface Roughness Prediction Model of 6061-T6 Aluminium Alloy Machining Using Statistical Method. European Journal of Scientific Research, 25(2), 250-256.
Kevin Chou, Y., Evans, C.J., & Barash, M.M. (2003). Experimental investigation on cubic boron nitride turning of hardened AISI 52100 steel. Journal of Materials Processing Technology, 134(1), 1–9.
Khairi, Y., Nukman, Y., Yusof, T.M., Dawal, S.Z., Qin Yang, H., Mahlia, T.M.I., & Tamrin, K.F. (2010). Effect of cutting parameters on the surface roughness of titanium alloys using end milling process. Scientific Research and Essays, 5(11), 1284-1293.
Khrais, S.K., & Lin, Y.J. (2007). Wear mechanisms and tool performance of TiAlN PVD coated inserts during machining of AISI 4140 steel. Wear, 262(1-2), 64–69.
Meddour, I., Yallese, M. A., Khattabi, R., Elbah, M., & Boulanouar, L. (2015). Investigation and modeling of cutting forces and surface roughness when hard turning of AISI 52100 steel with mixed ceramic tool: cutting conditions optimization. The International Journal of Advanced Manufacturing Technology, 77(5-8), 1387-1399.
Mohapatraa, K., Satpathya, M., & Sahooa, S. (2017). Comparison of optimization techniques for MRR and surface roughness in wire EDM process for gear cutting. International Journal of Industrial Engineering Computations, 8(2), 251-262.
Myers, R.H., & Montgomery, D.C. (2002). Response surface methodology: process and product optimization using designed experiments. 2nd ed. John Wiley and Sons, Inc.: New York,
Nayak, I., Rana, J., & Parida, A. (2017). Performance optimization in electro-discharge machining using a suitable multiresponse optimization technique. Decision Science Letters, 6(3), 283-294.
Oktem, H., Erzurumlu, T., & Kurtaran, H. (2005). Application of response surface methodology in the optimization of cutting conditions for surface roughness. Journal of Materials Processing Technology, 170(1-2), 11–16.
Panda, A., Sahoo, A., & Rout, R. (2016). Multi-attribute decision making parametric optimization and modeling in hard turning using ceramic insert through grey relational analysis: A case study. Decision Science Letters, 5(4), 581-592.
Patel, K.M., & Joshi, S.S. (2006). Mechanics of machining of face-milling operation performed using a self-propelled round insert milling cutter. Journal of Materials Processing Technology, 171(1), 68–76.
Richetti, A., Machado, A. R., Da Silva, M. B., Ezugwu, E. O., & Bonney, J. (2004). Influence of the number of inserts for tool life evaluation in face milling of steels. International Journal of Machine Tools and Manufacture, 44(7), 695-700.
Routara, B. C., Bandyopadhyay, A., & Sahoo, P. (2009). Roughness modeling and optimization in CNC end milling using response surface method: effect of workpiece material variation. The International Journal of Advanced Manufacturing Technology, 40(11-12), 1166-1180.
Tebassi, H., Yallese, M., Khettabi, R., Belhadi, S., Meddour, I., & Girardin, F. (2016). Multi-objective optimization of surface roughness, cutting forces, productivity and Power consumption when turning of Inconel 718. International Journal of Industrial Engineering Computations, 7(1), 111-134.
Sahoo, A.K., & Mishra. P.C. (2014). A response surface methodology and desirability approach for predictive modeling and optimization of cutting temperature in machining hardened steel. International Journal of Industrial Engineering Computations, 5(3), 407–416.
Yallese, M.A., Chaoui, K., Zeghib, N., Boulanouar, L. & Rigal, J.F. (2009). Hard machining of hardened bearing steel using cubic boron nitride tool. Journal of Materials Processing Technology, 209(2), 1092-1104.