How to cite this paper
González-Neira, E., Montoya-Torres, J & Barrera, D. (2017). Flow-shop scheduling problem under uncertainties: Review and trends.International Journal of Industrial Engineering Computations , 8(4), 399-426.
Refrences
Adler, L., Fraiman, N., Kobacker, E., Pinedo, M., Plotnicoff, J. C., & Wu, T. P. (1993). BPSS: A Scheduling Support System for the Packaging Industry. Operations Research, 41(4), 641–648. https://doi.org/10.1287/ opre.41.4.641
Adressi, a., Tasouji Hassanpour, S., & Azizi, V. (2016). Solving group scheduling problem in no-wait flexible flowshop with random machine breakdown. Decision Science Letters, 5(JANUARY), 157–168. https://doi.org/10.5267/j.dsl.2015.7.001
Alcaide, D., Rodriguez-Gonzalez, A., & Sicilia, J. (2002). An approach to solve the minimum expected makespan flow-shop problem subject to breakdowns. European Journal of Operational Research, 140(2), 384–398. https://doi.org/10.1016/S0377-2217(02)00077-2
Alfieri, A. (2007). Due date quoting and scheduling interaction in production lines. International Journal of Computer Integrated Manufacturing, 20(6), 579–587. https://doi.org/10.1080/09511920601079363
Allahverdi, A. (2004). Stochastically minimizing makespan on a three-machine flowshop. International Journal of Industrial Engineering : Theory Applications and Practice, 11(2), 124–131. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-3943102113&partnerID=tZOtx3y1
Allahverdi, A. (2006). Two-machine flowshop scheduling problem to minimize total completion time with bounded setup and processing times. International Journal of Production Economics, 103(1), 386–400. https://doi.org/10.1016/j.ijpe.2005.10.002
Allahverdi, A., Aldowaisan, T., & Sotskov, Y. N. (2003). Two-machine flowshop scheduling problem to minimize makespan or total completion time with random and bounded setup times. International Journal of Mathematics and Mathematical Sciences, 2003(39), 2475–2486. https://doi.org/10.1155/S016117120321019X
Allahverdi, A., & Aydilek, H. (2010a). Heuristics for the two-machine flowshop scheduling problem to minimise makespan with bounded processing times. International Journal of Production Research, 48(21), 6367–6385. https://doi.org/10.1080/00207540903321657
Allahverdi, A., & Aydilek, H. (2010b). Heuristics for the two-machine flowshop scheduling problem to minimize maximum lateness with bounded processing times. Computers & Mathematics with Applications, 60(5), 1374–1384. https://doi.org/10.1016/j.camwa.2010.06.019
Allahverdi, A., & Savsar, M. (2001). Stochastic proportionate flowshop scheduling with setups. Computers & Industrial Engineering, 39(3–4), 357–369. https://doi.org/10.1016/S0360-8352(01)00011-0
Almeder, C., & Hartl, R. F. (2013). A metaheuristic optimization approach for a real-world stochastic flexible flow shop problem with limited buffer. International Journal of Production Economics, 145(1), 88–95. https://doi.org/10.1016/j.ijpe.2012.09.014
Averbakh, I. (2006). The minmax regret permutation flow-shop problem with two jobs. European Journal of Operational Research, 169(3), 761–766. https://doi.org/10.1016/j.ejor.2004.07.073
Aydilek, A., Aydilek, H., & Allahverdi, A. (2013). Increasing the profitability and competitiveness in a production environment with random and bounded setup times. International Journal of Production Research, 51(1), 106–117. https://doi.org/10.1080/00207543.2011.652263
Aydilek, A., Aydilek, H., & Allahverdi, A. (2015). Production in a two-machine flowshop scheduling environment with uncertain processing and setup times to minimize makespan. International Journal of Production Research, 53(9), 2803–2819. https://doi.org/10.1080/00207543.2014.997403
Aydilek, H., & Allahverdi, A. (2010). Two-machine flowshop scheduling problem with bounded processing times to minimize total completion time. Computers & Mathematics with Applications, 59(2), 684–693. https://doi.org/10.1016/j.camwa.2009.10.025
Aydilek, H., & Allahverdi, A. (2013). A polynomial time heuristic for the two-machine flowshop scheduling problem with setup times and random processing times. Applied Mathematical Modelling, 37(12–13), 7164–7173. https://doi.org/10.1016/j.apm.2013.02.003
Azadeh, A., Jeihoonian, M., Shoja, B. M., & Seyedmahmoudi, S. H. (2012). An integrated neural network–simulation algorithm for performance optimisation of the bi-criteria two-stage assembly flow-shop scheduling problem with stochastic activities. International Journal of Production Research, 50(24), 7271–7284. https://doi.org/10.1080/00207543.2011.645511
Azadeh, A., Moghaddam, M., Geranmayeh, P., & Naghavi, A. (2010). A flexible artificial neural network–fuzzy simulation algorithm for scheduling a flow shop with multiple processors. The International Journal of Advanced Manufacturing Technology, 50(5–8), 699–715. https://doi.org/10.1007/s00170-010-2533-6
Azaron, A., Katagiri, H., Kato, K., & Sakawa, M. (2006). Longest path analysis in networks of queues: Dynamic scheduling problems. European Journal of Operational Research, 174(1), 132–149. https://doi.org/10.1016/j.ejor.2005.02.018
Badger, D., Nursten, J., Williams, P., & Woodward, M. (2000). Should All Literature Reviews be Systematic? Evaluation & Research in Education, 14(3–4), 220–230. https://doi.org/10.1080/09500790008666974
Baker, K. R., & Altheimer, D. (2012). Heuristic solution methods for the stochastic flow shop problem. European Journal of Operational Research, 216(1), 172–177. https://doi.org/10.1016/j.ejor.2011.07.021
Baker, K. R., & Trietsch, D. (2011). Three heuristic procedures for the stochastic, two-machine flow shop problem. Journal of Scheduling, 14(5), 445–454. https://doi.org/10.1007/s10951-010-0219-4
Balasubramanian, J., & Grossmann, I. E. (2002). A novel branch and bound algorithm for scheduling flowshop plants with uncertain processing times. Computers & Chemical Engineering, 26(1), 41–57. https://doi.org/10.1016/S0098-1354(01)00735-9
Balasubramanian, J., & Grossmann, I. E. (2003). Scheduling optimization under uncertainty—an alternative approach. Computers & Chemical Engineering, 27(4), 469–490. https://doi.org/10.1016/S0098-1354(02)00221-1
Bayat, M., Heydari, M., & Mahdavi Mazdeh, M. (2013). Heuristic for stochastic online flowshop problem with preemption penalties. Discrete Dynamics in Nature and Society, 2013, 1–10. https://doi.org/10.1155/2013/916978
Behnamian, J. (2016). Survey on fuzzy shop scheduling. Fuzzy Optimization and Decision Making, 15(3), 331–366. https://doi.org/10.1007/s10700-015-9225-5
Behnamian, J., & Fatemi Ghomi, S. M. T. (2014). Multi-objective fuzzy multiprocessor flowshop scheduling. Applied Soft Computing, 21, 139–148. https://doi.org/10.1016/j.asoc.2014.03.031
Brucker, P. (2007). Scheduling Algorithms (5th ed.). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-69516-5
CELANO, G., COSTA, A., & FICHERA, S. (2003). An evolutionary algorithm for pure fuzzy flowshop scheduling problems. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 11(6), 655–669. https://doi.org/10.1142/S0218488503002466
Chaari, T., Chaabane, S., Loukil, T., & Trentesaux, D. (2011). A genetic algorithm for robust hybrid flow shop scheduling. International Journal of Computer Integrated Manufacturing, 24(9), 821–833. https://doi.org/10.1080/0951192X.2011.575181
Chang, Y.-C., & Huang, W.-T. (2014). An enhanced model for SDBR in a random reentrant flow shop environment. International Journal of Production Research, 52(6), 1808–1826. https://doi.org/10.1080/00207543.2013.848491
Chen, G., & Shen, Z.-J. M. (2007). Probabilistic asymptotic analysis of stochastic online scheduling problems. IIE Transactions, 39(5), 525–538. https://doi.org/10.1080/07408170600941623
Choi, S. H., & Wang, K. (2012). Flexible flow shop scheduling with stochastic processing times: A decomposition-based approach. Computers & Industrial Engineering, 63(2), 362–373. https://doi.org/10.1016/j.cie.2012.04.001
Chutima, P., & Yiangkamolsing, C. (2003). Application of fuzzy genetic algorithm for sequencing in mixed-model assembly line with processing time. International Journal of Industrial Engineering : Theory Applications and Practice, 10(4), 325–331. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-1942422550&partnerID=tZOtx3y1
Cui, Z., & Gu, X. (2014). A Discrete Group Search Optimizer for Hybrid Flowshop Scheduling Problem with Random Breakdown. Mathematical Problems in Engineering, 2014, 1–11. https://doi.org/10.1155/2014/621393
Ćwik, M., & Józefczyk, J. (2015). Evolutionary Algorithm for Minmax Regret Flow-Shop Problem. Management and Production Engineering Review, 6(3), 3–9. https://doi.org/10.1515/mper-2015-0021
Delbufalo, E. (2012). Outcomes of inter‐organizational trust in supply chain relationships: a systematic literature review and a meta‐analysis of the empirical evidence. Supply Chain Management: An International Journal, 17(4), 377–402. https://doi.org/10.1108/13598541211246549
Diep, T., Kenné, J.-P., & Dao, T.-M. (2010). Feedback optimal control of dynamic stochastic two-machine flowshop with a finite buffer. International Journal of Industrial Engineering Computations, 1(2), 95–120. https://doi.org/10.5267/j.ijiec.2010.02.001
Du, J., & Leung, J. Y.-T. (1990). Minimizing Total Tardiness on One Machine Is NP-Hard. Mathematics of Operations Research, 15(3), 483–495. https://doi.org/10.2307/3689992
Ebrahimi, M., Fatemi Ghomi, S. M. T. M. T., & Karimi, B. (2014). Hybrid flow shop scheduling with sequence dependent family setup time and uncertain due dates. Applied Mathematical Modelling, 38(9–10), 2490–2504. https://doi.org/10.1016/j.apm.2013.10.061
Elyasi, A., & Salmasi, N. (2013a). Stochastic flow-shop scheduling with minimizing the expected number of tardy jobs. International Journal of Advanced Manufacturing Technology, 66(1–4), 337–346. https://doi.org/10.1007/s00170-012-4328-4
Elyasi, A., & Salmasi, N. (2013b). Stochastic scheduling with minimizing the number of tardy jobs using chance constrained programming. Mathematical and Computer Modelling, 57(5–6), 1154–1164. https://doi.org/10.1016/j.mcm.2012.10.017
Farahani, R. Z., Rezapour, S., Drezner, T., & Fallah, S. (2014). Competitive supply chain network design: An overview of classifications, models, solution techniques and applications. Omega, 45, 92–118. https://doi.org/10.1016/j.omega.2013.08.006
Fazayeli, M., Aleagha, M.-R., Bashirzadeh, R., & Shafaei, R. (2016). A hybrid meta-heuristic algorithm for flowshop robust scheduling under machine breakdown uncertainty. International Journal of Computer Integrated Manufacturing, 29(7), 709–719. https://doi.org/10.1080/0951192X.2015.1067907
Feng, X., Zheng, F., & Xu, Y. (2016). Robust scheduling of a two-stage hybrid flow shop with uncertain interval processing times. International Journal of Production Research, 54(12), 3706–3717. https://doi.org/10.1080/00207543.2016.1162341
Fink, A. (1998). Conducting Research Literature Reviews: From Paper to the Internet. (A. Fink, Ed.), BMS: Bulletin of Sociological Methodology / Bulletin de Méthodologie Sociologique (Vol. 60). Thousand Oaks, CA, USA: Sage Publications, Ltd. https://doi.org/10.2307/24359723
Framinan, J. M., & Perez-Gonzalez, P. (2015). On heuristic solutions for the stochastic flowshop scheduling problem. European Journal of Operational Research, 246(2), 413–420. https://doi.org/10.1016/j.ejor.2015.05.006
Geismar, H. N., & Pinedo, M. (2010). Robotic cells with stochastic processing times. IIE Transactions, 42(12), 897–914. https://doi.org/10.1080/0740817X.2010.491505
Geng, J.-C., Cui, Z., & Gu, X.-S. (2016). Scatter search based particle swarm optimization algorithm for earliness/tardiness flowshop scheduling with uncertainty. International Journal of Automation and Computing, 13(3), 285–295. https://doi.org/10.1007/s11633-016-0964-8
Gholami-Zanjani, S. M., Hakimifar, M., Nazemi, N., & Jolai, F. (2016). Robust and Fuzzy Optimisation Models for a Flow shop Scheduling Problem with Sequence Dependent Setup Times: A real case study on a PCB assembly company. International Journal of Computer Integrated Manufacturing, 1–12. https://doi.org/10.1080/0951192X.2016.1187293
Gholami, M., Zandieh, M., & Alem-Tabriz, A. (2009). Scheduling hybrid flow shop with sequence-dependent setup times and machines with random breakdowns. The International Journal of Advanced Manufacturing Technology, 42(1–2), 189–201. https://doi.org/10.1007/s00170-008-1577-3
González-Neira, E. M., García-Cáceres, R. G., Caballero-Villalobos, J. P., Molina-Sánchez, L. P., & Montoya-Torres, J. R. (2016). Stochastic flexible flow shop scheduling problem under quantitative and qualitative decision criteria. Computers & Industrial Engineering, 101, 128–144. https://doi.org/10.1016/j.cie.2016.08.026
Gören, S., & Pierreval, H. (2013). Taking advantage of a diverse set of efficient production schedules: A two-step approach for scheduling with side concerns. Computers & Operations Research, 40(8), 1979–1990. https://doi.org/10.1016/j.cor.2013.02.016
Gourgand, M., Grangeon, N., & Norre, S. (2000a). A review of the static stochastic flow-shop scheduling problem. Journal of Decision Systems, 9(2), 1–31. https://doi.org/10.1080/12460125.2000.9736710
Gourgand, M., Grangeon, N., & Norre, S. (2000b). Meta-heuristics for the deterministic hybrid flow shop problem. Journal Europeen Des Systemes Automatises, 34(9), 1107–1135. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-0041780055&partnerID=tZOtx3y1
Gourgand, M., Grangeon, N., & Norre, S. (2003). A contribution to the stochastic flow shop scheduling problem. European Journal of Operational Research, 151(2), 415–433. https://doi.org/10.1016/S0377-2217(02)00835-4
Gourgand, M., Grangeon, N., & Norre, S. (2005). Markovian analysis for performance evaluation and scheduling in m machine stochastic flow-shop with buffers of any capacity. European Journal of Operational Research, 161(1), 126–147. https://doi.org/10.1016/j.ejor.2003.08.032
Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. H. G. R. (1979). Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey. In Annals of Discrete Mathematics (Vol. 5, pp. 287–326). Elsevier. https://doi.org/10.1016/S0167-5060(08)70356-X
Han, Y., Gong, D., Jin, Y., & Pan, Q. (2016). Evolutionary multi-objective blocking lot-streaming flow shop scheduling with interval processing time. Applied Soft Computing, 42, 229–245. https://doi.org/10.1016/j.asoc.2016.01.033
Heydari, M., Mahdavi Mazdeh, M., & Bayat, M. (2013). Scheduling stochastic two-machine flow shop problems to minimize expected makespan. Decision Science Letters, 2(3), 163–174. https://doi.org/10.5267/j.dsl.2013.04.005
Holthaus, O. (1999). Scheduling in job shops with machine breakdowns: An experimental study. Computers and Industrial Engineering, 36(1), 137–162. https://doi.org/10.1016/S0360-8352(99)00006-6
Hong, T. P., & Chuang, T. N. (2005). Fuzzy Gupta scheduling for flow shops with more than two machines. International Journal of Computers and Applications. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-23444452878&partnerID=tZOtx3y1
Huang, C.-S., Huang, Y.-C., & Lai, P.-J. (2012). Modified genetic algorithms for solving fuzzy flow shop scheduling problems and their implementation with CUDA. Expert Systems with Applications, 39(5), 4999–5005. https://doi.org/10.1016/j.eswa.2011.10.013
Javadi, B., Saidi-Mehrabad, M., Haji, A., Mahdavi, I., Jolai, F., & Mahdavi-Amiri, N. (2008). No-wait flow shop scheduling using fuzzy multi-objective linear programming. Journal of the Franklin Institute, 345(5), 452–467. https://doi.org/10.1016/j.jfranklin.2007.12.003
Jiao, B., Chen, Q., & Yan, S. (2011). A Cooperative Co-evolution PSO for Flow Shop Scheduling Problem with Uncertainty. Journal of Computers, 6(9), 1955–1961. https://doi.org/10.4304/jcp.6.9.1955-1961
Jiao, B., & Yan, S. (2014). A cooperative co-evolutionary particle swarm optimiser based on a niche sharing scheme for the flow shop scheduling problem under uncertainty. Mathematical Structures in Computer Science, 24(5), e240502. https://doi.org/10.1017/S0960129512000461
Juan, A. A., Barrios, B. B., Vallada, E., Riera, D., & Jorba, J. (2014). A simheuristic algorithm for solving the permutation flow shop problem with stochastic processing times. Simulation Modelling Practice and Theory, 46, 101–117. https://doi.org/10.1016/j.simpat.2014.02.005
Kalczynski, P. J., & Kamburowski, J. (2004). Generalization of Johnson’s and Talwar’s scheduling rules in two-machine stochastic flow shops. Journal of the Operational Research Society, 55(12), 1358–1362. https://doi.org/10.1057/palgrave.jors.2601802
Kalczynski, P. J., & Kamburowski, J. (2005). Two-Machine Stochastic Flow Shops With Blocking and the Traveling Salesman Problem. Journal of Scheduling, 8(6), 529–536. https://doi.org/10.1007/s10951-005-4782-z
Kalczynski, P. J., & Kamburowski, J. (2006). A heuristic for minimizing the expected makespan in two-machine flow shops with consistent coefficients of variation. European Journal of Operational Research, 169(3), 742–750. https://doi.org/10.1016/j.ejor.2004.08.045
Kasperski, A., Kurpisz, A., & Zieliński, P. (2012). Approximating a two-machine flow shop scheduling under discrete scenario uncertainty. European Journal of Operational Research, 217(1), 36–43. https://doi.org/10.1016/j.ejor.2011.08.029
Katragjini, K., Vallada, E., & Ruiz, R. (2013). Flow shop rescheduling under different types of disruption. International Journal of Production Research, 51(3), 780–797. https://doi.org/10.1080/00207543.2012.666856
Lee, C.-Y., Cheng, T. C. E., & Lin, B. M. T. (1993). Minimizing the Makespan in the 3-Machine Assembly-Type Flowshop Scheduling Problem. Management Science, 39(5), 616–625. https://doi.org/10.1287/mnsc.39.5.616
Lei, D. (2012). Interval job shop scheduling problems. The International Journal of Advanced Manufacturing Technology, 60(1–4), 291–301. https://doi.org/10.1007/s00170-011-3600-3
Leung, J., Kelly, L., & Anderson, J. H. (2004). Handbook of Scheduling: Algorithms, Models, and Performance Analysis. Boca Raton, FL, USA: CRC Press, Inc.
Li, Z., & Ierapetritou, M. (2008). Process scheduling under uncertainty: Review and challenges. Computers & Chemical Engineering, 32(4–5), 715–727. https://doi.org/10.1016/j.compchemeng.2007.03.001
Liefooghe, A., Basseur, M., Humeau, J., Jourdan, L., & Talbi, E.-G. (2012). On optimizing a bi-objective flowshop scheduling problem in an uncertain environment. Computers & Mathematics with Applications, 64(12), 3747–3762. https://doi.org/10.1016/j.camwa.2012.02.051
Lin, J. T., & Chen, C.-M. (2015). Simulation optimization approach for hybrid flow shop scheduling problem in semiconductor back-end manufacturing. Simulation Modelling Practice and Theory, 51, 100–114. https://doi.org/10.1016/j.simpat.2014.10.008
Liu, Q., Ullah, S., & Zhang, C. (2011). An improved genetic algorithm for robust permutation flowshop scheduling. The International Journal of Advanced Manufacturing Technology, 56(1–4), 345–354. https://doi.org/10.1007/s00170-010-3149-6
Matsveichuk, N. M., Sotskov, Y. N., Egorova, N. G., & Lai, T.-C. (2009). Schedule execution for two-machine flow-shop with interval processing times. Mathematical and Computer Modelling, 49(5–6), 991–1011. https://doi.org/10.1016/j.mcm.2008.02.004
Matsveichuk, N. M., Sotskov, Y. N., & Werner, F. (2011). The dominance digraph as a solution to the two-machine flow-shop problem with interval processing times. Optimization, 60(12), 1493–1517. https://doi.org/10.1080/02331931003657691
Mirsanei, H. S., Zandieh, M., Moayed, M. J., & Khabbazi, M. R. (2010). A simulated annealing algorithm approach to hybrid flow shop scheduling with sequence-dependent setup times. Journal of Intelligent Manufacturing, 22(6), 965–978. https://doi.org/10.1007/s10845-009-0373-8
Moore, R. E., & Bierbaum, F. (1979). Methods and applications of interval analysis (Vol. 2). Philadelphia: Siam.
Mou, J., Li, X., Gao, L., & Yi, W. (2015). An effective L-MONG algorithm for solving multi-objective flow-shop inverse scheduling problems. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-015-1129-2
Nagasawa, K., Ikeda, Y., & Irohara, T. (2015). Robust flow shop scheduling with random processing times for reduction of peak power consumption. Simulation Modelling Practice and Theory. https://doi.org/10.1016/j.simpat.2015.08.001
Nakhaeinejad, M., & Nahavandi, N. (2013). An interactive algorithm for multi-objective flow shop scheduling with fuzzy processing time through resolution method and TOPSIS. The International Journal of Advanced Manufacturing Technology, 66(5–8), 1047–1064. https://doi.org/10.1007/s00170-012-4388-5
Nezhad, S. S., & Assadi, R. G. (2008). Preference ratio-based maximum operator approximation and its application in fuzzy flow shop scheduling. Applied Soft Computing, 8(1), 759–766. https://doi.org/10.1016/j.asoc.2007.06.004
NG, C. T., MATSVEICHUK, N. M., SOTSKOV, Y. N., & CHENG, T. C. E. (2009). TWO-MACHINE FLOW-SHOP MINIMUM-LENGTH SCHEDULING WITH INTERVAL PROCESSING TIMES. Asia-Pacific Journal of Operational Research, 26(6), 715–734. https://doi.org/10.1142/S0217595909002432
Niu, Q., & Gu, X. S. (2008). A novel particle swarm optimization for flow shop scheduling with fuzzy processing time. Journal of Donghua University (English Edition), 25(2), 115–122. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-54849420518&partnerID=tZOtx3y1
Noroozi, A., & Mokhtari, H. (2015). Scheduling of printed circuit board (PCB) assembly systems with heterogeneous processors using simulation-based intelligent optimization methods. Neural Computing and Applications, 26(4), 857–873. https://doi.org/10.1007/s00521-014-1765-z
Pan, Q.-K., Wang, L., Mao, K., Zhao, J.-H., & Zhang, M. (2013). An Effective Artificial Bee Colony Algorithm for a Real-World Hybrid Flowshop Problem in Steelmaking Process. IEEE Transactions on Automation Science and Engineering, 10(2), 307–322. https://doi.org/10.1109/TASE.2012.2204874
Paul, S. K., & Azeem, A. (2010). Minimization of work-in-process inventory in hybrid flow shop scheduling using fuzzy logic. International Journal of Industrial Engineering : Theory Applications and Practice, 17(2), 115–127. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-77955062869&partnerID=tZOtx3y1
Petrovic, S., & Song, X. (2006). A new approach to two-machine flow shop problem with uncertain processing times. Optimization and Engineering, 7(3), 329–342. https://doi.org/10.1007/s11081-006-9975-6
Pinedo, M. L. (2012). Scheduling: Theory, algorithms and systems. Springer (4th ed., Vol. 4). New York: Springer Science & Business Media. https://doi.org/10.1007/978-1-4614-2361-4
Qin, W., Zhang, · J, Song, · D, Zhang, J., & Song, D. (2015). An improved ant colony algorithm for dynamic hybrid flow shop scheduling with uncertain processing time. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-015-1144-3
Rahmani, D., & Heydari, M. (2014). Robust and stable flow shop scheduling with unexpected arrivals of new jobs and uncertain processing times. Journal of Manufacturing Systems, 33(1), 84–92. https://doi.org/10.1016/j.jmsy.2013.03.004
Rahmani, D., Ramezanian, R., & Mehrabad, M. S. (2014). Multi-objective flow shop scheduling problem with stochastic parameters: fuzzy goal programming approach. International Journal of Operational Research, 21(3), 322–340. https://doi.org/10.1504/IJOR.2014.065411
Ramezanian, R., & Saidi-Mehrabad, M. (2013). Hybrid simulated annealing and MIP-based heuristics for stochastic lot-sizing and scheduling problem in capacitated multi-stage production system. Applied Mathematical Modelling, 37(7), 5134–5147. https://doi.org/10.1016/j.apm.2012.10.024
Ruiz, R., Şerifoğlu, F. S., & Urlings, T. (2008). Modeling realistic hybrid flexible flowshop scheduling problems. Computers & Operations Research, 35(4), 1151–1175. https://doi.org/10.1016/j.cor.2006.07.014
Ruiz, R., & Vázquez-Rodríguez, J. A. (2010). The hybrid flow shop scheduling problem. European Journal of Operational Research, 205(1), 1–18. https://doi.org/10.1016/j.ejor.2009.09.024
Safari, E., Sadjadi, S. J., & Shahanaghi, K. (2009). Minimizing expected makespan in flowshop with on condition based maintenance constraint by integrating heuristics and simulation. World Journal of Modelling and Simulation, 5(4), 261–271. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-78649455491&partnerID=tZOtx3y1
Sancar Edis, R., & Ornek, M. A. (2009). A tabu search-based heuristic for single-product lot streaming problems in flow shops. The International Journal of Advanced Manufacturing Technology, 43(11–12), 1202–1213. https://doi.org/10.1007/s00170-008-1798-5
Schultmann, F., Fröhling, M., & Rentz, O. (2006). Fuzzy approach for production planning and detailed scheduling in paints manufacturing. International Journal of Production Research, 44(8), 1589–1612. https://doi.org/10.1080/00207540500353939
Shahnaghi, K., Shahmoradi-Moghadam, H., Noroozi, A., & Mokhtari, H. (2016). A robust modelling and optimisation framework for a batch processing flow shop production system in the presence of uncertainties. International Journal of Computer Integrated Manufacturing, 29(1), 92–106. https://doi.org/10.1080/0951192X.2014.1002814
Soroush, H. M., & Allahverdi, A. (2005). Stochastic two-machine flowshop scheduling problem with total completion time criterion. International Journal of Industrial Engineering : Theory Applications and Practice, 12(2), 159–171. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-33746598230&partnerID=tZOtx3y1
Sotskov, Y. N., Allahverdi, A., & Lai, T.-C. (2004). Flowshop scheduling problem to minimize total completion time with random and bounded processing times. Journal of the Operational Research Society, 55(3), 277–286. https://doi.org/10.1057/palgrave.jors.2601682
Swaminathan, R., Pfund, M. E., Fowler, J. W., Mason, S. J., & Keha, A. (2007). Impact of permutation enforcement when minimizing total weighted tardiness in dynamic flowshops with uncertain processing times. Computers & Operations Research, 34(10), 3055–3068. https://doi.org/10.1016/j.cor.2005.11.014
Temİz, İ., & Erol, S. (2004). Fuzzy branch-and-bound algorithm for flow shop scheduling. Journal of Intelligent Manufacturing, 15(4), 449–454. https://doi.org/10.1023/B:JIMS.0000034107.72423.b6
Thomé, A. M. T., Scavarda, L. F., & Scavarda, A. J. (2016). Conducting systematic literature review in operations management. Production Planning & Control, 27(5), 408–420. https://doi.org/10.1080/09537287.2015.1129464
Wang, K., & Choi, S. H. (2010). Decomposition-based scheduling for makespan minimisation of flexible flow shop with stochastic processing times. Engineering Letters, 18(1). Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-76549084080&partnerID=tZOtx3y1
Wang, K., & Choi, S. H. (2011). A decomposition-based approach to flexible flow shop scheduling under machine breakdown. International Journal of Production Research, 50(1), 215–234. https://doi.org/10.1080/00207543.2011.571456
Wang, K., & Choi, S. H. (2014). A holonic approach to flexible flow shop scheduling under stochastic processing times. Computers & Operations Research, 43(1), 157–168. https://doi.org/10.1016/j.cor.2013.09.013
Wang, K., Choi, S. H., & Qin, H. (2014). An estimation of distribution algorithm for hybrid flow shop scheduling under stochastic processing times. International Journal of Production Research, 52(24), 7360–7376. https://doi.org/10.1080/00207543.2014.930535
Wang, K., Choi, S. H., Qin, H., & Huang, Y. (2013). A cluster-based scheduling model using SPT and SA for dynamic hybrid flow shop problems. The International Journal of Advanced Manufacturing Technology, 67(9–12), 2243–2258. https://doi.org/10.1007/s00170-012-4645-7
Wang, K., Huang, Y., & Qin, H. (2016). A fuzzy logic-based hybrid estimation of distribution algorithm for distributed permutation flowshop scheduling problems under machine breakdown. Journal of the Operational Research Society, 67(1), 68–82. https://doi.org/10.1057/jors.2015.50
Wang, L., Zhang, L., & Zheng, D.-Z. Z. (2005a). A class of hypothesis-test-based genetic algorithms for flow shop scheduling with stochastic processing time. The International Journal of Advanced Manufacturing Technology, 25(11–12), 1157–1163. https://doi.org/10.1007/s00170-003-1961-y
Wang, L., Zhang, L., & Zheng, D.-Z. Z. (2005b). Genetic ordinal optimisation for stochastic flow shop scheduling. The International Journal of Advanced Manufacturing Technology, 27(1–2), 166–173. https://doi.org/10.1007/s00170-004-2154-z
Wang, S., Wang, L., Liu, M., & Xu, Y. (2015). An order-based estimation of distribution algorithm for stochastic hybrid flow-shop scheduling problem. International Journal of Computer Integrated Manufacturing, 28(3), 307–320. https://doi.org/10.1080/0951192X.2014.880803
Yang *, T., Kuo, Y., & Chang, I. (2004). Tabu-search simulation optimization approach for flow-shop scheduling with multiple processors — a case study. International Journal of Production Research, 42(19), 4015–4030. https://doi.org/10.1080/00207540410001699381
Yimer, A. D., & Demirli, K. (2009). Fuzzy scheduling of job orders in a two-stage flowshop with batch-processing machines. International Journal of Approximate Reasoning, 50(1), 117–137. https://doi.org/10.1016/j.ijar.2007.08.013
Ying, K. (2015). Scheduling the two-machine flowshop to hedge against processing time uncertainty. Journal of the Operational Research Society, 66(9), 1413–1425. https://doi.org/10.1057/jors.2014.100
Zandieh, M., Fatemi Ghomi, S. M. T., & Moattar Husseini, S. M. (2006). An immune algorithm approach to hybrid flow shops scheduling with sequence-dependent setup times. Applied Mathematics and Computation, 180(1), 111–127. https://doi.org/10.1016/j.amc.2005.11.136
Zandieh, M., & Gholami, M. (2009). An immune algorithm for scheduling a hybrid flow shop with sequence-dependent setup times and machines with random breakdowns. International Journal of Production Research, 47(24), 6999–7027. https://doi.org/10.1080/00207540802400636
Zandieh, M., & Hashemi, A. (2015). Group scheduling in hybrid flexible flowshop with sequence-dependent setup times and random breakdowns via integrating genetic algorithm and simulation. International Journal of Industrial and Systems Engineering, 21(3), 377. https://doi.org/10.1504/IJISE.2015.072273
Adressi, a., Tasouji Hassanpour, S., & Azizi, V. (2016). Solving group scheduling problem in no-wait flexible flowshop with random machine breakdown. Decision Science Letters, 5(JANUARY), 157–168. https://doi.org/10.5267/j.dsl.2015.7.001
Alcaide, D., Rodriguez-Gonzalez, A., & Sicilia, J. (2002). An approach to solve the minimum expected makespan flow-shop problem subject to breakdowns. European Journal of Operational Research, 140(2), 384–398. https://doi.org/10.1016/S0377-2217(02)00077-2
Alfieri, A. (2007). Due date quoting and scheduling interaction in production lines. International Journal of Computer Integrated Manufacturing, 20(6), 579–587. https://doi.org/10.1080/09511920601079363
Allahverdi, A. (2004). Stochastically minimizing makespan on a three-machine flowshop. International Journal of Industrial Engineering : Theory Applications and Practice, 11(2), 124–131. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-3943102113&partnerID=tZOtx3y1
Allahverdi, A. (2006). Two-machine flowshop scheduling problem to minimize total completion time with bounded setup and processing times. International Journal of Production Economics, 103(1), 386–400. https://doi.org/10.1016/j.ijpe.2005.10.002
Allahverdi, A., Aldowaisan, T., & Sotskov, Y. N. (2003). Two-machine flowshop scheduling problem to minimize makespan or total completion time with random and bounded setup times. International Journal of Mathematics and Mathematical Sciences, 2003(39), 2475–2486. https://doi.org/10.1155/S016117120321019X
Allahverdi, A., & Aydilek, H. (2010a). Heuristics for the two-machine flowshop scheduling problem to minimise makespan with bounded processing times. International Journal of Production Research, 48(21), 6367–6385. https://doi.org/10.1080/00207540903321657
Allahverdi, A., & Aydilek, H. (2010b). Heuristics for the two-machine flowshop scheduling problem to minimize maximum lateness with bounded processing times. Computers & Mathematics with Applications, 60(5), 1374–1384. https://doi.org/10.1016/j.camwa.2010.06.019
Allahverdi, A., & Savsar, M. (2001). Stochastic proportionate flowshop scheduling with setups. Computers & Industrial Engineering, 39(3–4), 357–369. https://doi.org/10.1016/S0360-8352(01)00011-0
Almeder, C., & Hartl, R. F. (2013). A metaheuristic optimization approach for a real-world stochastic flexible flow shop problem with limited buffer. International Journal of Production Economics, 145(1), 88–95. https://doi.org/10.1016/j.ijpe.2012.09.014
Averbakh, I. (2006). The minmax regret permutation flow-shop problem with two jobs. European Journal of Operational Research, 169(3), 761–766. https://doi.org/10.1016/j.ejor.2004.07.073
Aydilek, A., Aydilek, H., & Allahverdi, A. (2013). Increasing the profitability and competitiveness in a production environment with random and bounded setup times. International Journal of Production Research, 51(1), 106–117. https://doi.org/10.1080/00207543.2011.652263
Aydilek, A., Aydilek, H., & Allahverdi, A. (2015). Production in a two-machine flowshop scheduling environment with uncertain processing and setup times to minimize makespan. International Journal of Production Research, 53(9), 2803–2819. https://doi.org/10.1080/00207543.2014.997403
Aydilek, H., & Allahverdi, A. (2010). Two-machine flowshop scheduling problem with bounded processing times to minimize total completion time. Computers & Mathematics with Applications, 59(2), 684–693. https://doi.org/10.1016/j.camwa.2009.10.025
Aydilek, H., & Allahverdi, A. (2013). A polynomial time heuristic for the two-machine flowshop scheduling problem with setup times and random processing times. Applied Mathematical Modelling, 37(12–13), 7164–7173. https://doi.org/10.1016/j.apm.2013.02.003
Azadeh, A., Jeihoonian, M., Shoja, B. M., & Seyedmahmoudi, S. H. (2012). An integrated neural network–simulation algorithm for performance optimisation of the bi-criteria two-stage assembly flow-shop scheduling problem with stochastic activities. International Journal of Production Research, 50(24), 7271–7284. https://doi.org/10.1080/00207543.2011.645511
Azadeh, A., Moghaddam, M., Geranmayeh, P., & Naghavi, A. (2010). A flexible artificial neural network–fuzzy simulation algorithm for scheduling a flow shop with multiple processors. The International Journal of Advanced Manufacturing Technology, 50(5–8), 699–715. https://doi.org/10.1007/s00170-010-2533-6
Azaron, A., Katagiri, H., Kato, K., & Sakawa, M. (2006). Longest path analysis in networks of queues: Dynamic scheduling problems. European Journal of Operational Research, 174(1), 132–149. https://doi.org/10.1016/j.ejor.2005.02.018
Badger, D., Nursten, J., Williams, P., & Woodward, M. (2000). Should All Literature Reviews be Systematic? Evaluation & Research in Education, 14(3–4), 220–230. https://doi.org/10.1080/09500790008666974
Baker, K. R., & Altheimer, D. (2012). Heuristic solution methods for the stochastic flow shop problem. European Journal of Operational Research, 216(1), 172–177. https://doi.org/10.1016/j.ejor.2011.07.021
Baker, K. R., & Trietsch, D. (2011). Three heuristic procedures for the stochastic, two-machine flow shop problem. Journal of Scheduling, 14(5), 445–454. https://doi.org/10.1007/s10951-010-0219-4
Balasubramanian, J., & Grossmann, I. E. (2002). A novel branch and bound algorithm for scheduling flowshop plants with uncertain processing times. Computers & Chemical Engineering, 26(1), 41–57. https://doi.org/10.1016/S0098-1354(01)00735-9
Balasubramanian, J., & Grossmann, I. E. (2003). Scheduling optimization under uncertainty—an alternative approach. Computers & Chemical Engineering, 27(4), 469–490. https://doi.org/10.1016/S0098-1354(02)00221-1
Bayat, M., Heydari, M., & Mahdavi Mazdeh, M. (2013). Heuristic for stochastic online flowshop problem with preemption penalties. Discrete Dynamics in Nature and Society, 2013, 1–10. https://doi.org/10.1155/2013/916978
Behnamian, J. (2016). Survey on fuzzy shop scheduling. Fuzzy Optimization and Decision Making, 15(3), 331–366. https://doi.org/10.1007/s10700-015-9225-5
Behnamian, J., & Fatemi Ghomi, S. M. T. (2014). Multi-objective fuzzy multiprocessor flowshop scheduling. Applied Soft Computing, 21, 139–148. https://doi.org/10.1016/j.asoc.2014.03.031
Brucker, P. (2007). Scheduling Algorithms (5th ed.). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-69516-5
CELANO, G., COSTA, A., & FICHERA, S. (2003). An evolutionary algorithm for pure fuzzy flowshop scheduling problems. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 11(6), 655–669. https://doi.org/10.1142/S0218488503002466
Chaari, T., Chaabane, S., Loukil, T., & Trentesaux, D. (2011). A genetic algorithm for robust hybrid flow shop scheduling. International Journal of Computer Integrated Manufacturing, 24(9), 821–833. https://doi.org/10.1080/0951192X.2011.575181
Chang, Y.-C., & Huang, W.-T. (2014). An enhanced model for SDBR in a random reentrant flow shop environment. International Journal of Production Research, 52(6), 1808–1826. https://doi.org/10.1080/00207543.2013.848491
Chen, G., & Shen, Z.-J. M. (2007). Probabilistic asymptotic analysis of stochastic online scheduling problems. IIE Transactions, 39(5), 525–538. https://doi.org/10.1080/07408170600941623
Choi, S. H., & Wang, K. (2012). Flexible flow shop scheduling with stochastic processing times: A decomposition-based approach. Computers & Industrial Engineering, 63(2), 362–373. https://doi.org/10.1016/j.cie.2012.04.001
Chutima, P., & Yiangkamolsing, C. (2003). Application of fuzzy genetic algorithm for sequencing in mixed-model assembly line with processing time. International Journal of Industrial Engineering : Theory Applications and Practice, 10(4), 325–331. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-1942422550&partnerID=tZOtx3y1
Cui, Z., & Gu, X. (2014). A Discrete Group Search Optimizer for Hybrid Flowshop Scheduling Problem with Random Breakdown. Mathematical Problems in Engineering, 2014, 1–11. https://doi.org/10.1155/2014/621393
Ćwik, M., & Józefczyk, J. (2015). Evolutionary Algorithm for Minmax Regret Flow-Shop Problem. Management and Production Engineering Review, 6(3), 3–9. https://doi.org/10.1515/mper-2015-0021
Delbufalo, E. (2012). Outcomes of inter‐organizational trust in supply chain relationships: a systematic literature review and a meta‐analysis of the empirical evidence. Supply Chain Management: An International Journal, 17(4), 377–402. https://doi.org/10.1108/13598541211246549
Diep, T., Kenné, J.-P., & Dao, T.-M. (2010). Feedback optimal control of dynamic stochastic two-machine flowshop with a finite buffer. International Journal of Industrial Engineering Computations, 1(2), 95–120. https://doi.org/10.5267/j.ijiec.2010.02.001
Du, J., & Leung, J. Y.-T. (1990). Minimizing Total Tardiness on One Machine Is NP-Hard. Mathematics of Operations Research, 15(3), 483–495. https://doi.org/10.2307/3689992
Ebrahimi, M., Fatemi Ghomi, S. M. T. M. T., & Karimi, B. (2014). Hybrid flow shop scheduling with sequence dependent family setup time and uncertain due dates. Applied Mathematical Modelling, 38(9–10), 2490–2504. https://doi.org/10.1016/j.apm.2013.10.061
Elyasi, A., & Salmasi, N. (2013a). Stochastic flow-shop scheduling with minimizing the expected number of tardy jobs. International Journal of Advanced Manufacturing Technology, 66(1–4), 337–346. https://doi.org/10.1007/s00170-012-4328-4
Elyasi, A., & Salmasi, N. (2013b). Stochastic scheduling with minimizing the number of tardy jobs using chance constrained programming. Mathematical and Computer Modelling, 57(5–6), 1154–1164. https://doi.org/10.1016/j.mcm.2012.10.017
Farahani, R. Z., Rezapour, S., Drezner, T., & Fallah, S. (2014). Competitive supply chain network design: An overview of classifications, models, solution techniques and applications. Omega, 45, 92–118. https://doi.org/10.1016/j.omega.2013.08.006
Fazayeli, M., Aleagha, M.-R., Bashirzadeh, R., & Shafaei, R. (2016). A hybrid meta-heuristic algorithm for flowshop robust scheduling under machine breakdown uncertainty. International Journal of Computer Integrated Manufacturing, 29(7), 709–719. https://doi.org/10.1080/0951192X.2015.1067907
Feng, X., Zheng, F., & Xu, Y. (2016). Robust scheduling of a two-stage hybrid flow shop with uncertain interval processing times. International Journal of Production Research, 54(12), 3706–3717. https://doi.org/10.1080/00207543.2016.1162341
Fink, A. (1998). Conducting Research Literature Reviews: From Paper to the Internet. (A. Fink, Ed.), BMS: Bulletin of Sociological Methodology / Bulletin de Méthodologie Sociologique (Vol. 60). Thousand Oaks, CA, USA: Sage Publications, Ltd. https://doi.org/10.2307/24359723
Framinan, J. M., & Perez-Gonzalez, P. (2015). On heuristic solutions for the stochastic flowshop scheduling problem. European Journal of Operational Research, 246(2), 413–420. https://doi.org/10.1016/j.ejor.2015.05.006
Geismar, H. N., & Pinedo, M. (2010). Robotic cells with stochastic processing times. IIE Transactions, 42(12), 897–914. https://doi.org/10.1080/0740817X.2010.491505
Geng, J.-C., Cui, Z., & Gu, X.-S. (2016). Scatter search based particle swarm optimization algorithm for earliness/tardiness flowshop scheduling with uncertainty. International Journal of Automation and Computing, 13(3), 285–295. https://doi.org/10.1007/s11633-016-0964-8
Gholami-Zanjani, S. M., Hakimifar, M., Nazemi, N., & Jolai, F. (2016). Robust and Fuzzy Optimisation Models for a Flow shop Scheduling Problem with Sequence Dependent Setup Times: A real case study on a PCB assembly company. International Journal of Computer Integrated Manufacturing, 1–12. https://doi.org/10.1080/0951192X.2016.1187293
Gholami, M., Zandieh, M., & Alem-Tabriz, A. (2009). Scheduling hybrid flow shop with sequence-dependent setup times and machines with random breakdowns. The International Journal of Advanced Manufacturing Technology, 42(1–2), 189–201. https://doi.org/10.1007/s00170-008-1577-3
González-Neira, E. M., García-Cáceres, R. G., Caballero-Villalobos, J. P., Molina-Sánchez, L. P., & Montoya-Torres, J. R. (2016). Stochastic flexible flow shop scheduling problem under quantitative and qualitative decision criteria. Computers & Industrial Engineering, 101, 128–144. https://doi.org/10.1016/j.cie.2016.08.026
Gören, S., & Pierreval, H. (2013). Taking advantage of a diverse set of efficient production schedules: A two-step approach for scheduling with side concerns. Computers & Operations Research, 40(8), 1979–1990. https://doi.org/10.1016/j.cor.2013.02.016
Gourgand, M., Grangeon, N., & Norre, S. (2000a). A review of the static stochastic flow-shop scheduling problem. Journal of Decision Systems, 9(2), 1–31. https://doi.org/10.1080/12460125.2000.9736710
Gourgand, M., Grangeon, N., & Norre, S. (2000b). Meta-heuristics for the deterministic hybrid flow shop problem. Journal Europeen Des Systemes Automatises, 34(9), 1107–1135. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-0041780055&partnerID=tZOtx3y1
Gourgand, M., Grangeon, N., & Norre, S. (2003). A contribution to the stochastic flow shop scheduling problem. European Journal of Operational Research, 151(2), 415–433. https://doi.org/10.1016/S0377-2217(02)00835-4
Gourgand, M., Grangeon, N., & Norre, S. (2005). Markovian analysis for performance evaluation and scheduling in m machine stochastic flow-shop with buffers of any capacity. European Journal of Operational Research, 161(1), 126–147. https://doi.org/10.1016/j.ejor.2003.08.032
Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. H. G. R. (1979). Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey. In Annals of Discrete Mathematics (Vol. 5, pp. 287–326). Elsevier. https://doi.org/10.1016/S0167-5060(08)70356-X
Han, Y., Gong, D., Jin, Y., & Pan, Q. (2016). Evolutionary multi-objective blocking lot-streaming flow shop scheduling with interval processing time. Applied Soft Computing, 42, 229–245. https://doi.org/10.1016/j.asoc.2016.01.033
Heydari, M., Mahdavi Mazdeh, M., & Bayat, M. (2013). Scheduling stochastic two-machine flow shop problems to minimize expected makespan. Decision Science Letters, 2(3), 163–174. https://doi.org/10.5267/j.dsl.2013.04.005
Holthaus, O. (1999). Scheduling in job shops with machine breakdowns: An experimental study. Computers and Industrial Engineering, 36(1), 137–162. https://doi.org/10.1016/S0360-8352(99)00006-6
Hong, T. P., & Chuang, T. N. (2005). Fuzzy Gupta scheduling for flow shops with more than two machines. International Journal of Computers and Applications. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-23444452878&partnerID=tZOtx3y1
Huang, C.-S., Huang, Y.-C., & Lai, P.-J. (2012). Modified genetic algorithms for solving fuzzy flow shop scheduling problems and their implementation with CUDA. Expert Systems with Applications, 39(5), 4999–5005. https://doi.org/10.1016/j.eswa.2011.10.013
Javadi, B., Saidi-Mehrabad, M., Haji, A., Mahdavi, I., Jolai, F., & Mahdavi-Amiri, N. (2008). No-wait flow shop scheduling using fuzzy multi-objective linear programming. Journal of the Franklin Institute, 345(5), 452–467. https://doi.org/10.1016/j.jfranklin.2007.12.003
Jiao, B., Chen, Q., & Yan, S. (2011). A Cooperative Co-evolution PSO for Flow Shop Scheduling Problem with Uncertainty. Journal of Computers, 6(9), 1955–1961. https://doi.org/10.4304/jcp.6.9.1955-1961
Jiao, B., & Yan, S. (2014). A cooperative co-evolutionary particle swarm optimiser based on a niche sharing scheme for the flow shop scheduling problem under uncertainty. Mathematical Structures in Computer Science, 24(5), e240502. https://doi.org/10.1017/S0960129512000461
Juan, A. A., Barrios, B. B., Vallada, E., Riera, D., & Jorba, J. (2014). A simheuristic algorithm for solving the permutation flow shop problem with stochastic processing times. Simulation Modelling Practice and Theory, 46, 101–117. https://doi.org/10.1016/j.simpat.2014.02.005
Kalczynski, P. J., & Kamburowski, J. (2004). Generalization of Johnson’s and Talwar’s scheduling rules in two-machine stochastic flow shops. Journal of the Operational Research Society, 55(12), 1358–1362. https://doi.org/10.1057/palgrave.jors.2601802
Kalczynski, P. J., & Kamburowski, J. (2005). Two-Machine Stochastic Flow Shops With Blocking and the Traveling Salesman Problem. Journal of Scheduling, 8(6), 529–536. https://doi.org/10.1007/s10951-005-4782-z
Kalczynski, P. J., & Kamburowski, J. (2006). A heuristic for minimizing the expected makespan in two-machine flow shops with consistent coefficients of variation. European Journal of Operational Research, 169(3), 742–750. https://doi.org/10.1016/j.ejor.2004.08.045
Kasperski, A., Kurpisz, A., & Zieliński, P. (2012). Approximating a two-machine flow shop scheduling under discrete scenario uncertainty. European Journal of Operational Research, 217(1), 36–43. https://doi.org/10.1016/j.ejor.2011.08.029
Katragjini, K., Vallada, E., & Ruiz, R. (2013). Flow shop rescheduling under different types of disruption. International Journal of Production Research, 51(3), 780–797. https://doi.org/10.1080/00207543.2012.666856
Lee, C.-Y., Cheng, T. C. E., & Lin, B. M. T. (1993). Minimizing the Makespan in the 3-Machine Assembly-Type Flowshop Scheduling Problem. Management Science, 39(5), 616–625. https://doi.org/10.1287/mnsc.39.5.616
Lei, D. (2012). Interval job shop scheduling problems. The International Journal of Advanced Manufacturing Technology, 60(1–4), 291–301. https://doi.org/10.1007/s00170-011-3600-3
Leung, J., Kelly, L., & Anderson, J. H. (2004). Handbook of Scheduling: Algorithms, Models, and Performance Analysis. Boca Raton, FL, USA: CRC Press, Inc.
Li, Z., & Ierapetritou, M. (2008). Process scheduling under uncertainty: Review and challenges. Computers & Chemical Engineering, 32(4–5), 715–727. https://doi.org/10.1016/j.compchemeng.2007.03.001
Liefooghe, A., Basseur, M., Humeau, J., Jourdan, L., & Talbi, E.-G. (2012). On optimizing a bi-objective flowshop scheduling problem in an uncertain environment. Computers & Mathematics with Applications, 64(12), 3747–3762. https://doi.org/10.1016/j.camwa.2012.02.051
Lin, J. T., & Chen, C.-M. (2015). Simulation optimization approach for hybrid flow shop scheduling problem in semiconductor back-end manufacturing. Simulation Modelling Practice and Theory, 51, 100–114. https://doi.org/10.1016/j.simpat.2014.10.008
Liu, Q., Ullah, S., & Zhang, C. (2011). An improved genetic algorithm for robust permutation flowshop scheduling. The International Journal of Advanced Manufacturing Technology, 56(1–4), 345–354. https://doi.org/10.1007/s00170-010-3149-6
Matsveichuk, N. M., Sotskov, Y. N., Egorova, N. G., & Lai, T.-C. (2009). Schedule execution for two-machine flow-shop with interval processing times. Mathematical and Computer Modelling, 49(5–6), 991–1011. https://doi.org/10.1016/j.mcm.2008.02.004
Matsveichuk, N. M., Sotskov, Y. N., & Werner, F. (2011). The dominance digraph as a solution to the two-machine flow-shop problem with interval processing times. Optimization, 60(12), 1493–1517. https://doi.org/10.1080/02331931003657691
Mirsanei, H. S., Zandieh, M., Moayed, M. J., & Khabbazi, M. R. (2010). A simulated annealing algorithm approach to hybrid flow shop scheduling with sequence-dependent setup times. Journal of Intelligent Manufacturing, 22(6), 965–978. https://doi.org/10.1007/s10845-009-0373-8
Moore, R. E., & Bierbaum, F. (1979). Methods and applications of interval analysis (Vol. 2). Philadelphia: Siam.
Mou, J., Li, X., Gao, L., & Yi, W. (2015). An effective L-MONG algorithm for solving multi-objective flow-shop inverse scheduling problems. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-015-1129-2
Nagasawa, K., Ikeda, Y., & Irohara, T. (2015). Robust flow shop scheduling with random processing times for reduction of peak power consumption. Simulation Modelling Practice and Theory. https://doi.org/10.1016/j.simpat.2015.08.001
Nakhaeinejad, M., & Nahavandi, N. (2013). An interactive algorithm for multi-objective flow shop scheduling with fuzzy processing time through resolution method and TOPSIS. The International Journal of Advanced Manufacturing Technology, 66(5–8), 1047–1064. https://doi.org/10.1007/s00170-012-4388-5
Nezhad, S. S., & Assadi, R. G. (2008). Preference ratio-based maximum operator approximation and its application in fuzzy flow shop scheduling. Applied Soft Computing, 8(1), 759–766. https://doi.org/10.1016/j.asoc.2007.06.004
NG, C. T., MATSVEICHUK, N. M., SOTSKOV, Y. N., & CHENG, T. C. E. (2009). TWO-MACHINE FLOW-SHOP MINIMUM-LENGTH SCHEDULING WITH INTERVAL PROCESSING TIMES. Asia-Pacific Journal of Operational Research, 26(6), 715–734. https://doi.org/10.1142/S0217595909002432
Niu, Q., & Gu, X. S. (2008). A novel particle swarm optimization for flow shop scheduling with fuzzy processing time. Journal of Donghua University (English Edition), 25(2), 115–122. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-54849420518&partnerID=tZOtx3y1
Noroozi, A., & Mokhtari, H. (2015). Scheduling of printed circuit board (PCB) assembly systems with heterogeneous processors using simulation-based intelligent optimization methods. Neural Computing and Applications, 26(4), 857–873. https://doi.org/10.1007/s00521-014-1765-z
Pan, Q.-K., Wang, L., Mao, K., Zhao, J.-H., & Zhang, M. (2013). An Effective Artificial Bee Colony Algorithm for a Real-World Hybrid Flowshop Problem in Steelmaking Process. IEEE Transactions on Automation Science and Engineering, 10(2), 307–322. https://doi.org/10.1109/TASE.2012.2204874
Paul, S. K., & Azeem, A. (2010). Minimization of work-in-process inventory in hybrid flow shop scheduling using fuzzy logic. International Journal of Industrial Engineering : Theory Applications and Practice, 17(2), 115–127. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-77955062869&partnerID=tZOtx3y1
Petrovic, S., & Song, X. (2006). A new approach to two-machine flow shop problem with uncertain processing times. Optimization and Engineering, 7(3), 329–342. https://doi.org/10.1007/s11081-006-9975-6
Pinedo, M. L. (2012). Scheduling: Theory, algorithms and systems. Springer (4th ed., Vol. 4). New York: Springer Science & Business Media. https://doi.org/10.1007/978-1-4614-2361-4
Qin, W., Zhang, · J, Song, · D, Zhang, J., & Song, D. (2015). An improved ant colony algorithm for dynamic hybrid flow shop scheduling with uncertain processing time. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-015-1144-3
Rahmani, D., & Heydari, M. (2014). Robust and stable flow shop scheduling with unexpected arrivals of new jobs and uncertain processing times. Journal of Manufacturing Systems, 33(1), 84–92. https://doi.org/10.1016/j.jmsy.2013.03.004
Rahmani, D., Ramezanian, R., & Mehrabad, M. S. (2014). Multi-objective flow shop scheduling problem with stochastic parameters: fuzzy goal programming approach. International Journal of Operational Research, 21(3), 322–340. https://doi.org/10.1504/IJOR.2014.065411
Ramezanian, R., & Saidi-Mehrabad, M. (2013). Hybrid simulated annealing and MIP-based heuristics for stochastic lot-sizing and scheduling problem in capacitated multi-stage production system. Applied Mathematical Modelling, 37(7), 5134–5147. https://doi.org/10.1016/j.apm.2012.10.024
Ruiz, R., Şerifoğlu, F. S., & Urlings, T. (2008). Modeling realistic hybrid flexible flowshop scheduling problems. Computers & Operations Research, 35(4), 1151–1175. https://doi.org/10.1016/j.cor.2006.07.014
Ruiz, R., & Vázquez-Rodríguez, J. A. (2010). The hybrid flow shop scheduling problem. European Journal of Operational Research, 205(1), 1–18. https://doi.org/10.1016/j.ejor.2009.09.024
Safari, E., Sadjadi, S. J., & Shahanaghi, K. (2009). Minimizing expected makespan in flowshop with on condition based maintenance constraint by integrating heuristics and simulation. World Journal of Modelling and Simulation, 5(4), 261–271. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-78649455491&partnerID=tZOtx3y1
Sancar Edis, R., & Ornek, M. A. (2009). A tabu search-based heuristic for single-product lot streaming problems in flow shops. The International Journal of Advanced Manufacturing Technology, 43(11–12), 1202–1213. https://doi.org/10.1007/s00170-008-1798-5
Schultmann, F., Fröhling, M., & Rentz, O. (2006). Fuzzy approach for production planning and detailed scheduling in paints manufacturing. International Journal of Production Research, 44(8), 1589–1612. https://doi.org/10.1080/00207540500353939
Shahnaghi, K., Shahmoradi-Moghadam, H., Noroozi, A., & Mokhtari, H. (2016). A robust modelling and optimisation framework for a batch processing flow shop production system in the presence of uncertainties. International Journal of Computer Integrated Manufacturing, 29(1), 92–106. https://doi.org/10.1080/0951192X.2014.1002814
Soroush, H. M., & Allahverdi, A. (2005). Stochastic two-machine flowshop scheduling problem with total completion time criterion. International Journal of Industrial Engineering : Theory Applications and Practice, 12(2), 159–171. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-33746598230&partnerID=tZOtx3y1
Sotskov, Y. N., Allahverdi, A., & Lai, T.-C. (2004). Flowshop scheduling problem to minimize total completion time with random and bounded processing times. Journal of the Operational Research Society, 55(3), 277–286. https://doi.org/10.1057/palgrave.jors.2601682
Swaminathan, R., Pfund, M. E., Fowler, J. W., Mason, S. J., & Keha, A. (2007). Impact of permutation enforcement when minimizing total weighted tardiness in dynamic flowshops with uncertain processing times. Computers & Operations Research, 34(10), 3055–3068. https://doi.org/10.1016/j.cor.2005.11.014
Temİz, İ., & Erol, S. (2004). Fuzzy branch-and-bound algorithm for flow shop scheduling. Journal of Intelligent Manufacturing, 15(4), 449–454. https://doi.org/10.1023/B:JIMS.0000034107.72423.b6
Thomé, A. M. T., Scavarda, L. F., & Scavarda, A. J. (2016). Conducting systematic literature review in operations management. Production Planning & Control, 27(5), 408–420. https://doi.org/10.1080/09537287.2015.1129464
Wang, K., & Choi, S. H. (2010). Decomposition-based scheduling for makespan minimisation of flexible flow shop with stochastic processing times. Engineering Letters, 18(1). Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-76549084080&partnerID=tZOtx3y1
Wang, K., & Choi, S. H. (2011). A decomposition-based approach to flexible flow shop scheduling under machine breakdown. International Journal of Production Research, 50(1), 215–234. https://doi.org/10.1080/00207543.2011.571456
Wang, K., & Choi, S. H. (2014). A holonic approach to flexible flow shop scheduling under stochastic processing times. Computers & Operations Research, 43(1), 157–168. https://doi.org/10.1016/j.cor.2013.09.013
Wang, K., Choi, S. H., & Qin, H. (2014). An estimation of distribution algorithm for hybrid flow shop scheduling under stochastic processing times. International Journal of Production Research, 52(24), 7360–7376. https://doi.org/10.1080/00207543.2014.930535
Wang, K., Choi, S. H., Qin, H., & Huang, Y. (2013). A cluster-based scheduling model using SPT and SA for dynamic hybrid flow shop problems. The International Journal of Advanced Manufacturing Technology, 67(9–12), 2243–2258. https://doi.org/10.1007/s00170-012-4645-7
Wang, K., Huang, Y., & Qin, H. (2016). A fuzzy logic-based hybrid estimation of distribution algorithm for distributed permutation flowshop scheduling problems under machine breakdown. Journal of the Operational Research Society, 67(1), 68–82. https://doi.org/10.1057/jors.2015.50
Wang, L., Zhang, L., & Zheng, D.-Z. Z. (2005a). A class of hypothesis-test-based genetic algorithms for flow shop scheduling with stochastic processing time. The International Journal of Advanced Manufacturing Technology, 25(11–12), 1157–1163. https://doi.org/10.1007/s00170-003-1961-y
Wang, L., Zhang, L., & Zheng, D.-Z. Z. (2005b). Genetic ordinal optimisation for stochastic flow shop scheduling. The International Journal of Advanced Manufacturing Technology, 27(1–2), 166–173. https://doi.org/10.1007/s00170-004-2154-z
Wang, S., Wang, L., Liu, M., & Xu, Y. (2015). An order-based estimation of distribution algorithm for stochastic hybrid flow-shop scheduling problem. International Journal of Computer Integrated Manufacturing, 28(3), 307–320. https://doi.org/10.1080/0951192X.2014.880803
Yang *, T., Kuo, Y., & Chang, I. (2004). Tabu-search simulation optimization approach for flow-shop scheduling with multiple processors — a case study. International Journal of Production Research, 42(19), 4015–4030. https://doi.org/10.1080/00207540410001699381
Yimer, A. D., & Demirli, K. (2009). Fuzzy scheduling of job orders in a two-stage flowshop with batch-processing machines. International Journal of Approximate Reasoning, 50(1), 117–137. https://doi.org/10.1016/j.ijar.2007.08.013
Ying, K. (2015). Scheduling the two-machine flowshop to hedge against processing time uncertainty. Journal of the Operational Research Society, 66(9), 1413–1425. https://doi.org/10.1057/jors.2014.100
Zandieh, M., Fatemi Ghomi, S. M. T., & Moattar Husseini, S. M. (2006). An immune algorithm approach to hybrid flow shops scheduling with sequence-dependent setup times. Applied Mathematics and Computation, 180(1), 111–127. https://doi.org/10.1016/j.amc.2005.11.136
Zandieh, M., & Gholami, M. (2009). An immune algorithm for scheduling a hybrid flow shop with sequence-dependent setup times and machines with random breakdowns. International Journal of Production Research, 47(24), 6999–7027. https://doi.org/10.1080/00207540802400636
Zandieh, M., & Hashemi, A. (2015). Group scheduling in hybrid flexible flowshop with sequence-dependent setup times and random breakdowns via integrating genetic algorithm and simulation. International Journal of Industrial and Systems Engineering, 21(3), 377. https://doi.org/10.1504/IJISE.2015.072273