How to cite this paper
Tebassi, H., Yallese, M., Belhadi, S., Girardin, F & Mabrouki, T. (2017). Quality-productivity decision making when turning of Inconel 718 aerospace alloy: A response surface methodology approach.International Journal of Industrial Engineering Computations , 8(3), 347-362.
Refrences
Altin, A., Nalbant, M., & Taskesen, A. (2007). The effects of cutting speed on tool wear and tool life when machining Inconel 718 with ceramic tools. Materials & design, 28(9), 2518-2522.
Anderson-Cook, C. M., Borror, C. M., & Montgomery, D. C. (2009). Response surface design evaluation and comparison. Journal of Statistical Planning and Inference, 139(2), 629-641.
Borkowski, J. J. (2009). Discussion of “Response surface design evaluation and comparison” by Christine Anderson-Cook, Connie Borror, and Douglas Montgomery. Journal of Statistical Planning and Inference, 139(2), 650-652.
Box, G. E., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society. Series B (Methodological), 26(2), 211-252.
Choudhury, I. A., & El-Baradie, M. A. (1999). Machinability assessment of inconel 718 by factorial design of experiment coupled with response surface methodology. Journal of Materials Processing Technology, 95(1), 30-39.
Anderson-Cook, C. M., Borror, C. M., & Montgomery, D. C. (2009). Response surface design evaluation and comparison. Journal of Statistical Planning and Inference, 139(2), 629-641.
Darwish, S. M. (2000). The impact of the tool material and the cutting parameters on surface roughness of supermet 718 nickel superalloy. Journal of Materials Processing Technology, 97(1), 10-18.
Davim, J. P., Gaitonde, V. N., & Karnik, S. R. (2008). Investigations into the effect of cutting conditions on surface roughness in turning of free machining steel by ANN models. Journal of materials processing technology, 205(1), 16-23.
El-Wardany, T. I., Mohammed, E., & Elbestawi, M. A. (1996). Cutting temperature of ceramic tools in high speed machining of difficult-to-cut materials. International Journal of Machine Tools and Manufacture, 36(5), 611-634.
Ezugwu, E. O., Wang, Z. M., & Machado, A. R. (1999). The machinability of nickel-based alloys: a review. Journal of Materials Processing Technology,86(1), 1-16.
Ezugwu, E. O., & Tang, S. H. (1995). Surface abuse when machining cast iron (G-17) and nickel-base superalloy (Inconel 718) with ceramic tools. Journal of Materials Processing Technology, 55(2), 63-69.
Gaitonde, V. N., Karnik, S. R., Figueira, L., & Davim, J. P. (2009). Machinability investigations in hard turning of AISI D2 cold work tool steel with conventional and wiper ceramic inserts. International Journal of Refractory Metals and Hard Materials, 27(4), 754-763.
Gatto, A., & Iuliano, L. (1997). Advanced coated ceramic tools for machining superalloys. International Journal of Machine Tools and Manufacture, 37(5), 591-605.
Guo, Y., Loenders, J., Duflou, J., & Lauwers, B. (2012). Optimization of energy consumption and surface quality in finish turning. Procedia CIRP, 1, 512-517.
Jones, B. (2009). Discussion of “Response surface design evaluation and comparison” by Christine Anderson-Cook, Connie Borror and Douglas Montgomery. Journal of Statistical Planning and Inference, 139(2), 642-644.
Khuri, A. I. (2009). Discussion of “Response surface design evaluation and comparison” by Christine M. Anderson-Cook, Connie M. Borror, Douglas C. Montgomery. Journal of Statistical Planning and Inference, 139(2), 647-649.
Kitagawa, T., Kubo, A., & Maekawa, K. (1997). Temperature and wear of cutting tools in high-speed machining of Inconel 718 and Ti 6Al 6V 2Sn.Wear, 202(2), 142-148.
Kose, E., Kurt, A., & Seker, U. (2008). The effects of the feed rate on the cutting tool stresses in machining of Inconel 718. Journal of Materials Processing Technology, 196(1), 165-173.
Li, L., He, N., Wang, M., & Wang, Z. G. (2002). High speed cutting of Inconel 718 with coated carbide and ceramic inserts. Journal of Materials Processing Technology, 129(1), 127-130.
Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2016). Response surface methodology: process and product optimization using designed experiments. John Wiley & Sons.
Nalbant, M., Altın, A., & Gökkaya, H. (2007). The effect of cutting speed and cutting tool geometry on machinability properties of nickel-base Inconel 718 super alloys. Materials & Design, 28(4), 1334-1338.
Narutaki, N., Yamane, Y., Hayashi, K., Kitagawa, T., & Uehara, K. (1993). High-speed machining of Inconel 718 with ceramic tools. CIRP Annals-Manufacturing Technology, 42(1), 103-106.
Osborne, J. W. (2010). Improving your data transformations: Applying the Box-Cox transformation. Practical Assessment, Research & Evaluation, 15(12), 1-9.
Pawade, R. S., Sonawane, H. A., & Joshi, S. S. (2009). An analytical model to predict specific shear energy in high-speed turning of Inconel 718. International Journal of Machine Tools and Manufacture, 49(12), 979-990.
Piepel, G. F. (2009). Discussion of “Response surface design evaluation and comparison” by CM Anderson-Cook, CM Borror, and DC Montgomery. Journal of Statistical Planning and Inference, 139(2), 653-656.
Sakia, R. M. (1992). The Box-Cox transformation technique: a review. The Statistician, 41(2), 169-178.
Sahoo, A. K., & Mishra, P. C. (2014). A response surface methodology and desirability approach for predictive modeling and optimization of cutting temperature in machining hardened steel. International Journal of Industrial Engineering Computations, 5(3), 407- 416.
Sandvik., C. (2009). Catalogue General, Outils de coupe Sandvik Coromant. Tournage – Fraisage –perçage – Alésage – Attachements.
Schultheiss, F., Hägglund, S., Bushlya, V., Zhou, J., & Ståhl, J. E. (2014). Influence of the minimum chip thickness on the obtained surface roughness during turning operations. Procedia CIRP, 13, 67-71.
Sharman, A., Dewes, R. C., & Aspinwall, D. K. (2001). Tool life when high speed ball nose end milling Inconel 718™. Journal of Materials Processing Technology, 118(1), 29-35.
Sharman, A. R. C., Hughes, J. I., & Ridgway, K. (2006). An analysis of the residual stresses generated in Inconel 718™ when turning. Journal of Materials Processing Technology, 173(3), 359-367.
Tebassi, H., Yallese, M., & Meddour, I. (2016a). A new method for evaluation nominal coefficient of friction and frictional forces in turning and inserts characterization using cutting forces profiles. Engineering Solid Mechanics, 4(1), 1-10.
Tebassi, H., Yallese, M., Khettabi, R., Belhadi, S., Meddour, I., & Girardin, F. (2016b). Multi-objective optimization of surface roughness, cutting forces, productivity and Power consumption when turning of Inconel 718. International Journal of Industrial Engineering Computations, 7(1), 111-134.
Tebassi, H., Yallese, M., Meddour, I., Girardin, F. & Mabrouki, T. (2017). On the modeling of surface roughness and cutting force when turning of inconel 718 using artificial neural network and response rurface methodology: accuracy and benefit. Periodica Polytechnica Mechanical Engineering, 61(1), 1-11.
Yadav, R. K., Abhishek, K., & Mahapatra, S. S. (2015). A simulation approach for estimating flank wear and material removal rate in turning of Inconel 718.Simulation Modelling Practice and Theory, 52, 1-14.
Zhou, J. M., Bushlya, V., & Stahl, J. E. (2012). An investigation of surface damage in the high speed turning of Inconel 718 with use of whisker reinforced ceramic tools. Journal of Materials Processing Technology, 212(2), 372-384.
Zhuang, K., Zhu, D., Zhang, X., & Ding, H. (2014). Notch wear prediction model in turning of Inconel 718 with ceramic tools considering the influence of work hardened layer. Wear, 313(1), 63-74.
Anderson-Cook, C. M., Borror, C. M., & Montgomery, D. C. (2009). Response surface design evaluation and comparison. Journal of Statistical Planning and Inference, 139(2), 629-641.
Borkowski, J. J. (2009). Discussion of “Response surface design evaluation and comparison” by Christine Anderson-Cook, Connie Borror, and Douglas Montgomery. Journal of Statistical Planning and Inference, 139(2), 650-652.
Box, G. E., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society. Series B (Methodological), 26(2), 211-252.
Choudhury, I. A., & El-Baradie, M. A. (1999). Machinability assessment of inconel 718 by factorial design of experiment coupled with response surface methodology. Journal of Materials Processing Technology, 95(1), 30-39.
Anderson-Cook, C. M., Borror, C. M., & Montgomery, D. C. (2009). Response surface design evaluation and comparison. Journal of Statistical Planning and Inference, 139(2), 629-641.
Darwish, S. M. (2000). The impact of the tool material and the cutting parameters on surface roughness of supermet 718 nickel superalloy. Journal of Materials Processing Technology, 97(1), 10-18.
Davim, J. P., Gaitonde, V. N., & Karnik, S. R. (2008). Investigations into the effect of cutting conditions on surface roughness in turning of free machining steel by ANN models. Journal of materials processing technology, 205(1), 16-23.
El-Wardany, T. I., Mohammed, E., & Elbestawi, M. A. (1996). Cutting temperature of ceramic tools in high speed machining of difficult-to-cut materials. International Journal of Machine Tools and Manufacture, 36(5), 611-634.
Ezugwu, E. O., Wang, Z. M., & Machado, A. R. (1999). The machinability of nickel-based alloys: a review. Journal of Materials Processing Technology,86(1), 1-16.
Ezugwu, E. O., & Tang, S. H. (1995). Surface abuse when machining cast iron (G-17) and nickel-base superalloy (Inconel 718) with ceramic tools. Journal of Materials Processing Technology, 55(2), 63-69.
Gaitonde, V. N., Karnik, S. R., Figueira, L., & Davim, J. P. (2009). Machinability investigations in hard turning of AISI D2 cold work tool steel with conventional and wiper ceramic inserts. International Journal of Refractory Metals and Hard Materials, 27(4), 754-763.
Gatto, A., & Iuliano, L. (1997). Advanced coated ceramic tools for machining superalloys. International Journal of Machine Tools and Manufacture, 37(5), 591-605.
Guo, Y., Loenders, J., Duflou, J., & Lauwers, B. (2012). Optimization of energy consumption and surface quality in finish turning. Procedia CIRP, 1, 512-517.
Jones, B. (2009). Discussion of “Response surface design evaluation and comparison” by Christine Anderson-Cook, Connie Borror and Douglas Montgomery. Journal of Statistical Planning and Inference, 139(2), 642-644.
Khuri, A. I. (2009). Discussion of “Response surface design evaluation and comparison” by Christine M. Anderson-Cook, Connie M. Borror, Douglas C. Montgomery. Journal of Statistical Planning and Inference, 139(2), 647-649.
Kitagawa, T., Kubo, A., & Maekawa, K. (1997). Temperature and wear of cutting tools in high-speed machining of Inconel 718 and Ti 6Al 6V 2Sn.Wear, 202(2), 142-148.
Kose, E., Kurt, A., & Seker, U. (2008). The effects of the feed rate on the cutting tool stresses in machining of Inconel 718. Journal of Materials Processing Technology, 196(1), 165-173.
Li, L., He, N., Wang, M., & Wang, Z. G. (2002). High speed cutting of Inconel 718 with coated carbide and ceramic inserts. Journal of Materials Processing Technology, 129(1), 127-130.
Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2016). Response surface methodology: process and product optimization using designed experiments. John Wiley & Sons.
Nalbant, M., Altın, A., & Gökkaya, H. (2007). The effect of cutting speed and cutting tool geometry on machinability properties of nickel-base Inconel 718 super alloys. Materials & Design, 28(4), 1334-1338.
Narutaki, N., Yamane, Y., Hayashi, K., Kitagawa, T., & Uehara, K. (1993). High-speed machining of Inconel 718 with ceramic tools. CIRP Annals-Manufacturing Technology, 42(1), 103-106.
Osborne, J. W. (2010). Improving your data transformations: Applying the Box-Cox transformation. Practical Assessment, Research & Evaluation, 15(12), 1-9.
Pawade, R. S., Sonawane, H. A., & Joshi, S. S. (2009). An analytical model to predict specific shear energy in high-speed turning of Inconel 718. International Journal of Machine Tools and Manufacture, 49(12), 979-990.
Piepel, G. F. (2009). Discussion of “Response surface design evaluation and comparison” by CM Anderson-Cook, CM Borror, and DC Montgomery. Journal of Statistical Planning and Inference, 139(2), 653-656.
Sakia, R. M. (1992). The Box-Cox transformation technique: a review. The Statistician, 41(2), 169-178.
Sahoo, A. K., & Mishra, P. C. (2014). A response surface methodology and desirability approach for predictive modeling and optimization of cutting temperature in machining hardened steel. International Journal of Industrial Engineering Computations, 5(3), 407- 416.
Sandvik., C. (2009). Catalogue General, Outils de coupe Sandvik Coromant. Tournage – Fraisage –perçage – Alésage – Attachements.
Schultheiss, F., Hägglund, S., Bushlya, V., Zhou, J., & Ståhl, J. E. (2014). Influence of the minimum chip thickness on the obtained surface roughness during turning operations. Procedia CIRP, 13, 67-71.
Sharman, A., Dewes, R. C., & Aspinwall, D. K. (2001). Tool life when high speed ball nose end milling Inconel 718™. Journal of Materials Processing Technology, 118(1), 29-35.
Sharman, A. R. C., Hughes, J. I., & Ridgway, K. (2006). An analysis of the residual stresses generated in Inconel 718™ when turning. Journal of Materials Processing Technology, 173(3), 359-367.
Tebassi, H., Yallese, M., & Meddour, I. (2016a). A new method for evaluation nominal coefficient of friction and frictional forces in turning and inserts characterization using cutting forces profiles. Engineering Solid Mechanics, 4(1), 1-10.
Tebassi, H., Yallese, M., Khettabi, R., Belhadi, S., Meddour, I., & Girardin, F. (2016b). Multi-objective optimization of surface roughness, cutting forces, productivity and Power consumption when turning of Inconel 718. International Journal of Industrial Engineering Computations, 7(1), 111-134.
Tebassi, H., Yallese, M., Meddour, I., Girardin, F. & Mabrouki, T. (2017). On the modeling of surface roughness and cutting force when turning of inconel 718 using artificial neural network and response rurface methodology: accuracy and benefit. Periodica Polytechnica Mechanical Engineering, 61(1), 1-11.
Yadav, R. K., Abhishek, K., & Mahapatra, S. S. (2015). A simulation approach for estimating flank wear and material removal rate in turning of Inconel 718.Simulation Modelling Practice and Theory, 52, 1-14.
Zhou, J. M., Bushlya, V., & Stahl, J. E. (2012). An investigation of surface damage in the high speed turning of Inconel 718 with use of whisker reinforced ceramic tools. Journal of Materials Processing Technology, 212(2), 372-384.
Zhuang, K., Zhu, D., Zhang, X., & Ding, H. (2014). Notch wear prediction model in turning of Inconel 718 with ceramic tools considering the influence of work hardened layer. Wear, 313(1), 63-74.