How to cite this paper
Rajabzadeh, M., Ziaee, M & Bozorgi-Amiri, A. (2016). Integrated approach in solving parallel machine scheduling and location (ScheLoc) problem.International Journal of Industrial Engineering Computations , 7(4), 573-584.
Refrences
Drezner, Z., & Suzuki, A. (2004). The big triangle small triangle method for the solution of nonconvex facility location problems. Operations Research,52(1), 128-135.
Elvikis, D., Hamacher, H. W., & Kalsch, M. T. (2009). Simultaneous scheduling and location (ScheLoc): the planar ScheLoc makespan problem.Journal of Scheduling, 12(4), 361-374.
Elvikis, D., Hamacher, H. W., & Kalsch, M. T. (2007). Scheduling and location (ScheLoc): makespan problem with variable release dates. Technische Universität Kaiserslautern, Fachbereich Mathematik.
Hennes, H., & Hamacher, H. W. (2002). Integrated scheduling and location models: single machine makespan problems. Technische Universität Kaiserslautern, Fachbereich Mathematik.
Heßler, C., & Deghdak, K. (2015). Discrete Parallel Machine Makespan ScheLoc Problem. Technische Universität Kaiserslautern, Fachbereich Mathematik.
Kalsch, M. T., & Drezner, Z. (2010). Solving scheduling and location problems in the plane simultaneously. Computers & Operations Research,37(2), 256-264.
Lawler, E. L. (1973). Optimal sequencing of a single machine subject to precedence constraints. Management science, 19(5), 544-546.
Nickel, S., & Puerto, J. (1999). A unified approach to network location problems. Networks, 34(4), 283-290.
Pinedo, M. L. (2012). Scheduling: theory, algorithms, and systems. Springer Science & Business Media.
Scholz, D. (2011). Deterministic global optimization: geometric branch-and-bound methods and their applications (Vol. 63). Springer Science & Business Media.
Scholz, D. (2012a). Integrated scheduling and location problems. InDeterministic Global Optimization (pp. 109-116). Springer New York.
Scholz, D. (2012b). Summary and discussion. In Deterministic Global Optimization (pp. 129-132). Springer New York.
Elvikis, D., Hamacher, H. W., & Kalsch, M. T. (2009). Simultaneous scheduling and location (ScheLoc): the planar ScheLoc makespan problem.Journal of Scheduling, 12(4), 361-374.
Elvikis, D., Hamacher, H. W., & Kalsch, M. T. (2007). Scheduling and location (ScheLoc): makespan problem with variable release dates. Technische Universität Kaiserslautern, Fachbereich Mathematik.
Hennes, H., & Hamacher, H. W. (2002). Integrated scheduling and location models: single machine makespan problems. Technische Universität Kaiserslautern, Fachbereich Mathematik.
Heßler, C., & Deghdak, K. (2015). Discrete Parallel Machine Makespan ScheLoc Problem. Technische Universität Kaiserslautern, Fachbereich Mathematik.
Kalsch, M. T., & Drezner, Z. (2010). Solving scheduling and location problems in the plane simultaneously. Computers & Operations Research,37(2), 256-264.
Lawler, E. L. (1973). Optimal sequencing of a single machine subject to precedence constraints. Management science, 19(5), 544-546.
Nickel, S., & Puerto, J. (1999). A unified approach to network location problems. Networks, 34(4), 283-290.
Pinedo, M. L. (2012). Scheduling: theory, algorithms, and systems. Springer Science & Business Media.
Scholz, D. (2011). Deterministic global optimization: geometric branch-and-bound methods and their applications (Vol. 63). Springer Science & Business Media.
Scholz, D. (2012a). Integrated scheduling and location problems. InDeterministic Global Optimization (pp. 109-116). Springer New York.
Scholz, D. (2012b). Summary and discussion. In Deterministic Global Optimization (pp. 129-132). Springer New York.