How to cite this paper
Sargade, V., Nipanikar, S & Meshram, S. (2016). Analysis of surface roughness and cutting force during turning of Ti6Al4V ELI in dry environment.International Journal of Industrial Engineering Computations , 7(2), 257-266.
Refrences
Asiltürk, I., & Ne?eli, S. (2012). Multi response optimization of CNC turning parameters via Taguchi method-based response surface analysis. Measurement, 45(4), 785-794.
Axinte, D. A., & Dewes, R. C. (2002). Surface integrity of hot work tool steel after high speed milling-experimental data and empirical models. Journal of Materials Processing Technology, 127(3), 325-335.
Calamaz, M., Coupard, D., & Girot, F. (2008). A new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti–6Al–4V. International Journal of Machine Tools and Manufacture, 48(3), 275-288.
Che-Haron, C. H., & Jawaid, A. (2005). The effect of machining on surface integrity of titanium alloy Ti–6% Al–4% V. Journal of Materials Processing Technology, 166(2), 188-192.
Ezugwu, E. O., & Wang, Z. M. (1997). Titanium alloys and their machinability- a review. Journal of materials processing technology, 68(3), 262-274.
Ginting, A., & Nouari, M. (2009). Surface integrity of dry machined titanium alloys. International Journal of Machine Tools and Manufacture, 49(3), 325-332.
Haron, C. C., & Jawaid, A. (2005). The effect of machining on surface integrity of titanium alloy Ti-6Al-4V. Journal of Materials Processing Technology, 166, 188-192.
Haron, C. C., Ginting, A., & Arshad, H. (2007). Performance of alloyed uncoated and CVD-coated carbide tools in dry milling of titanium alloy Ti-6242S.Journal of Materials Processing Technology, 185(1), 77-82.
Haron, C. H., Ghani, J. A., Sulaiman, M. A., Intan, L. R., & Kasim, M. S. (2011). The Effect of Minimal Quantity Lubrication (MQL) on the Surface Roughness of Titanium Alloy Ti-6Al-4V ELI in Turning Process. Advanced Materials Research, 146, 1750-1753.
Ibrahim, G. A., Che Haron, C. H., & Ghani, J. A. (2010). Tool wear mechanism in continuous cutting of difficult-to-cut material under dry machining. Advanced Materials Research, 126, 195-201.
Ibrahim, G. A., Che Haron, C. H., & Ghani, J. A. (2011, July). Evaluation of PVD-Inserts Performance and Surface Integrity when Turning Ti-6Al-4V ELI under Dry Machining. In Advanced Materials Research (Vol. 264, pp. 1050-1055).
Ibrahim, G. A., Haron, C. C., & Ghani, J. A. (2009). Progression and wear mechanism of CVD carbide tools in turning Ti-6Al-4V ELI. International Journal of Mechanical and Materials Engineering, 4(1), 35-41.
Ibrahim, G. A., Haron, C. C., & Ghani, J. A. (2009). The effect of dry machining on surface integrity of titanium alloy Ti-6Al-4V ELI. Journal of Applied Sciences, 9(1), 121-127.
Ibrahim, G. A., Haron, C. C., & Ghani, J. A. (2009). The effect of dry machining on surface integrity of titanium alloy Ti-6Al-4V ELI. International Journal of Mechanical and Materials Engineering, 4(2), 191-196.
Jawaid, A., Sharif, S., & Koksal, S. (2000). Evaluation of wear mechanisms of coated carbide tools when face milling titanium alloy. Journal of Materials Processing Technology, 99(1), 266-274.
Kitagawa, T., Kubo, A., & Maekawa, K. (1997). Temperature and wear of cutting tools in high-speed machining of Inconel 718 and Ti 6Al 6V 2Sn. Wear,202(2), 142-148.
Liao, Y. S., & Shiue, R. H. (1996). Carbide tool wear mechanism in turning of Inconel 718 superalloy. Wear, 193(1), 16-24.
Makadia, A. J., & Nanavati, J. I. (2013). Optimisation of machining parameters for turning operations based on response surface methodology. Measurement,46(4), 1521-1529.
Mantle, A. L., & Aspinwall, D. K. (1997). Surface integrity and fatigue life of turned gamma titanium aluminide. Journal of materials processing technology,72(3), 413-420.
Mantle, A. L., & Aspinwall, D. K. (2001). Surface integrity of a high speed milled gamma titanium aluminide. Journal of Materials Processing Technology, 118(1), 143-150.
?zel, T., & Zeren, E. (2007). Finite element modeling the influence of edge roundness on the stress and temperature fields induced by high-speed machining. The International Journal of Advanced Manufacturing Technology,35(3-4), 255-267.
Pandey, A. K., & Dubey, A. K. (2012). Simultaneous optimization of multiple quality characteristics in laser cutting of titanium alloy sheet. Optics & Laser Technology, 44(6), 1858-1865.
Ramesh, S., Karunamoorthy, L., & Palanikumar, K. (2008). Surface roughness analysis in machining of titanium alloy. Materials and Manufacturing Processes,23(2), 174-181.
Revankar, G. D., Shetty, R., Rao, S. S., & Gaitonde, V. N. (2014). Analysis of surface roughness and hardness in titanium alloy machining with polycrystalline diamond tool under different lubricating modes. Materials Research, (AHEAD), 1010-1022.
Ribeiro, M. V., Moreira, M. R. V., & Ferreira, J. R. (2003). Optimization of titanium alloy (6Al–4V) machining. Journal of Materials Processing Technology,143, 458-463.
Rotella, G., Dillon Jr, O. W., Umbrello, D., Settineri, L., & Jawahir, I. S. (2014). The effects of cooling conditions on surface integrity in machining of Ti6Al4V alloy. The International Journal of Advanced Manufacturing Technology, 71(1-4), 47-55.
Shetty, R., Jose, T. K., Revankar, G. D., Rao, S. S., & Shetty, D. S. (2014). Surface Roughness Analysis during Turning of Ti-6Al-4V under Near Dry Machining using Statistical Tool. International Journal of Current Engineering and Technology, 4(3), 2061-2067.
Sridhar, B. R., Devananda, G., Ramachandra, K., & Bhat, R. (2003). Effect of machining parameters and heat treatment on the residual stress distribution in titanium alloy IMI-834. Journal of Materials Processing Technology, 139(1), 628-634.
Suhail, A. H., Ismail, N., Wong, S. V., & Jalil, N. A. (2010). Optimization of cutting parameters based on surface roughness and assistance of workpiece surface temperature in turning process. American journal of engineering and applied sciences, 3(1), 102.
Sulaiman, M. A., Haron, C., Ghani, J. A., & Kasim, M. S. (2014). Effect of High-speed Parameters on Uncoated Carbide Tool in Finish Turning Titanium Ti-6Al-4V ELI. Sains Malaysiana, 43(1), 111-116.
Sun, J., & Guo, Y. B. (2009). A comprehensive experimental study on surface integrity by end milling Ti–6Al–4V. Journal of Materials Processing Technology, 209(8), 4036-4042.
Thepsonthi, T., & ?zel, T. (2013). Experimental and finite element simulation based investigations on micro-milling Ti-6Al-4V titanium alloy: Effects of cBN coating on tool wear. Journal of Materials Processing Technology, 213(4), 532-542.
Ulutan, D., & Ozel, T. (2011). Machining induced surface integrity in titanium and nickel alloys: A review. International Journal of Machine Tools and Manufacture, 51(3), 250-280.
Ulutan, D., & ?zel, T. (2012, June). Methodology to determine friction in orthogonal cutting with application to machining titanium and nickel based alloys. In ASME 2012 International Manufacturing Science and Engineering Conference collocated with the 40th North American Manufacturing Research Conference and in participation with the International Conference on Tribology Materials and Processing (pp. 327-334).
Venugopal, K. A., Paul, S., & Chattopadhyay, A. B. (2007). Tool wear in cryogenic turning of Ti-6Al-4V alloy. Cryogenics, 47(1), 12-18.
Vijay, S., & Krishnaraj, V. (2013). Machining parameters optimization in end milling of Ti-6Al-4V. Procedia Engineering, 64, 1079-1088.
Wang, Z. G., Rahman, M., & Wong, Y. S. (2005). Tool wear characteristics of binderless CBN tools used in high-speed milling of titanium alloys. Wear,258(5), 752-758.
Zareena, A. R., & Veldhuis, S. C. (2012). Tool wear mechanisms and tool life enhancement in ultra-precision machining of titanium. Journal of Materials Processing Technology, 212(3), 560-570.
Zoya, Z. A., & Krishnamurthy, R. (2000). The performance of CBN tools in the machining of titanium alloys. Journal of Materials Processing Technology, 100(1), 80-86.
Axinte, D. A., & Dewes, R. C. (2002). Surface integrity of hot work tool steel after high speed milling-experimental data and empirical models. Journal of Materials Processing Technology, 127(3), 325-335.
Calamaz, M., Coupard, D., & Girot, F. (2008). A new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti–6Al–4V. International Journal of Machine Tools and Manufacture, 48(3), 275-288.
Che-Haron, C. H., & Jawaid, A. (2005). The effect of machining on surface integrity of titanium alloy Ti–6% Al–4% V. Journal of Materials Processing Technology, 166(2), 188-192.
Ezugwu, E. O., & Wang, Z. M. (1997). Titanium alloys and their machinability- a review. Journal of materials processing technology, 68(3), 262-274.
Ginting, A., & Nouari, M. (2009). Surface integrity of dry machined titanium alloys. International Journal of Machine Tools and Manufacture, 49(3), 325-332.
Haron, C. C., & Jawaid, A. (2005). The effect of machining on surface integrity of titanium alloy Ti-6Al-4V. Journal of Materials Processing Technology, 166, 188-192.
Haron, C. C., Ginting, A., & Arshad, H. (2007). Performance of alloyed uncoated and CVD-coated carbide tools in dry milling of titanium alloy Ti-6242S.Journal of Materials Processing Technology, 185(1), 77-82.
Haron, C. H., Ghani, J. A., Sulaiman, M. A., Intan, L. R., & Kasim, M. S. (2011). The Effect of Minimal Quantity Lubrication (MQL) on the Surface Roughness of Titanium Alloy Ti-6Al-4V ELI in Turning Process. Advanced Materials Research, 146, 1750-1753.
Ibrahim, G. A., Che Haron, C. H., & Ghani, J. A. (2010). Tool wear mechanism in continuous cutting of difficult-to-cut material under dry machining. Advanced Materials Research, 126, 195-201.
Ibrahim, G. A., Che Haron, C. H., & Ghani, J. A. (2011, July). Evaluation of PVD-Inserts Performance and Surface Integrity when Turning Ti-6Al-4V ELI under Dry Machining. In Advanced Materials Research (Vol. 264, pp. 1050-1055).
Ibrahim, G. A., Haron, C. C., & Ghani, J. A. (2009). Progression and wear mechanism of CVD carbide tools in turning Ti-6Al-4V ELI. International Journal of Mechanical and Materials Engineering, 4(1), 35-41.
Ibrahim, G. A., Haron, C. C., & Ghani, J. A. (2009). The effect of dry machining on surface integrity of titanium alloy Ti-6Al-4V ELI. Journal of Applied Sciences, 9(1), 121-127.
Ibrahim, G. A., Haron, C. C., & Ghani, J. A. (2009). The effect of dry machining on surface integrity of titanium alloy Ti-6Al-4V ELI. International Journal of Mechanical and Materials Engineering, 4(2), 191-196.
Jawaid, A., Sharif, S., & Koksal, S. (2000). Evaluation of wear mechanisms of coated carbide tools when face milling titanium alloy. Journal of Materials Processing Technology, 99(1), 266-274.
Kitagawa, T., Kubo, A., & Maekawa, K. (1997). Temperature and wear of cutting tools in high-speed machining of Inconel 718 and Ti 6Al 6V 2Sn. Wear,202(2), 142-148.
Liao, Y. S., & Shiue, R. H. (1996). Carbide tool wear mechanism in turning of Inconel 718 superalloy. Wear, 193(1), 16-24.
Makadia, A. J., & Nanavati, J. I. (2013). Optimisation of machining parameters for turning operations based on response surface methodology. Measurement,46(4), 1521-1529.
Mantle, A. L., & Aspinwall, D. K. (1997). Surface integrity and fatigue life of turned gamma titanium aluminide. Journal of materials processing technology,72(3), 413-420.
Mantle, A. L., & Aspinwall, D. K. (2001). Surface integrity of a high speed milled gamma titanium aluminide. Journal of Materials Processing Technology, 118(1), 143-150.
?zel, T., & Zeren, E. (2007). Finite element modeling the influence of edge roundness on the stress and temperature fields induced by high-speed machining. The International Journal of Advanced Manufacturing Technology,35(3-4), 255-267.
Pandey, A. K., & Dubey, A. K. (2012). Simultaneous optimization of multiple quality characteristics in laser cutting of titanium alloy sheet. Optics & Laser Technology, 44(6), 1858-1865.
Ramesh, S., Karunamoorthy, L., & Palanikumar, K. (2008). Surface roughness analysis in machining of titanium alloy. Materials and Manufacturing Processes,23(2), 174-181.
Revankar, G. D., Shetty, R., Rao, S. S., & Gaitonde, V. N. (2014). Analysis of surface roughness and hardness in titanium alloy machining with polycrystalline diamond tool under different lubricating modes. Materials Research, (AHEAD), 1010-1022.
Ribeiro, M. V., Moreira, M. R. V., & Ferreira, J. R. (2003). Optimization of titanium alloy (6Al–4V) machining. Journal of Materials Processing Technology,143, 458-463.
Rotella, G., Dillon Jr, O. W., Umbrello, D., Settineri, L., & Jawahir, I. S. (2014). The effects of cooling conditions on surface integrity in machining of Ti6Al4V alloy. The International Journal of Advanced Manufacturing Technology, 71(1-4), 47-55.
Shetty, R., Jose, T. K., Revankar, G. D., Rao, S. S., & Shetty, D. S. (2014). Surface Roughness Analysis during Turning of Ti-6Al-4V under Near Dry Machining using Statistical Tool. International Journal of Current Engineering and Technology, 4(3), 2061-2067.
Sridhar, B. R., Devananda, G., Ramachandra, K., & Bhat, R. (2003). Effect of machining parameters and heat treatment on the residual stress distribution in titanium alloy IMI-834. Journal of Materials Processing Technology, 139(1), 628-634.
Suhail, A. H., Ismail, N., Wong, S. V., & Jalil, N. A. (2010). Optimization of cutting parameters based on surface roughness and assistance of workpiece surface temperature in turning process. American journal of engineering and applied sciences, 3(1), 102.
Sulaiman, M. A., Haron, C., Ghani, J. A., & Kasim, M. S. (2014). Effect of High-speed Parameters on Uncoated Carbide Tool in Finish Turning Titanium Ti-6Al-4V ELI. Sains Malaysiana, 43(1), 111-116.
Sun, J., & Guo, Y. B. (2009). A comprehensive experimental study on surface integrity by end milling Ti–6Al–4V. Journal of Materials Processing Technology, 209(8), 4036-4042.
Thepsonthi, T., & ?zel, T. (2013). Experimental and finite element simulation based investigations on micro-milling Ti-6Al-4V titanium alloy: Effects of cBN coating on tool wear. Journal of Materials Processing Technology, 213(4), 532-542.
Ulutan, D., & Ozel, T. (2011). Machining induced surface integrity in titanium and nickel alloys: A review. International Journal of Machine Tools and Manufacture, 51(3), 250-280.
Ulutan, D., & ?zel, T. (2012, June). Methodology to determine friction in orthogonal cutting with application to machining titanium and nickel based alloys. In ASME 2012 International Manufacturing Science and Engineering Conference collocated with the 40th North American Manufacturing Research Conference and in participation with the International Conference on Tribology Materials and Processing (pp. 327-334).
Venugopal, K. A., Paul, S., & Chattopadhyay, A. B. (2007). Tool wear in cryogenic turning of Ti-6Al-4V alloy. Cryogenics, 47(1), 12-18.
Vijay, S., & Krishnaraj, V. (2013). Machining parameters optimization in end milling of Ti-6Al-4V. Procedia Engineering, 64, 1079-1088.
Wang, Z. G., Rahman, M., & Wong, Y. S. (2005). Tool wear characteristics of binderless CBN tools used in high-speed milling of titanium alloys. Wear,258(5), 752-758.
Zareena, A. R., & Veldhuis, S. C. (2012). Tool wear mechanisms and tool life enhancement in ultra-precision machining of titanium. Journal of Materials Processing Technology, 212(3), 560-570.
Zoya, Z. A., & Krishnamurthy, R. (2000). The performance of CBN tools in the machining of titanium alloys. Journal of Materials Processing Technology, 100(1), 80-86.