How to cite this paper
Tebassi, H., Yallese, M., Khettabi, R., Belhadi, S., Meddour, I & Girardin, F. (2016). Multi-objective optimization of surface roughness, cutting forces, productivity and Power consumption when turning of Inconel 718.International Journal of Industrial Engineering Computations , 7(1), 111-134.
Refrences
Alauddin, M., El Baradie, M. A., & Hashmi, M. S. J. (1996). Optimization of surface finish in end milling Inconel 718. Journal of Materials Processing Technology, 56(1), 54-65.
Arunachalam, R. M., Mannan, M. A., & Spowage, A. C. (2004). Surface integrity when machining age hardened Inconel 718 with coated carbide cutting tools. International Journal of Machine Tools and Manufacture, 44(14), 1481-1491.
Biksa, A., Yamamoto, K., Dosbaeva, G., Veldhuis, S. C., Fox-Rabinovich, G. S., Elfizy, A., ... & Shuster, L. S. (2010). Wear behavior of adaptive nano-multilayered AlTiN/MexN PVD coatings during machining of aerospace alloys. Tribology International, 43(8), 1491-1499.
Bushlya, V., Zhou, J. M., Lenrick, F., Avdovic, P., & St?hl, J. E. (2011). Characterization of white layer generated when turning aged Inconel 718. Procedia Engineering, 19, 60-66.
Chen, Y. C., & Liao, Y. S. (2003). Study on wear mechanisms in drilling of Inconel 718 superalloy. Journal of Materials Processing Technology, 140(1), 269-273.
Choudhury, I. A., & El-Baradie, M. A. (1999). Machinability assessment of inconel 718 by factorial design of experiment coupled with response surface methodology. Journal of Materials Processing Technology, 95(1), 30-39.
Davim, J. P., Gaitonde, V. N., & Karnik, S. R. (2008). Investigations into the effect of cutting conditions on surface roughness in turning of free machining steel by ANN models. Journal of Materials Processing Technology, 205(1), 16-23.
Devillez, A., Le Coz, G., Dominiak, S., & Dudzinski, D. (2011). Dry machining of Inconel 718, workpiece surface integrity. Journal of Materials Processing Technology, 211(10), 1590-1598.
Dudzinski, D., Devillez, A., Moufki, A., Larrouquere, D., Zerrouki, V., & Vigneau, J. (2004). A review of developments towards dry and high speed machining of Inconel 718 alloy. International Journal of Machine Tools and Manufacture, 44(4), 439-456.
Ezugwu, E. O., & Bonney, J. (2004). Effect of high-pressure coolant supply when machining nickel-base, Inconel 718, alloy with coated carbide tools. Journal of Materials Processing Technology, 153, 1045-1050.
Gaitonde, V. N., Karnik, S. R., Figueira, L., & Davim, J. P. (2009). Machinability investigations in hard turning of AISI D2 cold work tool steel with conventional and wiper ceramic inserts. International Journal of Refractory Metals and Hard Materials, 27(4), 754-763.
Guo, Y., Loenders, J., Duflou, J., & Lauwers, B. (2012). Optimization of energy consumption and surface quality in finish turning. Procedia CIRP, 1, 512-517.
Hessainia, Z., Belbah, A., Yallese, M. A., Mabrouki, T., & Rigal, J. F. (2013 b). On the prediction of surface roughness in the hard turning based on cutting parameters and tool vibrations. Measurement, 46(5), 1671-1681.
Jawaid, A., Koksal, S., & Sharif, S. (2001). Cutting performance and wear characteristics of PVD coated and uncoated carbide tools in face milling Inconel 718 aerospace alloy. Journal of Materials Processing Technology,116(1), 2-9.
Krain, H. R., Sharman, A. R. C., & Ridgway, K. (2007). Optimisation of tool life and productivity when end milling Inconel 718TM. Journal of Materials Processing Technology, 189(1), 153-161.
Li, H. Z., Zeng, H., & Chen, X. Q. (2006). An experimental study of tool wear and cutting force variation in the end milling of Inconel 718 with coated carbide inserts. Journal of Materials Processing Technology, 180(1), 296-304.
Lynch, C. T. (1989). Practical handbook of materials science. CRC press.
Maiyar, L. M., Ramanujam, R., Venkatesan, K., & Jerald, J. (2013). Optimization of machining parameters for end milling of Inconel 718 super alloy using Taguchi based grey relational analysis. Procedia Engineering, 64, 1276-1282.
Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2009). Response surface methodology: process and product optimization using designed experiments (Vol. 705). John Wiley & Sons.
Nalbant, M., Alt?n, A., & G?kkaya, H. (2007). The effect of coating material and geometry of cutting tool and cutting speed on machinability properties of Inconel 718 super alloys. Materials & Design, 28(5), 1719-1724.
Ng, E. G., Lee, D. W., Dewes, R. C., & Aspinwall, D. K. (2000). Experimental evaluation of cutter orientation when ball nose end milling Inconel 718™. Journal of Manufacturing Processes, 2(2), 108-115.
Osborne, J. W. (2010). Improving your data transformations: Applying the Box-Cox transformation. Practical Assessment, Research & Evaluation, 15(12), 1-9.
Outeiro, J. C., Pina, J. C., M & apos; saoubi, R., Pusavec, F., & Jawahir, I. S. (2008). Analysis of residual stresses induced by dry turning of difficult-to-machine materials. CIRP Annals-Manufacturing Technology, 57(1), 77-80.
Pawade, R. S., Joshi, S. S., Brahmankar, P. K., & Rahman, M. (2007). An investigation of cutting forces and surface damage in high-speed turning of Inconel 718. Journal of Materials Processing Technology, 192, 139-146.
Rahman, M., Seah, W. K. H., & Teo, T. T. (1997). The machinability of Inconel 718. Journal of Materials Processing Technology, 63(1), 199-204.
Ramanujam, R., Venkatesan, K., Saxena, V., & Joseph, P. (2014). Modeling and optimization of cutting parameters in dry turning of Inconel 718 using coated Carbide Inserts. Procedia Materials Science, 5, 2550-2559.
Sadat, A. B. (1987). Surface region damage of machined inconel-718 nickel-base superalloy using natural and controlled contact length tools. Wear, 119(2), 225-235.
Sahoo, A., & Mishra, P. (2014). A response surface methodology and desirability approach for predictive modeling and optimization of cutting temperature in machining hardened steel. International Journal of Industrial Engineering Computations, 5(3), 407-416.
Sakia, R. M. (1992). The Box-Cox transformation technique: a review. The Statistician, 41(2), 169-178.
Sandvik., C. (2009). Catalogue General, Outils de coupe Sandvik Coromant, Tournage – Fraisage –perçage – Alésage – Attachements.
Sharman, A. R. C., Hughes, J. I., & Ridgway, K. (2015). The effect of tool nose radius on surface integrity and residual stresses when turning Inconel 718™. Journal of Materials Processing Technology, 216, 123-132.
Settineri, L., Faga, M. G., & Lerga, B. (2008). Properties and performances of innovative coated tools for turning inconel. International Journal of Machine Tools and Manufacture, 48(7), 815-823.
St?hl, J. E., Schultheiss, F., & H?gglund, S. (2011). Analytical and experimental determination of the Ra surface roughness during turning. Procedia Engineering, 19, 349-356.
Thakur, D. G., Ramamoorthy, B., & Vijayaraghavan, L. (2009). Study on the machinability characteristics of superalloy Inconel 718 during high speed turning. Materials & Design, 30(5), 1718-1725.
Zahia, H., Nabil, K., MA, Y., Mabrouki, T., Ouelaa, N., & Rigal, J. F. (2013 a). Turning roughness model based on tool-nose displacements. Mechanics, 19(1), 112-119.
Zahia, H., Athmane, Y., Lakhdar, B., & Tarek, M. (2015). On the application of response surface methodology for predicting and optimizing surface roughness and cutting forces in hard turning by PVD coated insert. International Journal of Industrial Engineering Computations, 6(2), 267-284.
Arunachalam, R. M., Mannan, M. A., & Spowage, A. C. (2004). Surface integrity when machining age hardened Inconel 718 with coated carbide cutting tools. International Journal of Machine Tools and Manufacture, 44(14), 1481-1491.
Biksa, A., Yamamoto, K., Dosbaeva, G., Veldhuis, S. C., Fox-Rabinovich, G. S., Elfizy, A., ... & Shuster, L. S. (2010). Wear behavior of adaptive nano-multilayered AlTiN/MexN PVD coatings during machining of aerospace alloys. Tribology International, 43(8), 1491-1499.
Bushlya, V., Zhou, J. M., Lenrick, F., Avdovic, P., & St?hl, J. E. (2011). Characterization of white layer generated when turning aged Inconel 718. Procedia Engineering, 19, 60-66.
Chen, Y. C., & Liao, Y. S. (2003). Study on wear mechanisms in drilling of Inconel 718 superalloy. Journal of Materials Processing Technology, 140(1), 269-273.
Choudhury, I. A., & El-Baradie, M. A. (1999). Machinability assessment of inconel 718 by factorial design of experiment coupled with response surface methodology. Journal of Materials Processing Technology, 95(1), 30-39.
Davim, J. P., Gaitonde, V. N., & Karnik, S. R. (2008). Investigations into the effect of cutting conditions on surface roughness in turning of free machining steel by ANN models. Journal of Materials Processing Technology, 205(1), 16-23.
Devillez, A., Le Coz, G., Dominiak, S., & Dudzinski, D. (2011). Dry machining of Inconel 718, workpiece surface integrity. Journal of Materials Processing Technology, 211(10), 1590-1598.
Dudzinski, D., Devillez, A., Moufki, A., Larrouquere, D., Zerrouki, V., & Vigneau, J. (2004). A review of developments towards dry and high speed machining of Inconel 718 alloy. International Journal of Machine Tools and Manufacture, 44(4), 439-456.
Ezugwu, E. O., & Bonney, J. (2004). Effect of high-pressure coolant supply when machining nickel-base, Inconel 718, alloy with coated carbide tools. Journal of Materials Processing Technology, 153, 1045-1050.
Gaitonde, V. N., Karnik, S. R., Figueira, L., & Davim, J. P. (2009). Machinability investigations in hard turning of AISI D2 cold work tool steel with conventional and wiper ceramic inserts. International Journal of Refractory Metals and Hard Materials, 27(4), 754-763.
Guo, Y., Loenders, J., Duflou, J., & Lauwers, B. (2012). Optimization of energy consumption and surface quality in finish turning. Procedia CIRP, 1, 512-517.
Hessainia, Z., Belbah, A., Yallese, M. A., Mabrouki, T., & Rigal, J. F. (2013 b). On the prediction of surface roughness in the hard turning based on cutting parameters and tool vibrations. Measurement, 46(5), 1671-1681.
Jawaid, A., Koksal, S., & Sharif, S. (2001). Cutting performance and wear characteristics of PVD coated and uncoated carbide tools in face milling Inconel 718 aerospace alloy. Journal of Materials Processing Technology,116(1), 2-9.
Krain, H. R., Sharman, A. R. C., & Ridgway, K. (2007). Optimisation of tool life and productivity when end milling Inconel 718TM. Journal of Materials Processing Technology, 189(1), 153-161.
Li, H. Z., Zeng, H., & Chen, X. Q. (2006). An experimental study of tool wear and cutting force variation in the end milling of Inconel 718 with coated carbide inserts. Journal of Materials Processing Technology, 180(1), 296-304.
Lynch, C. T. (1989). Practical handbook of materials science. CRC press.
Maiyar, L. M., Ramanujam, R., Venkatesan, K., & Jerald, J. (2013). Optimization of machining parameters for end milling of Inconel 718 super alloy using Taguchi based grey relational analysis. Procedia Engineering, 64, 1276-1282.
Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2009). Response surface methodology: process and product optimization using designed experiments (Vol. 705). John Wiley & Sons.
Nalbant, M., Alt?n, A., & G?kkaya, H. (2007). The effect of coating material and geometry of cutting tool and cutting speed on machinability properties of Inconel 718 super alloys. Materials & Design, 28(5), 1719-1724.
Ng, E. G., Lee, D. W., Dewes, R. C., & Aspinwall, D. K. (2000). Experimental evaluation of cutter orientation when ball nose end milling Inconel 718™. Journal of Manufacturing Processes, 2(2), 108-115.
Osborne, J. W. (2010). Improving your data transformations: Applying the Box-Cox transformation. Practical Assessment, Research & Evaluation, 15(12), 1-9.
Outeiro, J. C., Pina, J. C., M & apos; saoubi, R., Pusavec, F., & Jawahir, I. S. (2008). Analysis of residual stresses induced by dry turning of difficult-to-machine materials. CIRP Annals-Manufacturing Technology, 57(1), 77-80.
Pawade, R. S., Joshi, S. S., Brahmankar, P. K., & Rahman, M. (2007). An investigation of cutting forces and surface damage in high-speed turning of Inconel 718. Journal of Materials Processing Technology, 192, 139-146.
Rahman, M., Seah, W. K. H., & Teo, T. T. (1997). The machinability of Inconel 718. Journal of Materials Processing Technology, 63(1), 199-204.
Ramanujam, R., Venkatesan, K., Saxena, V., & Joseph, P. (2014). Modeling and optimization of cutting parameters in dry turning of Inconel 718 using coated Carbide Inserts. Procedia Materials Science, 5, 2550-2559.
Sadat, A. B. (1987). Surface region damage of machined inconel-718 nickel-base superalloy using natural and controlled contact length tools. Wear, 119(2), 225-235.
Sahoo, A., & Mishra, P. (2014). A response surface methodology and desirability approach for predictive modeling and optimization of cutting temperature in machining hardened steel. International Journal of Industrial Engineering Computations, 5(3), 407-416.
Sakia, R. M. (1992). The Box-Cox transformation technique: a review. The Statistician, 41(2), 169-178.
Sandvik., C. (2009). Catalogue General, Outils de coupe Sandvik Coromant, Tournage – Fraisage –perçage – Alésage – Attachements.
Sharman, A. R. C., Hughes, J. I., & Ridgway, K. (2015). The effect of tool nose radius on surface integrity and residual stresses when turning Inconel 718™. Journal of Materials Processing Technology, 216, 123-132.
Settineri, L., Faga, M. G., & Lerga, B. (2008). Properties and performances of innovative coated tools for turning inconel. International Journal of Machine Tools and Manufacture, 48(7), 815-823.
St?hl, J. E., Schultheiss, F., & H?gglund, S. (2011). Analytical and experimental determination of the Ra surface roughness during turning. Procedia Engineering, 19, 349-356.
Thakur, D. G., Ramamoorthy, B., & Vijayaraghavan, L. (2009). Study on the machinability characteristics of superalloy Inconel 718 during high speed turning. Materials & Design, 30(5), 1718-1725.
Zahia, H., Nabil, K., MA, Y., Mabrouki, T., Ouelaa, N., & Rigal, J. F. (2013 a). Turning roughness model based on tool-nose displacements. Mechanics, 19(1), 112-119.
Zahia, H., Athmane, Y., Lakhdar, B., & Tarek, M. (2015). On the application of response surface methodology for predicting and optimizing surface roughness and cutting forces in hard turning by PVD coated insert. International Journal of Industrial Engineering Computations, 6(2), 267-284.