How to cite this paper
Delgoshaei, A., Ariffin, M., Baharudin, B & Leman, Z. (2015). Minimizing makespan of a resource-constrained scheduling problem: A hybrid greedy and genetic algorithms.International Journal of Industrial Engineering Computations , 6(4), 503-520.
Refrences
Abbasi, B., Shadrokh, S., & Arkat, J. (2006). Bi-objective resource-constrained project scheduling with robustness and makespan criteria. Applied Mathematics and Computation, 180(1), 146-152.
Achuthan, N., & Hardjawidjaja, A. (2001). Project scheduling under time dependent costs–A branch and bound algorithm. Annals of Operations Research, 108(1-4), 55-74.
Alcaraz, J., & Maroto, C. (2001). A robust genetic algorithm for resource allocation in project scheduling. Annals of Operations Research, 102(1-4), 83-109.
Buddhakulsomsiri, J., & Kim, D. S. (2006). Properties of multi-mode resource-constrained project scheduling problems with resource vacations and activity splitting. European Journal of Operational Research, 175(1), 279-295.
Castej?n-Limas, M., Ordieres-Meré, J., Gonz?lez-Marcos, A., & Gonz?lez-Castro, V. (2011). Effort estimates through project complexity. Annals of Operations Research, 186(1), 395-406.
Chtourou, H., & Haouari, M. (2008). A two-stage-priority-rule-based algorithm for robust resource-constrained project scheduling. Computers & industrial engineering, 55(1), 183-194.
Delgoshaei, A., Ariffin, M. K., Baharudin, B. H. T. B., & Leman, Z. (2014). A Backward Approach for Maximizing Net Present Value of Multi-mode Pre-emptive Resource-Constrained Project Scheduling Problem with Discounted Cash Flows Using Simulated Annealing Algorithm. International Journal of Industrial Engineering and Management, 5(3), 151-158.
Demeulemeester, E. L. (2002). Project scheduling: a research handbook (Vol. 102): Springer.
Hartmann, S. (2001). Project scheduling with multiple modes: a genetic algorithm. Annals of Operations Research, 102(1-4), 111-135.
Hartmann, S., & Briskorn, D. (2010). A survey of variants and extensions of the resource-constrained project scheduling problem. European Journal of Operational Research, 207(1), 1-14.
Icmeli, O., Erenguc, S. S., & Zappe, C. J. (1993). Project scheduling problems: a survey. International Journal of Operations & Production Management, 13(11), 80-91.
Ke, H., & Liu, B. (2010). Fuzzy project scheduling problem and its hybrid intelligent algorithm. Applied Mathematical Modelling, 34(2), 301-308.
Kelley, J. E. (1963). The critical-path method: Resources planning and scheduling. Industrial scheduling, 13, 347-365.
Kim, K., Yun, Y., Yoon, J., Gen, M., & Yamazaki, G. (2005). Hybrid genetic algorithm with adaptive abilities for resource-constrained multiple project scheduling. Computers in industry, 56(2), 143-160.
Kolisch, R. (1996). Serial and parallel resource-constrained project scheduling methods revisited: Theory and computation. European Journal of Operational Research, 90(2), 320-333.
Kolisch, R., & Hartmann, S. (1999). Heuristic algorithms for the resource-constrained project scheduling problem: Classification and computational analysis: Springer.
Laslo, Z. (2010). Project portfolio management: An integrated method for resource planning and scheduling to minimize planning/scheduling-dependent expenses. International Journal of Project Management, 28(6), 609-618.
Lee, C.-Y., & Lei, L. (2001). Multiple-project scheduling with controllable project duration and hard resource constraint: some solvable cases. Annals of Operations Research, 102(1-4), 287-307.
Lombardi, M., & Milano, M. (2012). A min-flow algorithm for minimal critical set detection in resource constrained project scheduling. Artificial Intelligence, 182, 58-67.
Lova, A., & Tormos, P. (2001). Analysis of scheduling schemes and heuristic rules performance in resource-constrained multiproject scheduling. Annals of Operations Research, 102(1-4), 263-286.
Patterson, J., Slowinski, R., Talbot, F., & Weglarz, J. (1989). An algorithm for a general class of precedence and resource constrained scheduling problems. Advances in project scheduling, 187, 3-28.
Peteghem, V. V., & Vanhoucke, M. (2010). A genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem. European Journal of Operational Research, 201(2), 409-418.
Policella, N., Cesta, A., Oddi, A., & Smith, S. F. (2007). From precedence constraint posting to partial order schedules A CSP approach to Robust Scheduling. Ai Communications, 20(3), 163-180.
Seifi, M., & Tavakkoli-Moghaddam, R. (2008). A new bi-objective model for a multi-mode resource-constrained project scheduling problem with discounted cash flows and four payment models. Int. J. of Engineering, Transaction A: Basic, 21(4), 347-360.
Speranza, M. G., & Vercellis, C. (1993). Hierarchical models for multi-project planning and scheduling. European Journal of Operational Research, 64(2), 312-325.
Sprecher, A. (2000). Scheduling resource-constrained projects competitively at modest memory requirements. Management Science, 46(5), 710-723.
Sprecher, A., Hartmann, S., & Drexl, A. (1997). An exact algorithm for project scheduling with multiple modes. Operations-Research-Spektrum, 19(3), 195-203.
Sung, C., & Lim, S. (1994). A project activity scheduling problem with net present value measure. International Journal of Production Economics, 37(2), 177-187.
Talbot, F. B. (1982). Resource-constrained project scheduling with time-resource tradeoffs: The nonpreemptive case. Management Science, 28(10), 1197-1210.
Ulusoy, G., Sivrikaya-?erifo?lu, F., & ?ahin, ?. (2001). Four payment models for the multi-mode resource constrained project scheduling problem with discounted cash flows. Annals of Operations Research, 102(1-4), 237-261.
Van de Vonder, S., Demeulemeester, E., Herroelen, W., & Leus, R. (2005). The use of buffers in project management: The trade-off between stability and makespan. International Journal of Production Economics, 97(2), 227-240.
Van de Vonder, S., Demeulemeester, E., Herroelen, W., & Leus, R. (2006). The trade-off between stability and makespan in resource-constrained project scheduling. International Journal of Production Research, 44(2), 215-236.
Yang, K. K., Talbot, F. B., & Patterson, J. H. (1993). Scheduling a project to maximize its net present value: an integer programming approach. European Journal of Operational Research, 64(2), 188-198.
Yu, L., Wang, S., Wen, F., & Lai, K. K. (2012). Genetic algorithm-based multi-criteria project portfolio selection. Annals of Operations Research, 197(1), 71-86.
Achuthan, N., & Hardjawidjaja, A. (2001). Project scheduling under time dependent costs–A branch and bound algorithm. Annals of Operations Research, 108(1-4), 55-74.
Alcaraz, J., & Maroto, C. (2001). A robust genetic algorithm for resource allocation in project scheduling. Annals of Operations Research, 102(1-4), 83-109.
Buddhakulsomsiri, J., & Kim, D. S. (2006). Properties of multi-mode resource-constrained project scheduling problems with resource vacations and activity splitting. European Journal of Operational Research, 175(1), 279-295.
Castej?n-Limas, M., Ordieres-Meré, J., Gonz?lez-Marcos, A., & Gonz?lez-Castro, V. (2011). Effort estimates through project complexity. Annals of Operations Research, 186(1), 395-406.
Chtourou, H., & Haouari, M. (2008). A two-stage-priority-rule-based algorithm for robust resource-constrained project scheduling. Computers & industrial engineering, 55(1), 183-194.
Delgoshaei, A., Ariffin, M. K., Baharudin, B. H. T. B., & Leman, Z. (2014). A Backward Approach for Maximizing Net Present Value of Multi-mode Pre-emptive Resource-Constrained Project Scheduling Problem with Discounted Cash Flows Using Simulated Annealing Algorithm. International Journal of Industrial Engineering and Management, 5(3), 151-158.
Demeulemeester, E. L. (2002). Project scheduling: a research handbook (Vol. 102): Springer.
Hartmann, S. (2001). Project scheduling with multiple modes: a genetic algorithm. Annals of Operations Research, 102(1-4), 111-135.
Hartmann, S., & Briskorn, D. (2010). A survey of variants and extensions of the resource-constrained project scheduling problem. European Journal of Operational Research, 207(1), 1-14.
Icmeli, O., Erenguc, S. S., & Zappe, C. J. (1993). Project scheduling problems: a survey. International Journal of Operations & Production Management, 13(11), 80-91.
Ke, H., & Liu, B. (2010). Fuzzy project scheduling problem and its hybrid intelligent algorithm. Applied Mathematical Modelling, 34(2), 301-308.
Kelley, J. E. (1963). The critical-path method: Resources planning and scheduling. Industrial scheduling, 13, 347-365.
Kim, K., Yun, Y., Yoon, J., Gen, M., & Yamazaki, G. (2005). Hybrid genetic algorithm with adaptive abilities for resource-constrained multiple project scheduling. Computers in industry, 56(2), 143-160.
Kolisch, R. (1996). Serial and parallel resource-constrained project scheduling methods revisited: Theory and computation. European Journal of Operational Research, 90(2), 320-333.
Kolisch, R., & Hartmann, S. (1999). Heuristic algorithms for the resource-constrained project scheduling problem: Classification and computational analysis: Springer.
Laslo, Z. (2010). Project portfolio management: An integrated method for resource planning and scheduling to minimize planning/scheduling-dependent expenses. International Journal of Project Management, 28(6), 609-618.
Lee, C.-Y., & Lei, L. (2001). Multiple-project scheduling with controllable project duration and hard resource constraint: some solvable cases. Annals of Operations Research, 102(1-4), 287-307.
Lombardi, M., & Milano, M. (2012). A min-flow algorithm for minimal critical set detection in resource constrained project scheduling. Artificial Intelligence, 182, 58-67.
Lova, A., & Tormos, P. (2001). Analysis of scheduling schemes and heuristic rules performance in resource-constrained multiproject scheduling. Annals of Operations Research, 102(1-4), 263-286.
Patterson, J., Slowinski, R., Talbot, F., & Weglarz, J. (1989). An algorithm for a general class of precedence and resource constrained scheduling problems. Advances in project scheduling, 187, 3-28.
Peteghem, V. V., & Vanhoucke, M. (2010). A genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem. European Journal of Operational Research, 201(2), 409-418.
Policella, N., Cesta, A., Oddi, A., & Smith, S. F. (2007). From precedence constraint posting to partial order schedules A CSP approach to Robust Scheduling. Ai Communications, 20(3), 163-180.
Seifi, M., & Tavakkoli-Moghaddam, R. (2008). A new bi-objective model for a multi-mode resource-constrained project scheduling problem with discounted cash flows and four payment models. Int. J. of Engineering, Transaction A: Basic, 21(4), 347-360.
Speranza, M. G., & Vercellis, C. (1993). Hierarchical models for multi-project planning and scheduling. European Journal of Operational Research, 64(2), 312-325.
Sprecher, A. (2000). Scheduling resource-constrained projects competitively at modest memory requirements. Management Science, 46(5), 710-723.
Sprecher, A., Hartmann, S., & Drexl, A. (1997). An exact algorithm for project scheduling with multiple modes. Operations-Research-Spektrum, 19(3), 195-203.
Sung, C., & Lim, S. (1994). A project activity scheduling problem with net present value measure. International Journal of Production Economics, 37(2), 177-187.
Talbot, F. B. (1982). Resource-constrained project scheduling with time-resource tradeoffs: The nonpreemptive case. Management Science, 28(10), 1197-1210.
Ulusoy, G., Sivrikaya-?erifo?lu, F., & ?ahin, ?. (2001). Four payment models for the multi-mode resource constrained project scheduling problem with discounted cash flows. Annals of Operations Research, 102(1-4), 237-261.
Van de Vonder, S., Demeulemeester, E., Herroelen, W., & Leus, R. (2005). The use of buffers in project management: The trade-off between stability and makespan. International Journal of Production Economics, 97(2), 227-240.
Van de Vonder, S., Demeulemeester, E., Herroelen, W., & Leus, R. (2006). The trade-off between stability and makespan in resource-constrained project scheduling. International Journal of Production Research, 44(2), 215-236.
Yang, K. K., Talbot, F. B., & Patterson, J. H. (1993). Scheduling a project to maximize its net present value: an integer programming approach. European Journal of Operational Research, 64(2), 188-198.
Yu, L., Wang, S., Wen, F., & Lai, K. K. (2012). Genetic algorithm-based multi-criteria project portfolio selection. Annals of Operations Research, 197(1), 71-86.