How to cite this paper
Jaggi, C., Sharma, A & Tiwari, S. (2015). Credit financing in economic ordering policies for non-instantaneous deteriorating items with price dependent demand under permissible delay in payments: A new approach.International Journal of Industrial Engineering Computations , 6(4), 481-502.
Refrences
Aggarwal, S. P., & Jaggi, C. K. (1995). Ordering policies of deteriorating items under permissible delay in payments. Journal of the Operational Research Society, 46(5), 658-662.
Chang, S. C., Yao, J. S., & Lee, H. M. (1998). Economic reorder point for fuzzy backorder quantity. European Journal of Operational Research, 109(1), 183-202.
Chang, C. T., Teng, J. T., & Goyal, S. K. (2008). Inventory lot-size models under trade credits: a review. Asia-Pacific Journal of Operational Research, 25(1), 89-112.
Chang, C. T., Teng, J. T., & Goyal, S. K. (2010). Optimal replenishment policies for non-instantaneous deteriorating items with stock-dependent demand. International Journal of Production Economics, 123(1), 62-68.
Chen, L. H., & Ouyang, L. Y. (2006). Fuzzy inventory model for deteriorating items with permissible delay in payment. Applied Mathematics and Computation, 182(1), 711-726.
Cheng, M. C., Chang, C. T., & Ouyang, L. Y. (2012). The retailer’s optimal ordering policy with trade credit in different financial environments. Applied Mathematics and Computation, 218(19), 9623-9634.
Cohen, M. A. (1977). Joint pricing and ordering policy for exponentially decaying inventory with known demand. Naval Research Logistics Quarterly, 24(2), 257-268.
Dutta, P., Chakraborty, D., & Roy, A. R. (2005). A single-period inventory model with fuzzy random variable demand. Mathematical and Computer Modelling, 41(8), 915-922.
Dye, C.Y. (2013). The effect of preservation technology investment on a non-instantaneous deteriorating inventory model. Omega, 41(5), 872 – 880.
Gani, A. N., & Maheswari, S. (2010). Supply chain model for the retailer’s ordering policy under two levels of delay payments in fuzzy environment. Applied Mathematical Sciences, 4(21-24), 1155-1164.
Geetha, K. V., & Uthayakumar, R. (2010). Economic design of an inventory policy for non-instantaneous deteriorating items under permissible delay in payments. Journal of Computational and Applied Mathematics, 233(10), 2492-2505.
Goyal, S. K. (1985). Economic order quantity under conditions of permissible delay in payments. Journal of the Operational Research Society, 36(4), 335-338.
Haley, C. W., & Higgins, R. C. (1973). Inventory policy and trade credit financing. Management Science, 20(4), 464-471.
Hwang, H., & Shinn, S. W. (1997). Retailer & apos; s pricing and lot sizing policy for exponentially deteriorating products under the condition of permissible delay in payments. Computers & Operations Research, 24(6), 539-547.
Jaggi, Chandra K., Goyal, S.K., & Goel, S. K. (2008). Retailer’s optimal replenishment decisions with credit-linked demand under permissible delay in payments. European Journal of Operational Research, 190(1), 130–135.
Jaggi, C. K., & Verma, P. (2010). An optimal replenishment policy for non-instantaneous deteriorating items with two storage facilities. International Journal of Services Operations and Informatics, 5(3), 209-230.
Jamal, A. M. M., Sarker, B. R., and Wang, S. (1997). An ordering policy for deteriorating items with allowable shortage, and permissible delay in payment. Journal of the Operational Research Society, 48(8), 826-833.
Kacprzyk, J., & Stanieski, P. (1982). Long-term inventory policy-making through fuzzy decision-making models. Fuzzy Sets and Systems, 8(2), 117-132.
Kaufmann, A., & Gupta, M. M. (1991). Introduction to fuzzy arithmetic: theory and applications. Arden Shakespeare.
Kao, C., & Hsu, W. K. (2002). A single-period inventory model with fuzzy demand. Computers & Mathematics with Applications, 43(6), 841-848.
Mahata, G. C., & Mahata, P. (2011). Analysis of a fuzzy economic order quantity model for deteriorating items under retailer partial trade credit financing in a supply chain. Mathematical and Computer Modelling, 53(9), 1621-1636.
Maihami, R., & Kamalabadi, I. N. (2012). Joint pricing and inventory control for non-instantaneous deteriorating items with partial backlogging and time and price dependent demand. International Journal of Production Economics, 136(1), 116-122.
Maihami, R. & Kamalabadi, I. N. (2012). Joint control of inventory and its pricing for non-instantaneously deteriorating items under permissible delay in payments and partial backlogging. Mathematical and Computer Modelling, 55(5–6), 1722 – 1733.
Malik, A. K., & Singh, Y. (2011). An inventory model for deteriorating items with soft computing techniques and variable demand. International Journal of Soft Computing and Engineering, 1(5), 317-321.
Molamohamadi, Z., Ismail, N., Leman, Z., & Zulkifli, N. (2014). Reviewing the literature of inventory models under trade credit contact. Discrete Dynamics in Nature and Society, 2014.
Mukhopadhyay, S., Mukherjee, R. N., & Chaudhuri, K. S. (2004). Joint pricing and ordering policy for a deteriorating inventory. Computers & Industrial Engineering, 47(4), 339-349.
Ouyang, L. Y., Wu, K. S., & Yang, C. T. (2008). Retailer & apos; s ordering policy for non-instantaneous deteriorating items with quantity discount, stock-dependent demand and stochastic backorder rate. Journal of the Chinese Institute of Industrial Engineers, 25(1), 62-72.
Park, K. S. (1987). Fuzzy-set theoretic interpretation of economic order quantity. Systems, Man and Cybernetics, IEEE Transactions, 17(6), 1082-1084.
Rong, L. (2011). Two new uncertainty programming models of inventory with uncertain costs. Journal of Information and Computational Science, 8(2), 280-288.
Roy, T. K., & Maiti, M. (1997). A fuzzy EOQ model with demand-dependent unit cost under limited storage capacity. European Journal of Operational Research, 99(2), 425-432.
Sarkar, S., & Chakrabarti, T. (2011). An EPQ model with two-component demand under fuzzy environment and Weibull distribution deterioration with shortages. Advances in Operations Research, 2012.
Seifert, D., Seifert, R. W., & Protopappa-Sieke, M. (2013). A review of trade credit literature: Opportunities for research in operations. European Journal of Operational Research, 231(2), 245-256.
Shah, N. H. (1993). A lot-size model for exponentially decaying inventory when delay in payments is permissible. Cahiers du Centre d & apos; études de recherche opérationnelle, 35(1-2), 115-123.
Shah, N. H., Soni, H. N. & Patel, K. A. (2013). Optimizing inventory and marketing policy for non-instantaneous deteriorating items with generalized type deterioration and holding cost rates. Omega, 41(2), 421 – 430.
Singh, S. R., Kumar, T., & Gupta, C. B. (2011). A Soft Computing based Inventory Model with Deterioration and Price Dependent Demand. International Journal of Computer Applications, 36(4), 10–17.
Song, J. S., & Zipkin, P. (1993). Inventory control in a fluctuating demand environment. Operations Research, 41(2), 351-370.
Soni, H., Shah, N. H., & Jaggi, C. K. (2010). Inventory models and trade credit: a review. Control and Cybernetics, 9(3), 867-882.
Soni, H., & Patel, K. (2012). Optimal pricing and inventory policies for non-instantaneous deteriorating items with permissible delay in payment: Fuzzy expected value model. International Journal of Industrial Engineering Computations, 3(3), 281-300.
Syed, J. K., & Aziz, L. A. (2007). Fuzzy inventory model without shortages using signed distance method. Applied Mathematics & Information Sciences, 1(2), 203-209.
Uthayakumar, R. & Valliathal, M. (2011). Fuzzy economic production quantity model for weibull deteriorating items with ramp type of demand. International Journal of International Journal of Strategic Decision Sciences, 2(3), 55-90.
Vujo?evi?, M., Petrovi?, D., & Petrovi?, R. (1996). EOQ formula when inventory cost is fuzzy. International Journal of Production Economics, 45(1), 499-504.
Vijayan, T., & Kumaran, M. (2008). Inventory models with a mixture of backorders and lost sales under fuzzy cost. European Journal of Operational Research, 189(1), 105-119.
Wee, H. M. (1997). A replenishment policy for items with a price-dependent demand and a varying rate of deterioration. Production Planning & Control, 8(5), 494-499.
Wee, H. M. (1999). Deteriorating inventory model with quantity discount, pricing and partial backordering. International Journal of Production Economics, 59(1), 511-518.
Wang, X., Tang, W., & Zhao, R. (2007). Fuzzy economic order quantity inventory models without backordering. Tsinghua Science & Technology, 12(1), 91-96.
Wu, K. S., Ouyang, L. Y., & Yang, C. T. (2006). An optimal replenishment policy for non-instantaneous deteriorating items with stock-dependent demand and partial backlogging. International Journal of Production Economics, 101(2), 369-384.
Wu, K. S., Ouyang, L. Y., & Yang, C. T. (2009). Coordinating replenishment and pricing policies for non-instantaneous deteriorating items with price-sensitive demand. International Journal of Systems Science, 40(12), 1273-1281.
Yao, J. S., & Chiang, J. (2003). Inventory without backorder with fuzzy total cost and fuzzy storing cost defuzzified by centroid and signed distance. European Journal of Operational Research, 148(2), 401-409.
Zadeh, L. A. (1965). Fuzzy sets. Information and control. 8(3), 338-353.
Zimmermann, H. J. (1985). Fuzzy Set Theory and Its Applications. Kluwer-Nijho, Hinghum, Netherlands.
Chang, S. C., Yao, J. S., & Lee, H. M. (1998). Economic reorder point for fuzzy backorder quantity. European Journal of Operational Research, 109(1), 183-202.
Chang, C. T., Teng, J. T., & Goyal, S. K. (2008). Inventory lot-size models under trade credits: a review. Asia-Pacific Journal of Operational Research, 25(1), 89-112.
Chang, C. T., Teng, J. T., & Goyal, S. K. (2010). Optimal replenishment policies for non-instantaneous deteriorating items with stock-dependent demand. International Journal of Production Economics, 123(1), 62-68.
Chen, L. H., & Ouyang, L. Y. (2006). Fuzzy inventory model for deteriorating items with permissible delay in payment. Applied Mathematics and Computation, 182(1), 711-726.
Cheng, M. C., Chang, C. T., & Ouyang, L. Y. (2012). The retailer’s optimal ordering policy with trade credit in different financial environments. Applied Mathematics and Computation, 218(19), 9623-9634.
Cohen, M. A. (1977). Joint pricing and ordering policy for exponentially decaying inventory with known demand. Naval Research Logistics Quarterly, 24(2), 257-268.
Dutta, P., Chakraborty, D., & Roy, A. R. (2005). A single-period inventory model with fuzzy random variable demand. Mathematical and Computer Modelling, 41(8), 915-922.
Dye, C.Y. (2013). The effect of preservation technology investment on a non-instantaneous deteriorating inventory model. Omega, 41(5), 872 – 880.
Gani, A. N., & Maheswari, S. (2010). Supply chain model for the retailer’s ordering policy under two levels of delay payments in fuzzy environment. Applied Mathematical Sciences, 4(21-24), 1155-1164.
Geetha, K. V., & Uthayakumar, R. (2010). Economic design of an inventory policy for non-instantaneous deteriorating items under permissible delay in payments. Journal of Computational and Applied Mathematics, 233(10), 2492-2505.
Goyal, S. K. (1985). Economic order quantity under conditions of permissible delay in payments. Journal of the Operational Research Society, 36(4), 335-338.
Haley, C. W., & Higgins, R. C. (1973). Inventory policy and trade credit financing. Management Science, 20(4), 464-471.
Hwang, H., & Shinn, S. W. (1997). Retailer & apos; s pricing and lot sizing policy for exponentially deteriorating products under the condition of permissible delay in payments. Computers & Operations Research, 24(6), 539-547.
Jaggi, Chandra K., Goyal, S.K., & Goel, S. K. (2008). Retailer’s optimal replenishment decisions with credit-linked demand under permissible delay in payments. European Journal of Operational Research, 190(1), 130–135.
Jaggi, C. K., & Verma, P. (2010). An optimal replenishment policy for non-instantaneous deteriorating items with two storage facilities. International Journal of Services Operations and Informatics, 5(3), 209-230.
Jamal, A. M. M., Sarker, B. R., and Wang, S. (1997). An ordering policy for deteriorating items with allowable shortage, and permissible delay in payment. Journal of the Operational Research Society, 48(8), 826-833.
Kacprzyk, J., & Stanieski, P. (1982). Long-term inventory policy-making through fuzzy decision-making models. Fuzzy Sets and Systems, 8(2), 117-132.
Kaufmann, A., & Gupta, M. M. (1991). Introduction to fuzzy arithmetic: theory and applications. Arden Shakespeare.
Kao, C., & Hsu, W. K. (2002). A single-period inventory model with fuzzy demand. Computers & Mathematics with Applications, 43(6), 841-848.
Mahata, G. C., & Mahata, P. (2011). Analysis of a fuzzy economic order quantity model for deteriorating items under retailer partial trade credit financing in a supply chain. Mathematical and Computer Modelling, 53(9), 1621-1636.
Maihami, R., & Kamalabadi, I. N. (2012). Joint pricing and inventory control for non-instantaneous deteriorating items with partial backlogging and time and price dependent demand. International Journal of Production Economics, 136(1), 116-122.
Maihami, R. & Kamalabadi, I. N. (2012). Joint control of inventory and its pricing for non-instantaneously deteriorating items under permissible delay in payments and partial backlogging. Mathematical and Computer Modelling, 55(5–6), 1722 – 1733.
Malik, A. K., & Singh, Y. (2011). An inventory model for deteriorating items with soft computing techniques and variable demand. International Journal of Soft Computing and Engineering, 1(5), 317-321.
Molamohamadi, Z., Ismail, N., Leman, Z., & Zulkifli, N. (2014). Reviewing the literature of inventory models under trade credit contact. Discrete Dynamics in Nature and Society, 2014.
Mukhopadhyay, S., Mukherjee, R. N., & Chaudhuri, K. S. (2004). Joint pricing and ordering policy for a deteriorating inventory. Computers & Industrial Engineering, 47(4), 339-349.
Ouyang, L. Y., Wu, K. S., & Yang, C. T. (2008). Retailer & apos; s ordering policy for non-instantaneous deteriorating items with quantity discount, stock-dependent demand and stochastic backorder rate. Journal of the Chinese Institute of Industrial Engineers, 25(1), 62-72.
Park, K. S. (1987). Fuzzy-set theoretic interpretation of economic order quantity. Systems, Man and Cybernetics, IEEE Transactions, 17(6), 1082-1084.
Rong, L. (2011). Two new uncertainty programming models of inventory with uncertain costs. Journal of Information and Computational Science, 8(2), 280-288.
Roy, T. K., & Maiti, M. (1997). A fuzzy EOQ model with demand-dependent unit cost under limited storage capacity. European Journal of Operational Research, 99(2), 425-432.
Sarkar, S., & Chakrabarti, T. (2011). An EPQ model with two-component demand under fuzzy environment and Weibull distribution deterioration with shortages. Advances in Operations Research, 2012.
Seifert, D., Seifert, R. W., & Protopappa-Sieke, M. (2013). A review of trade credit literature: Opportunities for research in operations. European Journal of Operational Research, 231(2), 245-256.
Shah, N. H. (1993). A lot-size model for exponentially decaying inventory when delay in payments is permissible. Cahiers du Centre d & apos; études de recherche opérationnelle, 35(1-2), 115-123.
Shah, N. H., Soni, H. N. & Patel, K. A. (2013). Optimizing inventory and marketing policy for non-instantaneous deteriorating items with generalized type deterioration and holding cost rates. Omega, 41(2), 421 – 430.
Singh, S. R., Kumar, T., & Gupta, C. B. (2011). A Soft Computing based Inventory Model with Deterioration and Price Dependent Demand. International Journal of Computer Applications, 36(4), 10–17.
Song, J. S., & Zipkin, P. (1993). Inventory control in a fluctuating demand environment. Operations Research, 41(2), 351-370.
Soni, H., Shah, N. H., & Jaggi, C. K. (2010). Inventory models and trade credit: a review. Control and Cybernetics, 9(3), 867-882.
Soni, H., & Patel, K. (2012). Optimal pricing and inventory policies for non-instantaneous deteriorating items with permissible delay in payment: Fuzzy expected value model. International Journal of Industrial Engineering Computations, 3(3), 281-300.
Syed, J. K., & Aziz, L. A. (2007). Fuzzy inventory model without shortages using signed distance method. Applied Mathematics & Information Sciences, 1(2), 203-209.
Uthayakumar, R. & Valliathal, M. (2011). Fuzzy economic production quantity model for weibull deteriorating items with ramp type of demand. International Journal of International Journal of Strategic Decision Sciences, 2(3), 55-90.
Vujo?evi?, M., Petrovi?, D., & Petrovi?, R. (1996). EOQ formula when inventory cost is fuzzy. International Journal of Production Economics, 45(1), 499-504.
Vijayan, T., & Kumaran, M. (2008). Inventory models with a mixture of backorders and lost sales under fuzzy cost. European Journal of Operational Research, 189(1), 105-119.
Wee, H. M. (1997). A replenishment policy for items with a price-dependent demand and a varying rate of deterioration. Production Planning & Control, 8(5), 494-499.
Wee, H. M. (1999). Deteriorating inventory model with quantity discount, pricing and partial backordering. International Journal of Production Economics, 59(1), 511-518.
Wang, X., Tang, W., & Zhao, R. (2007). Fuzzy economic order quantity inventory models without backordering. Tsinghua Science & Technology, 12(1), 91-96.
Wu, K. S., Ouyang, L. Y., & Yang, C. T. (2006). An optimal replenishment policy for non-instantaneous deteriorating items with stock-dependent demand and partial backlogging. International Journal of Production Economics, 101(2), 369-384.
Wu, K. S., Ouyang, L. Y., & Yang, C. T. (2009). Coordinating replenishment and pricing policies for non-instantaneous deteriorating items with price-sensitive demand. International Journal of Systems Science, 40(12), 1273-1281.
Yao, J. S., & Chiang, J. (2003). Inventory without backorder with fuzzy total cost and fuzzy storing cost defuzzified by centroid and signed distance. European Journal of Operational Research, 148(2), 401-409.
Zadeh, L. A. (1965). Fuzzy sets. Information and control. 8(3), 338-353.
Zimmermann, H. J. (1985). Fuzzy Set Theory and Its Applications. Kluwer-Nijho, Hinghum, Netherlands.