How to cite this paper
Jayathavaj, V & Pongpullponsak, A. (2014). A simulation study on the performance of the sign test, Mann-Whitney test, Hodges-Lehmann estimator and control charts for Normal and Weibull data.International Journal of Industrial Engineering Computations , 5(4), 561-574.
Refrences
Alloway, J.A. & Raghavachari, M. (1991). Control chart based on Hodges–Lehmann estimator. Journal of Quality Technology, 23, 336–347.
Amin, R.W., & Widmaier, O. (1999). Sign control charts with variable sampling intervals. Communication in Statistics - Theory and Methods, 28(8), 1961–1985.
Amin, R., Reynolds Jr, M.R., & Bakir, S.T. (1995).Nonparametric quality control charts based on the sign statistic.Communication in Statistics - Theory and Methods, 24, 1579–1623.
Bakir, S.T. (2001). Classification of distribution-free quality control charts, Proceedings of the Annual Meeting of the American Statistical Association, August 5-9, 2001.
Bakir, S.T. (2004). A distribution-free Shewhart quality control chart based on Signed-rank. Quality Engineering, 16(4),613-623.
Bakir, S.T. & Reynolds, M.R. (1979).A nonparametric for process control based on within-groups ranking. Technometrics, 21(2), 175-183.
Balakrishnan, N., Triantafyllou, I.S. & Koutras, M.V. (2009). Nonparametric control charts based on runs and Wilcoxon-type rank-sum statistics. Journal of Statistical Planning and Interface, 139, 3177-3192.
Beaumont, G.P., & Knowles, J.D. (1996). Statistical tests An introduction with MINITAB commentary. Hertfordshire: Prentice Hall international (UK) Limited.
Bersimis, S., Psarakis, S., & Panaretos, J. (2007). Multivariate Statistical Process Control Charts : An Overview. Quality and Reliability Engineering International, 23, 517-543.
Black, G., Smith, J. & Wells, S. (2011). The impact of Weibull data and autocorrelation on the performance of the Shewhart and exponentially weighted moving average control charts. International Journal of Industrial Engineering Computations, 2, 575-582.
Bluman, A.G. (1998). Elementary Statistics : a step by step approach. Boston: WCB McGraw-Hill.
Chakraborti, S. & Eryilmaz, S. (2007). A nonparametric Shewhart-type signed-rank control chart based on runs.Communications in Statistics – Simulation and Computation, 36(2), 335-356.
Chakraborti, S., van der Lann, P., & Bakir, S.T. (2001). Nonparametric control charts: an overview and some results. Journal of Quality Technology, 33(3), 304-315.
Chakraborti, S. & van de Wiel, M.A. (2008).A nonparametric control chart based on the Mann-Whitney statistic.IMS Collections. Institute of Mathematical Statistics, 1, 156–172.
Cheng, A.Y., Liu, R.Y. & Luxhoj, J.T. (2000).Monitoring Multivariate Aviation Safety Data by Data Depth: Control Charts and Threshold Systems. IIE Transactions, 32, 861-872.
Das, N. (2009). A comparison study of three non-parametric control charts to detect shift in location parameters. The International Journal of Advanced Manufacturing Technology, 41, 799-807.
Duchnowski R. (2013). Hodges–Lehmann estimates in deformation analyses. Journal of Geodynamics, 87, 873–884.
Ghute, V.B. & Shirke, D.T.(2012). A nonparametric Signed-rank control chart for bivariate process location. Quality Technology & Quantitative Management, 9(4), 317-328.
Gibbons, J.D. (1971). Nonparametric Statistical Inference. Tokyo: McGraw-Hill Kogakusha.
Graham, M.A., Human, S.W. & Chakraborti, S. (2010). A phase I nonparametric Shewhart-type control chart based on the median. Journal of Applied Statistics, 37(11), 1795-1813.
Graham, M.A., Chakraborti, S., & Human, S.W. (2011).A nonparametric exponentially weighted moving average signed-rank chart for monitoring location. Computational Statistics and Data Analysis, 55, 2490-2503.
Graham, M.A., Mukherjee, A. & Chakraborti, S. (2012). Distribution-free exponentially weighted moving average control charts for monitoring unknown location. Computational Statistics and Data Analysis, 56, 2539-2561.
Human, S.W., Chakraborti, S. & Smit, C.F. (2010).Nonparametric Shewhart-type Sign control charts based on runs. Communication in Statistics - Theory and Methods, 39(11), 2046–2062.
Jones-Farmer, L.A., Jordan, V. & Champ, C.W. (2009). Distribution-free phase I control charts for subgroup location. Journal of Quality Technology, 41(3), 304-316.
Khilare, S.K., & Shirke, D.T. (2010). A nonparametric synthetic control chart using Sign statistic. Communicatins in statistics – Theory and Methods, 39(18), 3282-3293.
Lehmann, E.L. (1963). Non-parametric confidence intervals for a shift parameter. The Annals of Mathematical Statistics, 34, 1507–1512.
Li, J., Zhang, X. & Jeske, D.R. (2013).Nonparametric multivariate CUSUM control charts for location and scale changes. Journal of Nonparametric Statistics, 25(1), 1-20.
Lin, Y.C. & Chou, C.Y. (2007). Non-normality and the variable parameters control charts. European Journal of Operations Research, 176, 361-373.
Montgomery, D.C. (2013). Statistical quality control (7th edition). Asia: John Wiley & Sons Singapore.
Nelson, P.R. (1979). Control Charts for Weibull Processes with Standards Given. IEEE Transactions on Reliability, 28, 283-288.
Neuh?user, M. (2012). Nonparametric Statistical tests: A computational Approach. Florida : CRC Press.
Pongpullponsak, A., Suracherdkiati, W., & Kriweradechachai, P. (2004). The comparison of efficiency of control chart by weighted variance method, Nelson Method, Shewhart method for skewed population, Proceeding of the 5th Applied Statistics Conference of Northern Thailand; 2004 May 27-29; Chiang Mai, Thailand.
The Math WorksTM. (2009). MATLAB 7.6.0(R2009a). License Number 350306, February 12, 2009.
Yang, S., Lin, J., & Cheng, S.W. (2011). A new nonparametric EWMA Sign Control Chart. Expert Systems with Applications, 38, 6239-6243.
Amin, R.W., & Widmaier, O. (1999). Sign control charts with variable sampling intervals. Communication in Statistics - Theory and Methods, 28(8), 1961–1985.
Amin, R., Reynolds Jr, M.R., & Bakir, S.T. (1995).Nonparametric quality control charts based on the sign statistic.Communication in Statistics - Theory and Methods, 24, 1579–1623.
Bakir, S.T. (2001). Classification of distribution-free quality control charts, Proceedings of the Annual Meeting of the American Statistical Association, August 5-9, 2001.
Bakir, S.T. (2004). A distribution-free Shewhart quality control chart based on Signed-rank. Quality Engineering, 16(4),613-623.
Bakir, S.T. & Reynolds, M.R. (1979).A nonparametric for process control based on within-groups ranking. Technometrics, 21(2), 175-183.
Balakrishnan, N., Triantafyllou, I.S. & Koutras, M.V. (2009). Nonparametric control charts based on runs and Wilcoxon-type rank-sum statistics. Journal of Statistical Planning and Interface, 139, 3177-3192.
Beaumont, G.P., & Knowles, J.D. (1996). Statistical tests An introduction with MINITAB commentary. Hertfordshire: Prentice Hall international (UK) Limited.
Bersimis, S., Psarakis, S., & Panaretos, J. (2007). Multivariate Statistical Process Control Charts : An Overview. Quality and Reliability Engineering International, 23, 517-543.
Black, G., Smith, J. & Wells, S. (2011). The impact of Weibull data and autocorrelation on the performance of the Shewhart and exponentially weighted moving average control charts. International Journal of Industrial Engineering Computations, 2, 575-582.
Bluman, A.G. (1998). Elementary Statistics : a step by step approach. Boston: WCB McGraw-Hill.
Chakraborti, S. & Eryilmaz, S. (2007). A nonparametric Shewhart-type signed-rank control chart based on runs.Communications in Statistics – Simulation and Computation, 36(2), 335-356.
Chakraborti, S., van der Lann, P., & Bakir, S.T. (2001). Nonparametric control charts: an overview and some results. Journal of Quality Technology, 33(3), 304-315.
Chakraborti, S. & van de Wiel, M.A. (2008).A nonparametric control chart based on the Mann-Whitney statistic.IMS Collections. Institute of Mathematical Statistics, 1, 156–172.
Cheng, A.Y., Liu, R.Y. & Luxhoj, J.T. (2000).Monitoring Multivariate Aviation Safety Data by Data Depth: Control Charts and Threshold Systems. IIE Transactions, 32, 861-872.
Das, N. (2009). A comparison study of three non-parametric control charts to detect shift in location parameters. The International Journal of Advanced Manufacturing Technology, 41, 799-807.
Duchnowski R. (2013). Hodges–Lehmann estimates in deformation analyses. Journal of Geodynamics, 87, 873–884.
Ghute, V.B. & Shirke, D.T.(2012). A nonparametric Signed-rank control chart for bivariate process location. Quality Technology & Quantitative Management, 9(4), 317-328.
Gibbons, J.D. (1971). Nonparametric Statistical Inference. Tokyo: McGraw-Hill Kogakusha.
Graham, M.A., Human, S.W. & Chakraborti, S. (2010). A phase I nonparametric Shewhart-type control chart based on the median. Journal of Applied Statistics, 37(11), 1795-1813.
Graham, M.A., Chakraborti, S., & Human, S.W. (2011).A nonparametric exponentially weighted moving average signed-rank chart for monitoring location. Computational Statistics and Data Analysis, 55, 2490-2503.
Graham, M.A., Mukherjee, A. & Chakraborti, S. (2012). Distribution-free exponentially weighted moving average control charts for monitoring unknown location. Computational Statistics and Data Analysis, 56, 2539-2561.
Human, S.W., Chakraborti, S. & Smit, C.F. (2010).Nonparametric Shewhart-type Sign control charts based on runs. Communication in Statistics - Theory and Methods, 39(11), 2046–2062.
Jones-Farmer, L.A., Jordan, V. & Champ, C.W. (2009). Distribution-free phase I control charts for subgroup location. Journal of Quality Technology, 41(3), 304-316.
Khilare, S.K., & Shirke, D.T. (2010). A nonparametric synthetic control chart using Sign statistic. Communicatins in statistics – Theory and Methods, 39(18), 3282-3293.
Lehmann, E.L. (1963). Non-parametric confidence intervals for a shift parameter. The Annals of Mathematical Statistics, 34, 1507–1512.
Li, J., Zhang, X. & Jeske, D.R. (2013).Nonparametric multivariate CUSUM control charts for location and scale changes. Journal of Nonparametric Statistics, 25(1), 1-20.
Lin, Y.C. & Chou, C.Y. (2007). Non-normality and the variable parameters control charts. European Journal of Operations Research, 176, 361-373.
Montgomery, D.C. (2013). Statistical quality control (7th edition). Asia: John Wiley & Sons Singapore.
Nelson, P.R. (1979). Control Charts for Weibull Processes with Standards Given. IEEE Transactions on Reliability, 28, 283-288.
Neuh?user, M. (2012). Nonparametric Statistical tests: A computational Approach. Florida : CRC Press.
Pongpullponsak, A., Suracherdkiati, W., & Kriweradechachai, P. (2004). The comparison of efficiency of control chart by weighted variance method, Nelson Method, Shewhart method for skewed population, Proceeding of the 5th Applied Statistics Conference of Northern Thailand; 2004 May 27-29; Chiang Mai, Thailand.
The Math WorksTM. (2009). MATLAB 7.6.0(R2009a). License Number 350306, February 12, 2009.
Yang, S., Lin, J., & Cheng, S.W. (2011). A new nonparametric EWMA Sign Control Chart. Expert Systems with Applications, 38, 6239-6243.