How to cite this paper
Desale, P & Jahagirdar, R. (2014). Modeling the effect of variable work piece hardness on surface roughness in an end milling using multiple regression and adaptive Neuro fuzzy inference system.International Journal of Industrial Engineering Computations , 5(2), 265-272.
Refrences
Altan, T., Lilly, B., & Yen, Y. C. (2001). Manufacturing of dies and molds. CIRP Annals-Manufacturing Technology, 50(2), 404-422.
Benardos, P. G., & Vosniakos, G.-C. (2003). Predicting surface roughness in machining: a review, International Journal of Machine Tools Manufacturing, 43, 833 – 844.
Dong, M., & Wang N. (2011). Adaptive network based fuzzy inference system with leave-one-out cross-validation approach for prediction of surface roughness. Applied Mathematical Modelling, 35 (3), 1024–1035.
Dweiri M., Al-Jarrah F., & Al-Wedyan H. (2003). Fuzzy surface modelling of CNC down milling. Journal of Material Processing Technology, 133, 266 – 275.
Ho W. H., Tsai J. T., Lin B. T., & Chou J. H. (2009). Adaptive network-based fuzzy inference system for prediction of surface roughness in end milling process using hybrid Taguchi-genetic learning algorithm. Expert Systems with Applications, 36, 3216–3222.
Jang, J. S. (1993). ANFIS: adaptive-network-based fuzzy inference system.Systems, Man and Cybernetics, IEEE Transactions on, 23(3), 665-685.
Jang, J. S. R., Sun, C. T., & Mizutani, E. (2004). Neuro-fuzzy and soft computing, Taipei: Pearson Education.
Kovac P., Rodic D., Pucovsky V., Savkovic B., & Gostimirovic M. (2013). Application of fuzzy logic and regression analysis for modeling surface roughness in face milling. Journal of Intelligent manufacturing, 24(4), 755-762.
Lo, S. P. (2003). An adaptive-network based fuzzy inference system for prediction of workpiece surface roughness in end milling. Journal of Materials Processing Technology, 142(3), 665-675.
Lou, M. S., Chen, J. C., & Li, C. M. (1998). Surface roughness technique for CNC End milling. Journal of Industrial Technology, 15 (1), 1-6.
Rajasekaran, T., Palanikumar, K., & Vinayagam, B. K. (2012). Application of fuzzy logic for modeling surface roughness in turning CFRP composites using CBN tool. Production Engineering, 5(2), 191 – 199.
Topal E.S. (2009). Role of stepover ratio in prediction of surface roughness in flat milling. International Journal of Mechanical Sciences, 51, 782 – 789.
Tsai, J. T., Liu, T. K., & Chou J. H. (2004). Hybrid Taguchi-genetic algorithm for global numerical optimization. IEEE Transactions on Evolutionary Computation, 8, 365–377.
Benardos, P. G., & Vosniakos, G.-C. (2003). Predicting surface roughness in machining: a review, International Journal of Machine Tools Manufacturing, 43, 833 – 844.
Dong, M., & Wang N. (2011). Adaptive network based fuzzy inference system with leave-one-out cross-validation approach for prediction of surface roughness. Applied Mathematical Modelling, 35 (3), 1024–1035.
Dweiri M., Al-Jarrah F., & Al-Wedyan H. (2003). Fuzzy surface modelling of CNC down milling. Journal of Material Processing Technology, 133, 266 – 275.
Ho W. H., Tsai J. T., Lin B. T., & Chou J. H. (2009). Adaptive network-based fuzzy inference system for prediction of surface roughness in end milling process using hybrid Taguchi-genetic learning algorithm. Expert Systems with Applications, 36, 3216–3222.
Jang, J. S. (1993). ANFIS: adaptive-network-based fuzzy inference system.Systems, Man and Cybernetics, IEEE Transactions on, 23(3), 665-685.
Jang, J. S. R., Sun, C. T., & Mizutani, E. (2004). Neuro-fuzzy and soft computing, Taipei: Pearson Education.
Kovac P., Rodic D., Pucovsky V., Savkovic B., & Gostimirovic M. (2013). Application of fuzzy logic and regression analysis for modeling surface roughness in face milling. Journal of Intelligent manufacturing, 24(4), 755-762.
Lo, S. P. (2003). An adaptive-network based fuzzy inference system for prediction of workpiece surface roughness in end milling. Journal of Materials Processing Technology, 142(3), 665-675.
Lou, M. S., Chen, J. C., & Li, C. M. (1998). Surface roughness technique for CNC End milling. Journal of Industrial Technology, 15 (1), 1-6.
Rajasekaran, T., Palanikumar, K., & Vinayagam, B. K. (2012). Application of fuzzy logic for modeling surface roughness in turning CFRP composites using CBN tool. Production Engineering, 5(2), 191 – 199.
Topal E.S. (2009). Role of stepover ratio in prediction of surface roughness in flat milling. International Journal of Mechanical Sciences, 51, 782 – 789.
Tsai, J. T., Liu, T. K., & Chou J. H. (2004). Hybrid Taguchi-genetic algorithm for global numerical optimization. IEEE Transactions on Evolutionary Computation, 8, 365–377.