How to cite this paper
Almaiah, M., Alrawashdeh, R., Alkhdour, T., Al-Ali, R., Rjoub, G & Aldahyani, T. (2024). Detecting DDoS attacks using machine learning algorithms and feature selection methods.International Journal of Data and Network Science, 8(4), 2307-2318.
Refrences
Ahmad, R., Wazirali, R., Bsoul, Q., Abu-Ain, T., & Abu-Ain, W. (2021). Feature-selection and mutual-clustering ap-proaches to improve DoS detection and maintain WSNs’ lifetime. Sensors, 21(14), 4821.
Alahmadi, A. A., Aljabri, M., Alhaidari, F., Alharthi, D. J., Rayani, G. E., Marghalani, L. A., ... & Bajandouh, S. A. (2023). DDoS Attack Detection in IoT-Based Networks Using Machine Learning Models: A Survey and Research Direc-tions. Electronics, 12(14), 3103.
Aljuhani, A. (2021). Machine learning approaches for combating distributed denial of service attacks in modern network-ing environments. IEEE Access, 9, 42236-42264.
Alzahrani, R. J., & Alzahrani, A. (2021). Security analysis of DDoS attacks using machine learning algorithms in net-works traffic. Electronics, 10(23), 2919.
Anirudh, M., Thileeban, S. A., & Nallathambi, D. J. (2017, January). Use of honeypots for mitigating DoS attacks targeted on IoT networks. In 2017 International conference on computer, communication and signal processing (ICCCSP) (pp. 1-4). IEEE.
Fauzi, M. A., Hanuranto, A. T., & Setianingsih, C. (2020, October). Intrusion detection system using genetic algorithm and K-NN algorithm on dos attack. In 2020 2nd International Conference on Cybernetics and Intelligent System (ICO-RIS) (pp. 1-6). IEEE.
Halim, Z., Yousaf, M. N., Waqas, M., Sulaiman, M., Abbas, G., Hussain, M., ... & Hanif, M. (2021). An effective genetic algorithm-based feature selection method for intrusion detection systems. Computers & Security, 110, 102448.
Iftikhar, S., Al-Madani, D., Abdullah, S., Saeed, A., & Fatima, K. (2023). A supervised feature selection method for mali-cious intrusions detection in IoT based on genetic algorithm. International Journal of Computer Science & Network Security, 23(3), 49-56.
Lee, S. H., Shiue, Y. L., Cheng, C. H., Li, Y. H., & Huang, Y. F. (2022). Detection and prevention of DDoS attacks on the IoT. Applied Sciences, 12(23), 12407.
Liu, X., & Du, Y. (2023). Towards effective feature selection for iot botnet attack detection using a genetic algo-rithm. Electronics, 12(5), 1260.
Marvi, M., Arfeen, A., & Uddin, R. (2021). A generalized machine learning‐based model for the detection of DDoS at-tacks. International Journal of Network Management, 31(6), e2152.
Mohmand, M. I., Hussain, H., Khan, A. A., Ullah, U., Zakarya, M., Ahmed, A., ... & Haleem, M. (2022). A machine learn-ing-based classification and prediction technique for DDoS attacks. IEEE Access, 10, 21443-21454.
Mohsin, A. H., Zaidan, A. A., Zaidan, B. B., Mohammed, K. I., Albahri, O. S., Albahri, A. S., & Alsalem, M. A. (2021). PSO–Blockchain-based image steganography: towards a new method to secure updating and sharing COVID-19 data in decentralised hospitals intelligence architecture. Multimedia tools and applications, 80, 14137-14161.
Norouzi, M., Gürkaş-Aydın, Z., Turna, Ö. C., Yağci, M. Y., Aydin, M. A., & Souri, A. (2023). A Hybrid Genetic Algo-rithm-Based Random Forest Model for Intrusion Detection Approach in Internet of Medical Things. Applied Scienc-es, 13(20), 11145.
Onah, J. O., Abdullahi, M., Hassan, I. H., & Al-Ghusham, A. (2021). Genetic Algorithm based feature selection and Naïve Bayes for anomaly detection in fog computing environment. Machine Learning with applications, 6, 100156.
Ray, S., Mishra, K. N., & Dutta, S. (2022). Detection and prevention of DDoS attacks on M-healthcare sensitive data: a novel approach. International Journal of Information Technology, 14(3), 1333-1341.
Seifousadati, A., Ghasemshirazi, S., & Fathian, M. (2021). A Machine Learning approach for DDoS detection on IoT de-vices. arXiv preprint arXiv:2110.14911.
Trab, S., Bajic, E., Zouinkhi, A., Abdelkrim, M. N., & Chekir, H. (2018). RFID IoT-enabled warehouse for safety man-agement using product class-based storage and potential fields methods. International Journal of Embedded Sys-tems, 10(1), 71-88.
Ullah, S., Mahmood, Z., Ali, N., Ahmad, T., & Buriro, A. (2023). Machine learning-based dynamic attribute selection technique for ddos attack classification in iot networks. Computers, 12(6), 115.
Zhao, J., Xu, M., Chen, Y., & Xu, G. (2023). A DNN architecture generation method for DDoS detection via genetic alogrithm. Future Internet, 15(4), 122.
Alahmadi, A. A., Aljabri, M., Alhaidari, F., Alharthi, D. J., Rayani, G. E., Marghalani, L. A., ... & Bajandouh, S. A. (2023). DDoS Attack Detection in IoT-Based Networks Using Machine Learning Models: A Survey and Research Direc-tions. Electronics, 12(14), 3103.
Aljuhani, A. (2021). Machine learning approaches for combating distributed denial of service attacks in modern network-ing environments. IEEE Access, 9, 42236-42264.
Alzahrani, R. J., & Alzahrani, A. (2021). Security analysis of DDoS attacks using machine learning algorithms in net-works traffic. Electronics, 10(23), 2919.
Anirudh, M., Thileeban, S. A., & Nallathambi, D. J. (2017, January). Use of honeypots for mitigating DoS attacks targeted on IoT networks. In 2017 International conference on computer, communication and signal processing (ICCCSP) (pp. 1-4). IEEE.
Fauzi, M. A., Hanuranto, A. T., & Setianingsih, C. (2020, October). Intrusion detection system using genetic algorithm and K-NN algorithm on dos attack. In 2020 2nd International Conference on Cybernetics and Intelligent System (ICO-RIS) (pp. 1-6). IEEE.
Halim, Z., Yousaf, M. N., Waqas, M., Sulaiman, M., Abbas, G., Hussain, M., ... & Hanif, M. (2021). An effective genetic algorithm-based feature selection method for intrusion detection systems. Computers & Security, 110, 102448.
Iftikhar, S., Al-Madani, D., Abdullah, S., Saeed, A., & Fatima, K. (2023). A supervised feature selection method for mali-cious intrusions detection in IoT based on genetic algorithm. International Journal of Computer Science & Network Security, 23(3), 49-56.
Lee, S. H., Shiue, Y. L., Cheng, C. H., Li, Y. H., & Huang, Y. F. (2022). Detection and prevention of DDoS attacks on the IoT. Applied Sciences, 12(23), 12407.
Liu, X., & Du, Y. (2023). Towards effective feature selection for iot botnet attack detection using a genetic algo-rithm. Electronics, 12(5), 1260.
Marvi, M., Arfeen, A., & Uddin, R. (2021). A generalized machine learning‐based model for the detection of DDoS at-tacks. International Journal of Network Management, 31(6), e2152.
Mohmand, M. I., Hussain, H., Khan, A. A., Ullah, U., Zakarya, M., Ahmed, A., ... & Haleem, M. (2022). A machine learn-ing-based classification and prediction technique for DDoS attacks. IEEE Access, 10, 21443-21454.
Mohsin, A. H., Zaidan, A. A., Zaidan, B. B., Mohammed, K. I., Albahri, O. S., Albahri, A. S., & Alsalem, M. A. (2021). PSO–Blockchain-based image steganography: towards a new method to secure updating and sharing COVID-19 data in decentralised hospitals intelligence architecture. Multimedia tools and applications, 80, 14137-14161.
Norouzi, M., Gürkaş-Aydın, Z., Turna, Ö. C., Yağci, M. Y., Aydin, M. A., & Souri, A. (2023). A Hybrid Genetic Algo-rithm-Based Random Forest Model for Intrusion Detection Approach in Internet of Medical Things. Applied Scienc-es, 13(20), 11145.
Onah, J. O., Abdullahi, M., Hassan, I. H., & Al-Ghusham, A. (2021). Genetic Algorithm based feature selection and Naïve Bayes for anomaly detection in fog computing environment. Machine Learning with applications, 6, 100156.
Ray, S., Mishra, K. N., & Dutta, S. (2022). Detection and prevention of DDoS attacks on M-healthcare sensitive data: a novel approach. International Journal of Information Technology, 14(3), 1333-1341.
Seifousadati, A., Ghasemshirazi, S., & Fathian, M. (2021). A Machine Learning approach for DDoS detection on IoT de-vices. arXiv preprint arXiv:2110.14911.
Trab, S., Bajic, E., Zouinkhi, A., Abdelkrim, M. N., & Chekir, H. (2018). RFID IoT-enabled warehouse for safety man-agement using product class-based storage and potential fields methods. International Journal of Embedded Sys-tems, 10(1), 71-88.
Ullah, S., Mahmood, Z., Ali, N., Ahmad, T., & Buriro, A. (2023). Machine learning-based dynamic attribute selection technique for ddos attack classification in iot networks. Computers, 12(6), 115.
Zhao, J., Xu, M., Chen, Y., & Xu, G. (2023). A DNN architecture generation method for DDoS detection via genetic alogrithm. Future Internet, 15(4), 122.