How to cite this paper
Eid, M., Hashesh, M., Sharabati, A., Khraiwish, A., AL-Haddad, S & Abusaimeh, H. (2024). Conceptualizing ethical AI-enabled marketing: Current state and agenda for future research.International Journal of Data and Network Science, 8(4), 2291-2306.
Refrences
Aguirre, E., Roggeveen, A. L., Grewal, D., & Wetzels, M. (2016). The personalization-privacy paradox: implications for new media. Journal of Consumer Marketing, 33(2), 98–110. https://doi.org/10.1108/JCM-06-2015-1458
Ali, M., Sapiezynski, P., Bogen, M., Korolova, A., Mislove, A., & Rieke, A. (2019). Discrimination through optimization: How Facebook’s ad delivery can lead to biased outcomes. Proceedings of the ACM on Human-Computer Interaction, 3(CSCW, 199), 1–30. https://doi.org/10.1145/3359301
Ameen, N., Tarhini, A., Reppel, A., & Anand, A. (2021). Customer experiences in the age of artificial intelligence. Com-puters in Human Behavior, 114(2021), 1–15. https://doi.org/https://doi.org/10.1016/j.chb.2020.106548
Ananny, M., & Crawford, K. (2018). Seeing without knowing: Limitations of the transparency ideal and its application to algorithmic accountability. New Media and Society, 20(3), 1–17. https://doi.org/10.1177/1461444816676645
Barocas, S., & Nissenbaum, H. (2013). Big Data’s End Run around Anonymity and Consent. In Privacy, Big Data, and the Public Good: Frameworks for Engagement (pp. 44–75). Cambridge University Press. https://doi.org/10.1017/CBO9781107590205.004
Benjamin, R. (2019). Race after technology: Abolitionist tools for the new Jim code (First Edit). John Wiley & Sons.
Benlian, A., Wiener, M., Cram, W. A., Krasnova, H., Maedche, A., Möhlmann, M., … Remus, U. (2022). Algorithmic Management: Bright and Dark Sides, Practical Implications, and Research Opportunities. Business and Information Systems Engineering, 64(6), 825–839. https://doi.org/10.1007/s12599-022-00764-w
Blösser, M., & Weihrauch, A. (2024). A consumer perspective of AI certification – the current certification landscape, consumer approval, and directions for future research. European Journal of Marketing, 58(2), 441–470. https://doi.org/10.1108/EJM-01-2023-0009
Booker, C., Wyden, R., & Clarke, Y. (2019). Algorithmic Accountability Act of 2019. 116TH CONGRESS, 1ST SESSION, IN THE SENATE OF THE UNITED STATES, 15. Federal Trade Commission.
Buolamwini, J., & Gebru, T. (2018). Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classifi-cation. Proceedings of Machine Learning Research, 81, 77–91.
Burrell, J. (2016). How the machine ‘thinks’: Understanding opacity in machine learning algorithms. Big Data and Socie-ty, 3(1), 1–12. https://doi.org/10.1177/2053951715622512
Cadwalladr, C., & Graham-Harrison, E. (2018). Revealed: 50 million Facebook profiles harvested for Cambridge Analyti-ca in major data breach. The Guardian, 1(2018), 22. Retrieved from https://www.theguardian.com/news/2018/mar/17/cambridge-analytica-facebook-influence-us-election
CHELLAPPA, R. K., & SIN, R. G. (2005). Personalization versus Privacy: An Empirical Examination of the Online Con-sumer’s Dilemma. Information Technology and Management, 6(1), 181–202. https://doi.org/10.3138/cras.42.1.7
Chen, H. S., & Jai, T. M. (2021). Trust fall: data breach perceptions from loyalty and non-loyalty customers. Service In-dustries Journal, 41(13–14), 947–963. https://doi.org/10.1080/02642069.2019.1603296
Choi, Y., Kim, Y., & Rhu, M. (2021). Lazy Batching: An SLA-Aware Batching System for Cloud Machine Learning Infer-ence. Proceedings - International Symposium on High-Performance Computer Architecture, 493–506. https://doi.org/10.1109/HPCA51647.2021.00049
Coiera, E., Ash, J., & Berg, M. (2016). The Unintended Consequences of Health Information Technology Revisited. In IM-IA Yearbook of Medical Informatics 2016 (pp. 163–169). https://doi.org/10.15265/iy-2016-014
Cranor, L. F., & Garfinkel., S. (2005). Security and usability: designing secure systems that people can use (Fist Editi). O’Reilly Media, Inc.
D’Ignazio, C., & Klein, L. F. (2020). Data Feminism. In Gender, Work & Organization. London, England: Cambridge, Massachusetts and London, England: The MIT Press. https://doi.org/10.1111/gwao.12891
Dastin, J. (2022). Amazon scraps secret AI recruiting tool that showed bias against women. In Ethics of data and analytics (pp. 296–299). Auerbach Publications.
Davenport, T., Guha, A., Grewal, D., & Bressgott, T. (2020). How artificial intelligence will change the future of market-ing. Journal of the Academy of Marketing Science, 48(1), 24–42. https://doi.org/10.1007/s11747-019-00696-0
Díaz-Rodríguez, N., Del Ser, J., Coeckelbergh, M., López de Prado, M., Herrera-Viedma, E., & Herrera, F. (2023). Con-necting the dots in trustworthy Artificial Intelligence: From AI principles, ethics, and key requirements to responsible AI systems and regulation. Information Fusion, 99(May), 101896. https://doi.org/10.1016/j.inffus.2023.101896
Dignum, V. (2019). Responsible artificial intelligence: how to develop and use AI in a responsible way C. In O’Reilly Me-dia Inc (Vol. 1). Springer Cham. Retrieved from https://learning-oreilly-com.ezproxy.uwe.ac.uk/library/view/what-is-ai/9781492039723/ch01.html#idm140551066204064
Dwork, C., & Roth, A. (2013). The Algorithmic Foundations of Differential Privacy. Foundations and Trends in Theoreti-cal Computer Science, 9(3–4), 211–487. https://doi.org/10.1561/0400000042
Ehsan, U., Liao, Q. V., Muller, M., Riedl, M. O., & Weisz, J. D. (2021). Expanding Explainability: Towards Social Trans-parency in AI Systems. Conference on Human Factors in Computing Systems - Proceedings, 1–19. https://doi.org/10.1145/3411764.3445188
Eslami, M., Rickman, A., Vaccaro, K., Aleyasen, A., Vuong, A., Karahalios, K., … Sandvig, C. (2015). I always assumed that I wasn’t really that close to [her]": Reasoning about invisible algorithms in news feeds. Facebook Newsfeeds & Friendships: CHI 2015, Crossings, Seoul, Korea, 2015-April, 153–162. https://doi.org/10.1145/2702123.2702556
EUROPEIA, C. (2021). Proposal for a Regulation on a European Approach for Artificial Intelligence. Bruxelas: Comissão Europeia.
Ezrachi, A., & Stucke, M. E. (2016). Virtual Competition. Journal of European Competition Law and Practice, 7(9), 585–586. https://doi.org/10.1093/jeclap/lpw083
Flink, C., Gross, L., & Pasmore, W. (2023). Why Human-Centered Digital Transformation Leadership Matters. In Digital Transformation: Accelerating Organizational IntelligenceDoing Well and Doing Good (Vol. 3, pp. 1–15). World Sci-entific. https://doi.org/https://doi.org/10.1142/9789811268427_0001
Garvie, C., Bedoya, A. M., & Frankle, J. (2019). The perpetual line-up: Unregulated police face recognition in America. Georgetown Law Center on Privacy & Technology.
Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., & Yang, G. Z. (2019). XAI - Explainable Artificial Intelligence. Science Robotics, 4(37), 1–6. https://doi.org/10.1126/scirobotics.aay7120
Hagendorff, T. (2020). The Ethics of AI Ethics: An Evaluation of Guidelines. Minds and Machines, 30(1), 99–120. https://doi.org/10.1007/s11023-020-09517-8
Hemalatha, A. (2023). AI-Driven Marketing: Leveraging Artificial Intelligence for Enhanced Customer Engagement. In J. P. Consortium (Ed.), AI-Driven Marketing: Leveraging Artificial Intelligence for Enhanced Customer Engagement (First Edit). Chennai, India. https://doi.org/10.47715/jpc.b.978-93-91303-61-7
Herhausen, D., Bernritter, S. F., Ngai, E. W. T., Kumar, A., & Delen, D. (2024). Editorial for the Special Issue “Machine Learning in Marketing.” Journal of Business Research, 170(October 2023), 1–11. https://doi.org/10.1016/j.jbusres.2023.114254
Hermann, E. (2022). Leveraging Artificial Intelligence in Marketing for Social Good—An Ethical Perspective. Journal of Business Ethics, 179(1), 43–61. https://doi.org/10.1007/s10551-021-04843-y
Huang, M.-H., & Rust, R. T. (2021). A strategic framework for artificial intelligence in marketing. Journal of the Acade-my of Marketing Science, 49(1), 30–50.
IAPP. (2024). Jordan creates national ethics charter for AI. Retrieved from International Association of Privacy Profes-sionals website: https://iapp.org/news/a/jordan-creates-national-ethics-charter-for-ai/
IEEE. (2018). ETHICALLY ALIGNED DESIGN: A Vision for Prioritizing Human Well-being with Autonomous and Intelli-gent Systems (2nd ed.). IEEE. Retrieved from http://standards.ieee.org/develop/indconn/ec/ead_v1.pdf?%5Cnhttp://standards.ieee.org/develop/indconn/ec/autonomous_systems.html
Jain, M., Kumar, P., Kota, R., & Patel, S. N. (2018). Evaluating and Informing the Design of Chatbots. DIS 2018 - Pro-ceedings of the 2018 Designing Interactive Systems Conference 9-13, 2018, Hong Kong, 895–906. https://doi.org/10.1145/3196709.3196735
Jobin, A., Ienca, M., & Vayena, E. (2019). Artificial Intelligence: the global landscape of ethics guidelines. Nature Ma-chine Intelligence, 1(9), 389–399. Retrieved from https://arxiv.org/pdf/1906.11668
Kaminski, M. E., Bertolini, A., Brennan-Marquez, K., Comandé, G., Cushing, M., Helberger, N., … Selbst, A. (2019). The Right to Explanation, Explained The Right to Explanation, Explained Citation Information Citation Information Copy-right Statement THE RIGHT TO EXPLANATION, EXPLAINED. Berkeley Technology Law Journal, 34, 189. Re-trieved from https://doi.org/10.15779/Z38TD9N83H
Kaplan, A., & Haenlein, M. (2019). Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustra-tions, and implications of artificial intelligence. Business Horizons, 62(1), 15–25. https://doi.org/10.1016/j.bushor.2018.08.004
Konečný, J., McMahan, H. B., Ramage, D., & Richtárik, P. (2016). Federated Optimization: Distributed Machine Learn-ing for On-Device Intelligence (No. arXiv:1610.02527). Retrieved from http://arxiv.org/abs/1610.02527
Kroll, J. A., Huey, J., Barocas, S., Felten, E. W., Reidenberg, J. R., Robinson, D. G., & Yu, H. (2017). Accountable Algo-rithms. University of Pennsylvania Law Review, 165(3), 633–705.
Kumar, V. (2018). Transformative Marketing: The Next 20 Years. Journal of Marketing, 82(4), 1–12. https://doi.org/10.1509/jm.82.41
Li, X. (2019). Harnessing the synergy between neural and probabilistic machine learning: data representations and model structures (Hong Kong University of Science and Technology). Hong Kong University of Science and Technology. https://doi.org/10.14711/thesis-991012758169503412
Liu, B. (2022). Synthesis Lectures on Human Language Technologies (SLHLT). In Sentiment Analysis and Opinion Min-ing (pp. XIV, 167). Springer Cham. https://doi.org/https://doi.org/10.1007/978-3-031-02145-9
Martin, K. (2019). Ethical Implications and Accountability of Algorithms. Journal of Business Ethics, 160(4), 835–850. https://doi.org/10.1007/s10551-018-3921-3
McGuire, A. L., & Beskow, L. M. (2010). INFORMED CONSENT IN GENOMICS AND GENETIC RESEARCH. Annual Review of Genomics and Human Genetics, 11(118), 361–381. https://doi.org/10.1146/annurev-genom-082509-141711
McTear, M. F., Callejas, Z., & Griol, D. (2016). The conversational interface (Vol. 6). Springer Cham. https://doi.org/https://doi.org/10.1007/978-3-319-32967-3
Murphy, P. E., Laczniak, G. R., & Harris, F. (2017). Ethics in Marketing International cases and perspectives (second). Routledge.
Naz, H., & Kashif, M. (2024). Artificial intelligence and predictive marketing: an ethical framework from managers’ per-spective. Spanish Journal of Marketing - ESIC, ahead-of-print No. ahead-of-print. https://doi.org/10.1108/SJME-06-2023-0154
O’Neil, C. (2019). Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. Vikalpa: The Journal for Decision Makers, 44(2), 97–98. https://doi.org/10.1177/0256090919853933
PAI. (2024). Partnership on AI Releases Guidance for Safe Foundation Model Deployment, Takes the Lead to Drive Posi-tive Outcomes and Help Inform AI Governance Ahead of AI Safety Summit in UK. Retrieved from Partnership on AI website: https://partnershiponai.org/pai-model-deployment-guidance-press-release/
Pariser, E., & Allen, J. (2012). The Filter Bubble: What the Internet is Hiding From You. Penguin Press HC, UK. https://doi.org/10.5210/fm.v17i6.4100
Pasquale, F. (2015). The black box society: The secret algorithms that control money and information. Harvard University Press. https://doi.org/https://doi.org/10.4159/harvard.9780674736061.c8
Ribeiro, M. H., Ottoni, R., West, R., Almeida, V. A. F., & Wagner Meira, W. M. (2020). Auditing Radicalization Path-ways on YouTube Manoel. FAT*2020 - Proceedings of the 2020 Conference on Fairness, Accountability, and Trans-parency, (January), 131–141. https://doi.org/10.1145/3351095.3372879
Richards, N. M., & King, J. H. (2014). Big Data Ethics. Big Data and Society, 49(2), 393–432. https://doi.org/10.1177/2053951714559253
Selbst, A. D., Boyd, D., Friedler, S. A., Venkatasubramanian, S., & Vertesi, J. (2019). Fairness and Abstraction in Soci-otechnical Systems. FAT 2019 - Proceedings of the 2019 Conference on Fairness, Accountability, and Transparency, 59–68. https://doi.org/10.1145/3287560.3287598
Suresh, H., & Guttag, J. (2021). A Framework for Understanding Sources of Harm Throughout the Machine Learning Life Cycle. ACM International Conference Proceeding Series. https://doi.org/10.1145/3465416.3483305
Susser, D., Roessler, B., & Nissenbaum, H. (2019). Technology, autonomy, and manipulation. Internet Policy Review, 8(2), 1–22. https://doi.org/10.14763/2019.2.1410
Thapa, C., & Camtepe, S. (2021). Precision Health data: Requirements, Challenges and Existing Techniques for Data Se-curity and Privacy. Computers in Biology and Medicine, 129, 1–35. https://doi.org/10.1016/j.compbiomed.2020.104130
UNIDO. (2022). Jordan presents its AI Strategy and Implementation Roadmap. Retrieved from United Nations Industrial Development Organization website: https://aim.unido.org/jordan-presents-its-ai-strategy-and-implementation-roadmap/
Voeneky, S., Kellmeyer, P., Mueller, O., & Burgard, W. (2022). Part IV - Fairness and Nondiscrimination in AI Systems. In The Cambridge Handbook of Responsible Artificial Intelligence Interdisciplinary Perspectives (pp. 227–278). Cam-bridge University Press Print publication. https://doi.org/https://doi.org/10.1017/9781009207898.018
Voigt, P., & Bussche, A. von dem. (2020). The EU General Data Protection Regulation (GDPR) A Practical Guide. In Springer International Publishing AG. Springer Nature. https://doi.org/DOI 10.1007/978-3-319-57959-7
Wedel, M., & Kannan, P. K. (2016). Marketing Analytics for Data-Rich Environments. Journal of Marketing, 80(6), 97–121. https://doi.org/10.1509/jm.15.0413
Yeung, K. (2017). ‘Hypernudge’: Big Data as a mode of regulation by design. Information Communication and Society, 20(1), 118–136. https://doi.org/10.1080/1369118X.2016.1186713
Zou, J., & Schiebinger, L. (2018). AI can be sexist and racist — it’s time to make it fair. Nature, 559(7714), 324–326. https://doi.org/10.1038/d41586-018-05707-8
Zuboff, S. (2019). The age of surveillance capitalism: The fight for a human future at the new frontier of power. Profile Book.
Ali, M., Sapiezynski, P., Bogen, M., Korolova, A., Mislove, A., & Rieke, A. (2019). Discrimination through optimization: How Facebook’s ad delivery can lead to biased outcomes. Proceedings of the ACM on Human-Computer Interaction, 3(CSCW, 199), 1–30. https://doi.org/10.1145/3359301
Ameen, N., Tarhini, A., Reppel, A., & Anand, A. (2021). Customer experiences in the age of artificial intelligence. Com-puters in Human Behavior, 114(2021), 1–15. https://doi.org/https://doi.org/10.1016/j.chb.2020.106548
Ananny, M., & Crawford, K. (2018). Seeing without knowing: Limitations of the transparency ideal and its application to algorithmic accountability. New Media and Society, 20(3), 1–17. https://doi.org/10.1177/1461444816676645
Barocas, S., & Nissenbaum, H. (2013). Big Data’s End Run around Anonymity and Consent. In Privacy, Big Data, and the Public Good: Frameworks for Engagement (pp. 44–75). Cambridge University Press. https://doi.org/10.1017/CBO9781107590205.004
Benjamin, R. (2019). Race after technology: Abolitionist tools for the new Jim code (First Edit). John Wiley & Sons.
Benlian, A., Wiener, M., Cram, W. A., Krasnova, H., Maedche, A., Möhlmann, M., … Remus, U. (2022). Algorithmic Management: Bright and Dark Sides, Practical Implications, and Research Opportunities. Business and Information Systems Engineering, 64(6), 825–839. https://doi.org/10.1007/s12599-022-00764-w
Blösser, M., & Weihrauch, A. (2024). A consumer perspective of AI certification – the current certification landscape, consumer approval, and directions for future research. European Journal of Marketing, 58(2), 441–470. https://doi.org/10.1108/EJM-01-2023-0009
Booker, C., Wyden, R., & Clarke, Y. (2019). Algorithmic Accountability Act of 2019. 116TH CONGRESS, 1ST SESSION, IN THE SENATE OF THE UNITED STATES, 15. Federal Trade Commission.
Buolamwini, J., & Gebru, T. (2018). Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classifi-cation. Proceedings of Machine Learning Research, 81, 77–91.
Burrell, J. (2016). How the machine ‘thinks’: Understanding opacity in machine learning algorithms. Big Data and Socie-ty, 3(1), 1–12. https://doi.org/10.1177/2053951715622512
Cadwalladr, C., & Graham-Harrison, E. (2018). Revealed: 50 million Facebook profiles harvested for Cambridge Analyti-ca in major data breach. The Guardian, 1(2018), 22. Retrieved from https://www.theguardian.com/news/2018/mar/17/cambridge-analytica-facebook-influence-us-election
CHELLAPPA, R. K., & SIN, R. G. (2005). Personalization versus Privacy: An Empirical Examination of the Online Con-sumer’s Dilemma. Information Technology and Management, 6(1), 181–202. https://doi.org/10.3138/cras.42.1.7
Chen, H. S., & Jai, T. M. (2021). Trust fall: data breach perceptions from loyalty and non-loyalty customers. Service In-dustries Journal, 41(13–14), 947–963. https://doi.org/10.1080/02642069.2019.1603296
Choi, Y., Kim, Y., & Rhu, M. (2021). Lazy Batching: An SLA-Aware Batching System for Cloud Machine Learning Infer-ence. Proceedings - International Symposium on High-Performance Computer Architecture, 493–506. https://doi.org/10.1109/HPCA51647.2021.00049
Coiera, E., Ash, J., & Berg, M. (2016). The Unintended Consequences of Health Information Technology Revisited. In IM-IA Yearbook of Medical Informatics 2016 (pp. 163–169). https://doi.org/10.15265/iy-2016-014
Cranor, L. F., & Garfinkel., S. (2005). Security and usability: designing secure systems that people can use (Fist Editi). O’Reilly Media, Inc.
D’Ignazio, C., & Klein, L. F. (2020). Data Feminism. In Gender, Work & Organization. London, England: Cambridge, Massachusetts and London, England: The MIT Press. https://doi.org/10.1111/gwao.12891
Dastin, J. (2022). Amazon scraps secret AI recruiting tool that showed bias against women. In Ethics of data and analytics (pp. 296–299). Auerbach Publications.
Davenport, T., Guha, A., Grewal, D., & Bressgott, T. (2020). How artificial intelligence will change the future of market-ing. Journal of the Academy of Marketing Science, 48(1), 24–42. https://doi.org/10.1007/s11747-019-00696-0
Díaz-Rodríguez, N., Del Ser, J., Coeckelbergh, M., López de Prado, M., Herrera-Viedma, E., & Herrera, F. (2023). Con-necting the dots in trustworthy Artificial Intelligence: From AI principles, ethics, and key requirements to responsible AI systems and regulation. Information Fusion, 99(May), 101896. https://doi.org/10.1016/j.inffus.2023.101896
Dignum, V. (2019). Responsible artificial intelligence: how to develop and use AI in a responsible way C. In O’Reilly Me-dia Inc (Vol. 1). Springer Cham. Retrieved from https://learning-oreilly-com.ezproxy.uwe.ac.uk/library/view/what-is-ai/9781492039723/ch01.html#idm140551066204064
Dwork, C., & Roth, A. (2013). The Algorithmic Foundations of Differential Privacy. Foundations and Trends in Theoreti-cal Computer Science, 9(3–4), 211–487. https://doi.org/10.1561/0400000042
Ehsan, U., Liao, Q. V., Muller, M., Riedl, M. O., & Weisz, J. D. (2021). Expanding Explainability: Towards Social Trans-parency in AI Systems. Conference on Human Factors in Computing Systems - Proceedings, 1–19. https://doi.org/10.1145/3411764.3445188
Eslami, M., Rickman, A., Vaccaro, K., Aleyasen, A., Vuong, A., Karahalios, K., … Sandvig, C. (2015). I always assumed that I wasn’t really that close to [her]": Reasoning about invisible algorithms in news feeds. Facebook Newsfeeds & Friendships: CHI 2015, Crossings, Seoul, Korea, 2015-April, 153–162. https://doi.org/10.1145/2702123.2702556
EUROPEIA, C. (2021). Proposal for a Regulation on a European Approach for Artificial Intelligence. Bruxelas: Comissão Europeia.
Ezrachi, A., & Stucke, M. E. (2016). Virtual Competition. Journal of European Competition Law and Practice, 7(9), 585–586. https://doi.org/10.1093/jeclap/lpw083
Flink, C., Gross, L., & Pasmore, W. (2023). Why Human-Centered Digital Transformation Leadership Matters. In Digital Transformation: Accelerating Organizational IntelligenceDoing Well and Doing Good (Vol. 3, pp. 1–15). World Sci-entific. https://doi.org/https://doi.org/10.1142/9789811268427_0001
Garvie, C., Bedoya, A. M., & Frankle, J. (2019). The perpetual line-up: Unregulated police face recognition in America. Georgetown Law Center on Privacy & Technology.
Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., & Yang, G. Z. (2019). XAI - Explainable Artificial Intelligence. Science Robotics, 4(37), 1–6. https://doi.org/10.1126/scirobotics.aay7120
Hagendorff, T. (2020). The Ethics of AI Ethics: An Evaluation of Guidelines. Minds and Machines, 30(1), 99–120. https://doi.org/10.1007/s11023-020-09517-8
Hemalatha, A. (2023). AI-Driven Marketing: Leveraging Artificial Intelligence for Enhanced Customer Engagement. In J. P. Consortium (Ed.), AI-Driven Marketing: Leveraging Artificial Intelligence for Enhanced Customer Engagement (First Edit). Chennai, India. https://doi.org/10.47715/jpc.b.978-93-91303-61-7
Herhausen, D., Bernritter, S. F., Ngai, E. W. T., Kumar, A., & Delen, D. (2024). Editorial for the Special Issue “Machine Learning in Marketing.” Journal of Business Research, 170(October 2023), 1–11. https://doi.org/10.1016/j.jbusres.2023.114254
Hermann, E. (2022). Leveraging Artificial Intelligence in Marketing for Social Good—An Ethical Perspective. Journal of Business Ethics, 179(1), 43–61. https://doi.org/10.1007/s10551-021-04843-y
Huang, M.-H., & Rust, R. T. (2021). A strategic framework for artificial intelligence in marketing. Journal of the Acade-my of Marketing Science, 49(1), 30–50.
IAPP. (2024). Jordan creates national ethics charter for AI. Retrieved from International Association of Privacy Profes-sionals website: https://iapp.org/news/a/jordan-creates-national-ethics-charter-for-ai/
IEEE. (2018). ETHICALLY ALIGNED DESIGN: A Vision for Prioritizing Human Well-being with Autonomous and Intelli-gent Systems (2nd ed.). IEEE. Retrieved from http://standards.ieee.org/develop/indconn/ec/ead_v1.pdf?%5Cnhttp://standards.ieee.org/develop/indconn/ec/autonomous_systems.html
Jain, M., Kumar, P., Kota, R., & Patel, S. N. (2018). Evaluating and Informing the Design of Chatbots. DIS 2018 - Pro-ceedings of the 2018 Designing Interactive Systems Conference 9-13, 2018, Hong Kong, 895–906. https://doi.org/10.1145/3196709.3196735
Jobin, A., Ienca, M., & Vayena, E. (2019). Artificial Intelligence: the global landscape of ethics guidelines. Nature Ma-chine Intelligence, 1(9), 389–399. Retrieved from https://arxiv.org/pdf/1906.11668
Kaminski, M. E., Bertolini, A., Brennan-Marquez, K., Comandé, G., Cushing, M., Helberger, N., … Selbst, A. (2019). The Right to Explanation, Explained The Right to Explanation, Explained Citation Information Citation Information Copy-right Statement THE RIGHT TO EXPLANATION, EXPLAINED. Berkeley Technology Law Journal, 34, 189. Re-trieved from https://doi.org/10.15779/Z38TD9N83H
Kaplan, A., & Haenlein, M. (2019). Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustra-tions, and implications of artificial intelligence. Business Horizons, 62(1), 15–25. https://doi.org/10.1016/j.bushor.2018.08.004
Konečný, J., McMahan, H. B., Ramage, D., & Richtárik, P. (2016). Federated Optimization: Distributed Machine Learn-ing for On-Device Intelligence (No. arXiv:1610.02527). Retrieved from http://arxiv.org/abs/1610.02527
Kroll, J. A., Huey, J., Barocas, S., Felten, E. W., Reidenberg, J. R., Robinson, D. G., & Yu, H. (2017). Accountable Algo-rithms. University of Pennsylvania Law Review, 165(3), 633–705.
Kumar, V. (2018). Transformative Marketing: The Next 20 Years. Journal of Marketing, 82(4), 1–12. https://doi.org/10.1509/jm.82.41
Li, X. (2019). Harnessing the synergy between neural and probabilistic machine learning: data representations and model structures (Hong Kong University of Science and Technology). Hong Kong University of Science and Technology. https://doi.org/10.14711/thesis-991012758169503412
Liu, B. (2022). Synthesis Lectures on Human Language Technologies (SLHLT). In Sentiment Analysis and Opinion Min-ing (pp. XIV, 167). Springer Cham. https://doi.org/https://doi.org/10.1007/978-3-031-02145-9
Martin, K. (2019). Ethical Implications and Accountability of Algorithms. Journal of Business Ethics, 160(4), 835–850. https://doi.org/10.1007/s10551-018-3921-3
McGuire, A. L., & Beskow, L. M. (2010). INFORMED CONSENT IN GENOMICS AND GENETIC RESEARCH. Annual Review of Genomics and Human Genetics, 11(118), 361–381. https://doi.org/10.1146/annurev-genom-082509-141711
McTear, M. F., Callejas, Z., & Griol, D. (2016). The conversational interface (Vol. 6). Springer Cham. https://doi.org/https://doi.org/10.1007/978-3-319-32967-3
Murphy, P. E., Laczniak, G. R., & Harris, F. (2017). Ethics in Marketing International cases and perspectives (second). Routledge.
Naz, H., & Kashif, M. (2024). Artificial intelligence and predictive marketing: an ethical framework from managers’ per-spective. Spanish Journal of Marketing - ESIC, ahead-of-print No. ahead-of-print. https://doi.org/10.1108/SJME-06-2023-0154
O’Neil, C. (2019). Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. Vikalpa: The Journal for Decision Makers, 44(2), 97–98. https://doi.org/10.1177/0256090919853933
PAI. (2024). Partnership on AI Releases Guidance for Safe Foundation Model Deployment, Takes the Lead to Drive Posi-tive Outcomes and Help Inform AI Governance Ahead of AI Safety Summit in UK. Retrieved from Partnership on AI website: https://partnershiponai.org/pai-model-deployment-guidance-press-release/
Pariser, E., & Allen, J. (2012). The Filter Bubble: What the Internet is Hiding From You. Penguin Press HC, UK. https://doi.org/10.5210/fm.v17i6.4100
Pasquale, F. (2015). The black box society: The secret algorithms that control money and information. Harvard University Press. https://doi.org/https://doi.org/10.4159/harvard.9780674736061.c8
Ribeiro, M. H., Ottoni, R., West, R., Almeida, V. A. F., & Wagner Meira, W. M. (2020). Auditing Radicalization Path-ways on YouTube Manoel. FAT*2020 - Proceedings of the 2020 Conference on Fairness, Accountability, and Trans-parency, (January), 131–141. https://doi.org/10.1145/3351095.3372879
Richards, N. M., & King, J. H. (2014). Big Data Ethics. Big Data and Society, 49(2), 393–432. https://doi.org/10.1177/2053951714559253
Selbst, A. D., Boyd, D., Friedler, S. A., Venkatasubramanian, S., & Vertesi, J. (2019). Fairness and Abstraction in Soci-otechnical Systems. FAT 2019 - Proceedings of the 2019 Conference on Fairness, Accountability, and Transparency, 59–68. https://doi.org/10.1145/3287560.3287598
Suresh, H., & Guttag, J. (2021). A Framework for Understanding Sources of Harm Throughout the Machine Learning Life Cycle. ACM International Conference Proceeding Series. https://doi.org/10.1145/3465416.3483305
Susser, D., Roessler, B., & Nissenbaum, H. (2019). Technology, autonomy, and manipulation. Internet Policy Review, 8(2), 1–22. https://doi.org/10.14763/2019.2.1410
Thapa, C., & Camtepe, S. (2021). Precision Health data: Requirements, Challenges and Existing Techniques for Data Se-curity and Privacy. Computers in Biology and Medicine, 129, 1–35. https://doi.org/10.1016/j.compbiomed.2020.104130
UNIDO. (2022). Jordan presents its AI Strategy and Implementation Roadmap. Retrieved from United Nations Industrial Development Organization website: https://aim.unido.org/jordan-presents-its-ai-strategy-and-implementation-roadmap/
Voeneky, S., Kellmeyer, P., Mueller, O., & Burgard, W. (2022). Part IV - Fairness and Nondiscrimination in AI Systems. In The Cambridge Handbook of Responsible Artificial Intelligence Interdisciplinary Perspectives (pp. 227–278). Cam-bridge University Press Print publication. https://doi.org/https://doi.org/10.1017/9781009207898.018
Voigt, P., & Bussche, A. von dem. (2020). The EU General Data Protection Regulation (GDPR) A Practical Guide. In Springer International Publishing AG. Springer Nature. https://doi.org/DOI 10.1007/978-3-319-57959-7
Wedel, M., & Kannan, P. K. (2016). Marketing Analytics for Data-Rich Environments. Journal of Marketing, 80(6), 97–121. https://doi.org/10.1509/jm.15.0413
Yeung, K. (2017). ‘Hypernudge’: Big Data as a mode of regulation by design. Information Communication and Society, 20(1), 118–136. https://doi.org/10.1080/1369118X.2016.1186713
Zou, J., & Schiebinger, L. (2018). AI can be sexist and racist — it’s time to make it fair. Nature, 559(7714), 324–326. https://doi.org/10.1038/d41586-018-05707-8
Zuboff, S. (2019). The age of surveillance capitalism: The fight for a human future at the new frontier of power. Profile Book.