How to cite this paper
Rosadi, I., Pravitasari, A & Andriyana, Y. (2024). Data tweet clustering using bidirectional gated recurrent unit and k-prototype for the Indonesian political year.International Journal of Data and Network Science, 8(2), 907-920.
Refrences
Aitechtrend.com. (2023). LSTM vs GRU Which One Is Better for Recurrent Neural Networks. Access on 10 Juli 2023, from https://aitechtrend.com/lstm-vs-gru-which-one-is-better-for-recurrent-neural-networks.
Alameri., M. Mohd. (2021). Comparison of Fake News Detection using Machine Learning and Deep Learning Techniques. 3rd International Cyber Resilience Conference (CRC), pp. 1–6, doi: 10.1109/CRC50527.2021.9392458.
Amilin. (2019). The Impact of Political Fake News in the Post-Truth Era on National Resilience and Its Implications for Sustainable National Development (published in Bahasa). Jurnal Kajian Lemhanas RI, 39, 5-11.
Ananda, D. (2022). Sentiment Analysis of Social Media Users Towards Government Policies in the Covid-19 Vaccination Program in Indonesia Using the Bidirectional Gated Recurrent Unit (BiGRU) Method (published in Bahasa). Skripsi Sarjana, Universitas Padjadjaran.
Birjali, M., Kasri, M., & Beni-Hssane, A. (2021). A comprehensive survey on sentiment analysis: Approaches, challenges and trends. Knowledge-Based Systems, 226, 107134.
Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078.
Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on se-quence modeling. arXiv preprint arXiv:1412.3555.
Datareportal. Digital 2022:Indonesia. Access on March 14th 2023, from https://datareportal.com/reports/digital-2022-indonesia.
Dewanpers. Berita Dewan Pers ETIKA. Access on April 19th 2023, from https://dewanpers.or.id/assets/ebook/buletin/646-AGUSTUS%202017.pdf.
Febriansyah, F., & Purwinarto, H. (2020). Criminal Liability For Hate Speech Actors In Social Media (published in Baha-sa). Jurnal Penelitian Hukum De Jure, 20, 177-188.
Gholamy, A., Kreinovich, V., & Kosheleva, O. (2018). Why 70/30 or 80/20 relation between training and testing sets: A pedagogical explanation.
Hao, X., Zhang, G., & Ma, S. (2016). Deep learning. International Journal of Semantic Computing, 10(03), 417-439.
Huang, Z. (1997). Clustering large data sets with mixed numeric and categorical values. Proceedings of the First Pacific Asia Knowledge Discovery and Data Mining Conference, Singapore: World Scientific 1997a, pp. 21–34.
Ibrohim, M. O., & Budi, I. (2019, August). Multi-label hate speech and abusive language detection in Indonesian Twitter. In Proceedings of the third workshop on abusive language online (pp. 46-57).
Jeong, H. (2023). Hate Speech, Subject Agency and Performativity of Bodies. The Criticism and Theory Society of Korea. Criticism and Theory, 28(1), 271-313. 10.19116/theory.2023.28.1.271.
Kumparan.com Lebih dari 1,1 Juta Tweet Ramaikan Debat Keempat Pilpres 2019. Access on March 14th 2023, from https://kumparan.com/kumparantech/lebih-dari-1-1-juta-tweet-ramaikan-debat-keempat-pilpres-2019-1554031898897425099/4.
Liao, T. W. (2005). Clustering of time series data—a survey. Pattern recognition, 38(11), 1857-1874.
Masrudi. (2019). Hoaxes, New Media, and Our Literacy Power (published in Bahasa). Orasi Jurnal Dakwah dan Komu-nikasi, 10(2).
Mohsin, K. (2020). Defining 'Fake News'. SSRN Electronic Journal. doi:10.2139/ssrn.3675768.
Nayoga, B. P., Adipradana, R., Suryadi, R., & Suhartono, D. (2021). Hoax analyzer for Indonesian news using deep learn-ing models. Procedia Computer Science, 179, 704-712.
Omara, E., Mousa, M., & Ismail, N. (2022). Character gated recurrent neural networks for Arabic sentiment analysis. Sci Rep. National Library of Medicine.
Sadida, H. Q. (2023). Classification of Indonesian Political Hoax News Using the Long Short-Term Memory (LSTM) and Bidirectional Long Short-Term Memory (BiLSTM) Methods (published in Bahasa). Skripsi Sarjana, Padjadjaran Uni-versity.
Saksesi, A. S., Nasrun, M., & Setianingsih, C. (2018, December). Analysis text of hate speech detection using recurrent neural network. In 2018 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC) (pp. 242-248). IEEE.
Susanti, Indah., & Nurmiati. (2022). Mitigating the Impact of Social Media Hoaxes to Achieve National Unity (published in Bahasa). Ahmad Dahlan Legal Perpective, 2, 153-168.
Triyono, L., Gernowo, R., Prayitno, P., Rahaman, M., & Yudantoro, T. R. (2023). Fake News Detection in Indonesian Pop-ular News Portal Using Machine Learning For Visual Impairment. JOIV: International Journal on Informatics Visuali-zation, 7(3), 726-732.
Wu, J., Chen, X. Y., Zhang, H., Xiong, L. D., Lei, H., & Deng, S. H. (2019). Hyperparameter optimization for machine learning models based on Bayesian optimization. Journal of Electronic Science and Technology, 17(1), 26-40.
Yu, Q., Zhao, H., & Wang, Z. (2019, August). Attention-based bidirectional gated recurrent unit neural networks for senti-ment analysis. In Proceedings of the 2nd international conference on artificial intelligence and pattern recognition (pp. 116-119).
Alameri., M. Mohd. (2021). Comparison of Fake News Detection using Machine Learning and Deep Learning Techniques. 3rd International Cyber Resilience Conference (CRC), pp. 1–6, doi: 10.1109/CRC50527.2021.9392458.
Amilin. (2019). The Impact of Political Fake News in the Post-Truth Era on National Resilience and Its Implications for Sustainable National Development (published in Bahasa). Jurnal Kajian Lemhanas RI, 39, 5-11.
Ananda, D. (2022). Sentiment Analysis of Social Media Users Towards Government Policies in the Covid-19 Vaccination Program in Indonesia Using the Bidirectional Gated Recurrent Unit (BiGRU) Method (published in Bahasa). Skripsi Sarjana, Universitas Padjadjaran.
Birjali, M., Kasri, M., & Beni-Hssane, A. (2021). A comprehensive survey on sentiment analysis: Approaches, challenges and trends. Knowledge-Based Systems, 226, 107134.
Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078.
Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on se-quence modeling. arXiv preprint arXiv:1412.3555.
Datareportal. Digital 2022:Indonesia. Access on March 14th 2023, from https://datareportal.com/reports/digital-2022-indonesia.
Dewanpers. Berita Dewan Pers ETIKA. Access on April 19th 2023, from https://dewanpers.or.id/assets/ebook/buletin/646-AGUSTUS%202017.pdf.
Febriansyah, F., & Purwinarto, H. (2020). Criminal Liability For Hate Speech Actors In Social Media (published in Baha-sa). Jurnal Penelitian Hukum De Jure, 20, 177-188.
Gholamy, A., Kreinovich, V., & Kosheleva, O. (2018). Why 70/30 or 80/20 relation between training and testing sets: A pedagogical explanation.
Hao, X., Zhang, G., & Ma, S. (2016). Deep learning. International Journal of Semantic Computing, 10(03), 417-439.
Huang, Z. (1997). Clustering large data sets with mixed numeric and categorical values. Proceedings of the First Pacific Asia Knowledge Discovery and Data Mining Conference, Singapore: World Scientific 1997a, pp. 21–34.
Ibrohim, M. O., & Budi, I. (2019, August). Multi-label hate speech and abusive language detection in Indonesian Twitter. In Proceedings of the third workshop on abusive language online (pp. 46-57).
Jeong, H. (2023). Hate Speech, Subject Agency and Performativity of Bodies. The Criticism and Theory Society of Korea. Criticism and Theory, 28(1), 271-313. 10.19116/theory.2023.28.1.271.
Kumparan.com Lebih dari 1,1 Juta Tweet Ramaikan Debat Keempat Pilpres 2019. Access on March 14th 2023, from https://kumparan.com/kumparantech/lebih-dari-1-1-juta-tweet-ramaikan-debat-keempat-pilpres-2019-1554031898897425099/4.
Liao, T. W. (2005). Clustering of time series data—a survey. Pattern recognition, 38(11), 1857-1874.
Masrudi. (2019). Hoaxes, New Media, and Our Literacy Power (published in Bahasa). Orasi Jurnal Dakwah dan Komu-nikasi, 10(2).
Mohsin, K. (2020). Defining 'Fake News'. SSRN Electronic Journal. doi:10.2139/ssrn.3675768.
Nayoga, B. P., Adipradana, R., Suryadi, R., & Suhartono, D. (2021). Hoax analyzer for Indonesian news using deep learn-ing models. Procedia Computer Science, 179, 704-712.
Omara, E., Mousa, M., & Ismail, N. (2022). Character gated recurrent neural networks for Arabic sentiment analysis. Sci Rep. National Library of Medicine.
Sadida, H. Q. (2023). Classification of Indonesian Political Hoax News Using the Long Short-Term Memory (LSTM) and Bidirectional Long Short-Term Memory (BiLSTM) Methods (published in Bahasa). Skripsi Sarjana, Padjadjaran Uni-versity.
Saksesi, A. S., Nasrun, M., & Setianingsih, C. (2018, December). Analysis text of hate speech detection using recurrent neural network. In 2018 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC) (pp. 242-248). IEEE.
Susanti, Indah., & Nurmiati. (2022). Mitigating the Impact of Social Media Hoaxes to Achieve National Unity (published in Bahasa). Ahmad Dahlan Legal Perpective, 2, 153-168.
Triyono, L., Gernowo, R., Prayitno, P., Rahaman, M., & Yudantoro, T. R. (2023). Fake News Detection in Indonesian Pop-ular News Portal Using Machine Learning For Visual Impairment. JOIV: International Journal on Informatics Visuali-zation, 7(3), 726-732.
Wu, J., Chen, X. Y., Zhang, H., Xiong, L. D., Lei, H., & Deng, S. H. (2019). Hyperparameter optimization for machine learning models based on Bayesian optimization. Journal of Electronic Science and Technology, 17(1), 26-40.
Yu, Q., Zhao, H., & Wang, Z. (2019, August). Attention-based bidirectional gated recurrent unit neural networks for senti-ment analysis. In Proceedings of the 2nd international conference on artificial intelligence and pattern recognition (pp. 116-119).