How to cite this paper
Alshahrani, A. (2024). Artificial intelligence technologies utilization for detecting explosive materials.International Journal of Data and Network Science, 8(1), 617-628.
Refrences
CISA, (2016). Vehicle-Borne Improvised Explosive Device Detection Course (PER-312). https://www.cisa.gov/resources-tools/training/vbied-detection-course-312 (accessed May 25, 2023)
Elbasuney, S., Baraka, A., Gobara, M., & El-Sharkawy, Y. H. (2021). 3D spectral fluorescence signature of cerium (III)-melamine coordination polymer: a novel sensing material for explosive detection. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 245, 118941.
Federici, J. F., Schulkin, B., Huang, F., Gary, D., Barat, R., Oliveira, F., & Zimdars, D. (2005). THz imaging and sensing for security applications—explosives, weapons and drugs. Semiconductor science and technology, 20(7), S266.
Fisher, M., Sikes, J., Prather, M., & Wichert, C. (2005). Detection of vehicle-based improvised explosives using ultra-trace detection equipment. In Proc. of SPIE - The International Society for Optical Engineering , 5778, 383–392.
HTDS. (2022a). Fixed portal CarView . HTDS. https://www.htds.fr/en/security/x-ray-scanner/cargo-x-ray-scanner/x-ray-backscatter-cargo-solution/fixed-portal-carview/ (accessed May 27, 2023)
HTDS. (2022b). Raman portable spectrometer FirstDefender RM/RMX. HTDS. https://www.htds.fr/en/security/cbrn-detectors/chemical-risks/optical-portable-spectrometers/raman-portable-spectrometer-firstdefender-rm-rmx/ (accessed May 20, 2023)
HTDS. (2022c). ThreatID FTIR Spectrometer. https://www.htds.fr/en/security/explosif-and-narcotic-detectors/identification-spectrometers/threatid-ftir-spectrometer/ (accessed May 20, 2023)
HTDS. (2022d). Ultra Lightweight Explosive Tracer FIDO X3 . https://www.htds.fr/en/security/explosif-and-narcotic-detectors/traces-detectors/ultra-lightweight-explosive-tracer-fido-x3/ (accessed May 15, 2023)
HTDS. (2022e). UVTM research mirror . https://www.htds.fr/en/security/explosif-and-narcotic-detectors/uvtm-research-mirror/ (accessed May 30, 2023)
Jimenez, A. M., & Navas, M. J. (2007). Detection of explosives by chemiluminescence. In Counterterrorist Detection Techniques of Explosives (pp. 1-39). Elsevier Science BV.
Klapec, D. J., Czarnopys, G., & Pannuto, J. (2020). Interpol review of detection and characterization of explosives and explosives residues 2016-2019. Forensic science international: Synergy, 2, 670-700.
Ma, Y., Ding, K., Wei, L., Li, X., Shi, J., Li, Z., ... & Xu, D. (2022). Research on Mid-Infrared External Cavity Quantum Cascade Lasers and Applications. Crystals, 12(11), 1564.
Major, K. J., Shaw, L. B., Busse, L., Gattass, R., Arnone, D., Lopez, E., ... & Ewing, K. J. (2019). Fiber optic coupled quantum cascade infrared laser system for detection of explosive materials on surfaces. Optics & Laser Technology, 119, 105635.
Mann, M., Rao, A. S., & Sharma, R. C. (2021). Remote mid IR Photoacoustic Spectroscopy for the detection of explosive materials. Chemical Physics Letters, 765, 138231.
Martz Jr, H. E., & Glenn, S. (2022). Nuclear techniques to detect explosives. In Counterterrorist Detection Techniques of Explosives (pp. 339-381). Elsevier.
Military Aerospace. (2020). Customs and Border Protection picks Smart Imaging Systems for explosives-scanning sensors for cars and trucks. Military Aerospace. https://www.militaryaerospace.com/sensors/article/14187840/sensors-explosives-cars-and-trucks (accessed May 25, 2023)
Mogilevsky, G., Borland, L., Brickhouse, M., & Fountain III, A. W. (2012). Raman spectroscopy for homeland security applications. International Journal of Spectroscopy, 2012.
Puttasakul, T., Pintavirooj, C., Sangma, C., & Sukjee, W. (2019). Hydrogel based-electrochemical gas sensor for explosive material detection. IEEE Sensors Journal, 19(19), 8556-8562.
Sharma, M., Sharma, B., Gupta, A. K., & Pandey, D. (2023). Recent developments of image processing to improve explosive detection methodologies and spectroscopic imaging techniques for explosive and drug detection. Multimedia Tools and Applications, 82(5), 6849-6865.
Singh, G., Sandha, S., & Kansal, A. (2023). GA based optimized graphene antenna design for detection of explosives and drugs using THz spectroscopy. Micro and Nanostructures, 179, 207566.
Singh, S. (2007). Sensors—An effective approach for the detection of explosives. Journal of hazardous materials, 144(1-2), 15-28.
Viesti, G., Donzella, A., Bonomi, G., Botosso, C., Fabris, D., Lunardon, M., ... & Zenoni, A. (2008). Search of explosives in vehicles by using tagged neutrons. In Detection of Liquid Explosives and Flammable Agents in Connection with Terrorism (pp. 39-46). Springer Netherlands.
Wg-PLC. (2022). CLX Trace explosives and HME precursors detector. Wg-PLC. https://www.wg-plc.com/product/clx-trace-explosives-and-hme-precursors-detector (accessed May 28, 2023)
Yalçın, O., & Reyhancan, I. A. (2022). Detection of explosive materials in dual-energy X-Ray security systems. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1040, 167265.
Zhang, W., Tang, Y., Shi, A., Bao, L., Shen, Y., Shen, R., & Ye, Y. (2018). Recent developments in spectroscopic techniques for the detection of explosives. Materials, 11(8), 1364.
Elbasuney, S., Baraka, A., Gobara, M., & El-Sharkawy, Y. H. (2021). 3D spectral fluorescence signature of cerium (III)-melamine coordination polymer: a novel sensing material for explosive detection. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 245, 118941.
Federici, J. F., Schulkin, B., Huang, F., Gary, D., Barat, R., Oliveira, F., & Zimdars, D. (2005). THz imaging and sensing for security applications—explosives, weapons and drugs. Semiconductor science and technology, 20(7), S266.
Fisher, M., Sikes, J., Prather, M., & Wichert, C. (2005). Detection of vehicle-based improvised explosives using ultra-trace detection equipment. In Proc. of SPIE - The International Society for Optical Engineering , 5778, 383–392.
HTDS. (2022a). Fixed portal CarView . HTDS. https://www.htds.fr/en/security/x-ray-scanner/cargo-x-ray-scanner/x-ray-backscatter-cargo-solution/fixed-portal-carview/ (accessed May 27, 2023)
HTDS. (2022b). Raman portable spectrometer FirstDefender RM/RMX. HTDS. https://www.htds.fr/en/security/cbrn-detectors/chemical-risks/optical-portable-spectrometers/raman-portable-spectrometer-firstdefender-rm-rmx/ (accessed May 20, 2023)
HTDS. (2022c). ThreatID FTIR Spectrometer. https://www.htds.fr/en/security/explosif-and-narcotic-detectors/identification-spectrometers/threatid-ftir-spectrometer/ (accessed May 20, 2023)
HTDS. (2022d). Ultra Lightweight Explosive Tracer FIDO X3 . https://www.htds.fr/en/security/explosif-and-narcotic-detectors/traces-detectors/ultra-lightweight-explosive-tracer-fido-x3/ (accessed May 15, 2023)
HTDS. (2022e). UVTM research mirror . https://www.htds.fr/en/security/explosif-and-narcotic-detectors/uvtm-research-mirror/ (accessed May 30, 2023)
Jimenez, A. M., & Navas, M. J. (2007). Detection of explosives by chemiluminescence. In Counterterrorist Detection Techniques of Explosives (pp. 1-39). Elsevier Science BV.
Klapec, D. J., Czarnopys, G., & Pannuto, J. (2020). Interpol review of detection and characterization of explosives and explosives residues 2016-2019. Forensic science international: Synergy, 2, 670-700.
Ma, Y., Ding, K., Wei, L., Li, X., Shi, J., Li, Z., ... & Xu, D. (2022). Research on Mid-Infrared External Cavity Quantum Cascade Lasers and Applications. Crystals, 12(11), 1564.
Major, K. J., Shaw, L. B., Busse, L., Gattass, R., Arnone, D., Lopez, E., ... & Ewing, K. J. (2019). Fiber optic coupled quantum cascade infrared laser system for detection of explosive materials on surfaces. Optics & Laser Technology, 119, 105635.
Mann, M., Rao, A. S., & Sharma, R. C. (2021). Remote mid IR Photoacoustic Spectroscopy for the detection of explosive materials. Chemical Physics Letters, 765, 138231.
Martz Jr, H. E., & Glenn, S. (2022). Nuclear techniques to detect explosives. In Counterterrorist Detection Techniques of Explosives (pp. 339-381). Elsevier.
Military Aerospace. (2020). Customs and Border Protection picks Smart Imaging Systems for explosives-scanning sensors for cars and trucks. Military Aerospace. https://www.militaryaerospace.com/sensors/article/14187840/sensors-explosives-cars-and-trucks (accessed May 25, 2023)
Mogilevsky, G., Borland, L., Brickhouse, M., & Fountain III, A. W. (2012). Raman spectroscopy for homeland security applications. International Journal of Spectroscopy, 2012.
Puttasakul, T., Pintavirooj, C., Sangma, C., & Sukjee, W. (2019). Hydrogel based-electrochemical gas sensor for explosive material detection. IEEE Sensors Journal, 19(19), 8556-8562.
Sharma, M., Sharma, B., Gupta, A. K., & Pandey, D. (2023). Recent developments of image processing to improve explosive detection methodologies and spectroscopic imaging techniques for explosive and drug detection. Multimedia Tools and Applications, 82(5), 6849-6865.
Singh, G., Sandha, S., & Kansal, A. (2023). GA based optimized graphene antenna design for detection of explosives and drugs using THz spectroscopy. Micro and Nanostructures, 179, 207566.
Singh, S. (2007). Sensors—An effective approach for the detection of explosives. Journal of hazardous materials, 144(1-2), 15-28.
Viesti, G., Donzella, A., Bonomi, G., Botosso, C., Fabris, D., Lunardon, M., ... & Zenoni, A. (2008). Search of explosives in vehicles by using tagged neutrons. In Detection of Liquid Explosives and Flammable Agents in Connection with Terrorism (pp. 39-46). Springer Netherlands.
Wg-PLC. (2022). CLX Trace explosives and HME precursors detector. Wg-PLC. https://www.wg-plc.com/product/clx-trace-explosives-and-hme-precursors-detector (accessed May 28, 2023)
Yalçın, O., & Reyhancan, I. A. (2022). Detection of explosive materials in dual-energy X-Ray security systems. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1040, 167265.
Zhang, W., Tang, Y., Shi, A., Bao, L., Shen, Y., Shen, R., & Ye, Y. (2018). Recent developments in spectroscopic techniques for the detection of explosives. Materials, 11(8), 1364.