How to cite this paper
Esfahani, H., Tavasoli, K & Jabbarzadeh, A. (2019). Big data and social media: A scientometrics analysis.International Journal of Data and Network Science, 3(3), 145-164.
Refrences
Ali, A., Shamsuddin, S. M., & Ralescu, A. L. (2015). Classification with class imbalance problem: a re-view. International Journal of Advances in Soft Computing and its Applications, 7(3), 176-204.
Aragón, P., Kappler, K. E., Kaltenbrunner, A., Laniado, D., & Volkovich, Y. (2013). Communication dynamics in twitter during political campaigns: The case of the 2011 Spanish national elec-tion. Policy & Internet, 5(2), 183-206.
Aria, M., & Cuccurullo, C. (2017). Bibliometrix: An R-tool for comprehensive science mapping analy-sis. Journal of Informetrics, 11, 959-975.
Artikis, A., Etzion, O., Feldman, Z., & Fournier, F. (2012, July). Event processing under uncertainty. In Proceedings of the 6th ACM International Conference on Distributed Event-Based Systems (pp. 32-43). ACM.
Bagheri, H., & Shaltooki, A. A. (2015). Big data: challenges, opportunities and Cloud based solu-tions. International Journal of Electrical and Computer Engineering (IJECE), 5(2), 340-343.
Bail, C. A. (2014). The cultural environment: Measuring culture with big data. Theory and Socie-ty, 43(3-4), 465-482.
Bail, C. A. (2014). Terrified: How anti-Muslim fringe organizations became mainstream. Princeton Uni-versity Press.
Baker, T. B., Gustafson, D. H., & Shah, D. (2014). How can research keep up with eHealth? Ten strat-egies for increasing the timeliness and usefulness of eHealth research. Journal of Medical Internet Research, 16(2).
Bakillah, M., Lauer, J., Liang, S. H., Zipf, A., Jokar Arsanjani, J., Mobasheri, A., & Loos, L. (2014). Exploiting big VGI to improve routing and navigation services. Big data techniques and technologies in geoinformatics, 177-192.
Bansal, S., Chowell, G., Simonsen, L., Vespignani, A., & Viboud, C. (2016). Big data for infectious disease surveillance and modeling. The Journal of Infectious Diseases, 214(suppl_4), S375-S379.
Baym, N. K. (2013). Data not seen: The uses and shortcomings of social media metrics. First Mon-day, 18(10).
Beam, A. L., & Kohane, I. S. (2018). Big data and machine learning in health care. Journal of the American Medical Association, 319(13), 1317-1318.
Bello-Orgaz, G., Jung, J., & Camacho, D. (2016). Social big data: Recent achievements and new chal-lenges. Information Fusion, 28, 45--59.
Bentley, R. A., O'Brien, M. J., & Brock, W. A. (2014). Mapping collective behavior in the big-data era. Behavioral and Brain Sciences, 37(1), 63.
Bian, J., Topaloglu, U., & Yu, F. (2012, October). Towards large-scale twitter mining for drug-related adverse events. In Proceedings of the 2012 international workshop on Smart health and wellbe-ing (pp. 25-32). ACM.
Bliss, C. A., Kloumann, I. M., Harris, K. D., Danforth, C. M., & Dodds, P. S. (2012). Twitter reciprocal reply networks exhibit assortativity with respect to happiness. Journal of Computational Sci-ence, 3(5), 388-397.
Boyd, D., & Crawford, K. (2012). Critical questions for big data: Provocations for a cultural, techno-logical, and scholarly phenomenon. Information, Communication & Society, 15(5), 662-679.
Bravo-Marquez, F., Mendoza, M., & Poblete, B. (2014). Meta-level sentiment models for big social da-ta analysis. Knowledge-Based Systems, 69, 86-99.
Bruns, A. (2013). Faster than the speed of print: Reconciling ‘big data’ social media analysis and aca-demic scholarship. First Monday, 18(10).
Bruns, A., Highfield, T., & Burgess, J. (2013). The Arab Spring and social media audiences: English and Arabic Twitter users and their networks. American Behavioral Scientist, 57(7), 871-898.
Buhalis, D., & Foerste, M. (2015). SoCoMo marketing for travel and tourism: Empowering co-creation of value. Journal of Destination Marketing & Management, 4(3), 151-161.
Burnap, P., & Williams, M. L. (2015). Cyber hate speech on twitter: An application of machine classifi-cation and statistical modeling for policy and decision making. Policy & Internet, 7(2), 223-242.
Burns, R. (2015). Rethinking big data in digital humanitarianism: Practices, epistemologies, and social relations. GeoJournal, 80(4), 477-490.
Cai, J., Huang, B., & Song, Y. (2017). Using multi-source geospatial big data to identify the structure of polycentric cities. Remote Sensing of Environment, 202, 210-221.
Cai, Y., Li, Q., Xie, H., & Min, H. (2014). Exploring personalized searches using tag-based user profiles and resource profiles in folksonomy. Neural Networks, 58, 98-110.
Carley, K. M., Malik, M., Landwehr, P. M., Pfeffer, J., & Kowalchuck, M. (2016). Crowd sourcing disaster management: The complex nature of Twitter usage in Padang Indonesia. Safety Science, 90, 48-61.
Cao, G., Wang, S., Hwang, M., Padmanabhan, A., Zhang, Z., & Soltani, K. (2015). A scalable frame-work for spatiotemporal analysis of location-based social media data. Computers, Environment and Urban Systems, 51, 70-82.
Chae, B. K. (2015). Insights from hashtag# supplychain and Twitter Analytics: Considering Twitter and Twitter data for supply chain practice and research. International Journal of Production Eco-nomics, 165, 247-259.
Chiang, R. H., Goes, P., & Stohr, E. A. (2012). Business intelligence and analytics education, and pro-gram development: A unique opportunity for the information systems discipline. ACM Transactions on Management Information Systems (TMIS), 3(3), 12.
Ciulla, F., Mocanu, D., Baronchelli, A., Gonçalves, B., Perra, N., & Vespignani, A. (2012). Beating the news using social media: the case study of American Idol. EPJ Data Science, 1(1), 8.
Compton, R., Jurgens, D., & Allen, D. (2014, October). Geotagging one hundred million twitter ac-counts with total variation minimization. In Big Data (Big Data), 2014 IEEE International Confer-ence on (pp. 393-401). IEEE.
Conway, M. (2017). Determining the role of the internet in violent extremism and terrorism: Six sugges-tions for progressing research. Studies in Conflict & Terrorism, I(1), 77-98.
Couper, M. P. (2013, December). Is the sky falling? New technology, changing media, and the future of surveys. In Survey Research Methods, 7(3), 145-156.
Crampton, J., Graham, M., Poorthuis, A., Shelton, T., Stephens, M., Wilson, M., & Zook, M. (2013). Beyond the geotag: situating ‘big data’and leveraging the potential of the geoweb. Cartography and Geographic Information Science, 40(2), 130--139.
Culotta, A., & Cutler, J. (2016). Mining brand perceptions from twitter social networks. Marketing Sci-ence, 35(3), 343-362.
Dede, E., Sendir, B., Kuzlu, P., Hartog, J., & Govindaraju, M. (2013, June). An evaluation of cassandra for hadoop. In Cloud Computing (CLOUD), 2013 IEEE Sixth International Conference on (pp. 494-501). IEEE.
De Francisci Morales, G. (2013, May). SAMOA: A platform for mining big data streams. In Proceedings of the 22nd International Conference on World Wide Web (pp. 777-778). ACM.
Dehghani, M., Johnson, K., Hoover, J., Sagi, E., Garten, J., Parmar, N. J. & Graham, J. (2016). Purity homophily in social networks. Journal of Experimental Psychology: General, 145(3), 366.
De Maio, C., Fenza, G., Loia, V., & Parente, M. (2016). Time aware knowledge extraction for mi-croblog summarization on twitter. Information Fusion, 28, 60-74.
Driscoll, K., & Walker, S. (2014). Big data, big questions| working within a black box: Transparency in the collection and production of big twitter data. International Journal of Communication, 8, 20.
Eichstaedt, J. C., Schwartz, H. A., Kern, M. L., Park, G., Labarthe, D. R., Merchant, R. M. & Weeg, C. (2015). Psychological language on Twitter predicts county-level heart disease mortali-ty. Psychological science, 26(2), 159-169.
Fernández-Luque, L., & Bau, T. (2015). Health and social media: perfect storm of infor-mation. Healthcare Informatics Research, 21(2), 67-73.
Fleurence, R. L., Beal, A. C., Sheridan, S. E., Johnson, L. B., & Selby, J. V. (2014). Patient-powered research networks aim to improve patient care and health research. Health Affairs, 33(7), 1212-1219.
Fried, D., Surdeanu, M., Kobourov, S., Hingle, M., & Bell, D. (2014, October). Analyzing the language of food on social media. In Big Data (Big Data), 2014 IEEE International Conference on (pp. 778-783). IEEE.
Fulgoni, G., & Lipsman, A. (2014). Digital game changers: how social media will help usher in the era of mobile and multi-platform campaign-effectiveness measurement. Journal of Advertising Re-search, 54(1), 11-16.
Gittelman, S., Lange, V., Crawford, C. A. G., Okoro, C. A., Lieb, E., Dhingra, S. S., & Trimarchi, E. (2015). A new source of data for public health surveillance: Facebook likes. Journal of medical In-ternet research, 17(4).
Golder, S. A., & Macy, M. W. (2014). Digital footprints: Opportunities and challenges for online social research. Annual Review of Sociology, 40, 129-152.
Hansen, M. M., Miron-Shatz, T., Lau, A. Y. S., & Paton, C. (2014). Big data in science and healthcare: a review of recent literature and perspectives. Yearbook of Medical Informatics, 23(01), 21-26.
Hasan, S., & Ukkusuri, S. V. (2014). Urban activity pattern classification using topic models from online geo-location data. Transportation Research Part C: Emerging Technologies, 44, 363-381.
Haustein, S. (2016). Grand challenges in altmetrics: heterogeneity, data quality and dependen-cies. Scientometrics, 108(1), 413-423.
Hay, S. I., George, D. B., Moyes, C. L., & Brownstein, J. S. (2013). Big data opportunities for global infectious disease surveillance. PLoS Medicine, 10(4), e1001413.
He, W., Wu, H., Yan, G., Akula, V., & Shen, J. (2015). A novel social media competitive analytics framework with sentiment benchmarks. Information & Management, 52(7), 801-812.
Herland, M., Khoshgoftaar, T. M., & Wald, R. (2014). A review of data mining using big data in health informatics. Journal of Big data, 1(1), 2.
Huang, Y., Guo, D., Kasakoff, A., & Grieve, J. (2016). Understanding US regional linguistic variation with Twitter data analysis. Computers, Environment and Urban Systems, 59, 244-255.
Hu, H., Wen, Y., Luan, H., Chua, T. S., & Li, X. (2014). Toward multiscreen social TV with geoloca-tion-aware social sense. IEEE MultiMedia, 21(3), 10-19.
Hu, H., Wen, Y., Gao, Y., Chua, T. S., & Li, X. (2015). Towards SDN-Enabled Big Data Platform for Social TV Analytics.
Huda, M., Maseleno, A., Atmotiyoso, P., Siregar, M., Ahmad, R., Jasmi, K., & Muhamad, N. (2018). Big data emerging technology: insights into innovative environment for online learning re-sources. International Journal of Emerging Technologies in Learning (iJET), 13(1), 23-36.
Hussain, A., & Vatrapu, R. (2014, May). Social data analytics tool (sodato). In International Confer-ence on Design Science Research in Information Systems (pp. 368-372). Springer, Cham.
Immonen, A., Pääkkönen, P., & Ovaska, E. (2015). Evaluating the quality of social media data in big data architecture. IEEE Access, 3, 2028-2043.
Jiang, B. (2015). Geospatial analysis requires a different way of thinking: The problem of spatial heter-ogeneity. GeoJournal, 80(1), 1-13.
Jiang, B. (2016). Head/tail breaks for visualization of city structure and dynamics. European Handbook of Crowdsourced Geographic Information, 169.
Jiang, B., & Miao, Y. (2015). The evolution of natural cities from the perspective of location-based so-cial media. The Professional Geographer, 67(2), 295-306.
Jiang, K., & Zheng, Y. (2013, December). Mining twitter data for potential drug effects. In International Conference on Advanced Data Mining and Applications (pp. 434-443). Springer, Berlin, Heidelberg.
Jiang, W., Wang, Y., Tsou, M. H., & Fu, X. (2015). Using social media to detect outdoor air pollution and monitor air quality index (AQI): a geo-targeted spatiotemporal analysis framework with Sina Weibo (Chinese Twitter). PloS one, 10(10), e0141185.
Kafeza, E., Kanavos, A., Makris, C., & Vikatos, P. (2014, June). T-PICE: Twitter personality based in-fluential communities’ extraction system. In Big Data (BigData Congress), 2014 IEEE International Congress on (pp. 212-219). IEEE.
Kenney, M., & Zysman, J. (2016). The rise of the platform economy. Issues in Science and Technolo-gy, 32(3), 61.
Kepner, J., Anderson, C., Arcand, W., Bestor, D., Bergeron, B., Byun, C. & Prout, A. (2013, Septem-ber). D4M 2.0 schema: A general purpose high performance schema for the Accumulo database. In 2013 IEEE High Performance Extreme Computing Conference (HPEC) (pp. 1-6). IEEE.
Kepner, J., Gadepally, V., Michaleas, P., Schear, N., Varia, M., Yerukhimovich, A., & Cunningham, R. K. (2014, September). Computing on masked data: a high performance method for improving big data veracity. In High Performance Extreme Computing Conference (HPEC), 2014 IEEE (pp. 1-6). IEEE.
Kern, M. L., Eichstaedt, J. C., Schwartz, H. A., Park, G., Ungar, L. H., Stillwell, D. J. & Seligman, M. E. (2014). From “Sooo excited!!!” to “So proud”: Using language to study develop-ment. Developmental psychology, 50(1), 178.
Khare, R., Good, B. M., Leaman, R., Su, A. I., & Lu, Z. (2015). Crowdsourcing in biomedicine: chal-lenges and opportunities. Briefings in Bioinformatics, 17(1), 23-32.
Khoury, M., & Ioannidis, J. (2014). Big data meets public health. Science, 1054--1055.
Kim, H. S. (2015). Attracting views and going viral: How message features and news-sharing channels affect health news diffusion. Journal of Communication, 65(3), 512-534.
Kramer, A., Guillory, J., & Hancock, J. (2014). Experimental evidence of massive-scale emotional con-tagion through social networks. Proceedings of the National Academy of Sciences, 201320040.
Krawczyk, B. (2016). Learning from imbalanced data: open challenges and future directions. Progress in Artificial Intelligence, 5(4), 221-232.
Kwok, L., & Xie, K. L. (2016). Factors contributing to the helpfulness of online hotel reviews: Does manager response play a role?. International Journal of Contemporary Hospitality Manage-ment, 28(10), 2156-2177.
Lam, W., Liu, L., Prasad, S. T. S., Rajaraman, A., Vacheri, Z., & Doan, A. (2012). Muppet: MapRe-duce-style processing of fast data. Proceedings of the VLDB Endowment, 5(12), 1814-1825.
Lazer, D., Kennedy, R., King, G., & Vespignani, A. (2014). The parable of Google Flu: traps in big da-ta analysis. Science, 343(6176), 1203--1205.
Leeflang, P. S., Verhoef, P. C., Dahlström, P., & Freundt, T. (2014). Challenges and solutions for mar-keting in a digital era. European Management Journal, 32(1), 1-12.
Levin, N., Kark, S., & Crandall, D. (2015). Where have all the people gone? Enhancing global conser-vation using night lights and social media. Ecological Applications, 25(8), 2153-2167.
Lev-On, A., & Steinfeld, N. (2015). Local engagement online: Municipal Facebook pages as hubs of in-teraction. Government Information Quarterly, 32(3), 299-307.
Lima, A. C. E., de Castro, L. N., & Corchado, J. M. (2015). A polarity analysis framework for Twitter messages. Applied Mathematics and Computation, 270, 756-767.
Liu, C., Chen, J., Yang, L. T., Zhang, X., Yang, C., Ranjan, R., & Kotagiri, R. (2014). Authorized pub-lic auditing of dynamic big data storage on cloud with efficient verifiable fine-grained up-dates. IEEE Transactions on Parallel and Distributed Systems, 25(9), 2234-2244.
Liu, S. Q., & Mattila, A. S. (2017). Airbnb: Online targeted advertising, sense of power, and consumer decisions. International Journal of Hospitality Management, 60, 33-41.
Liu, X., & Chen, H. (2013, August). AZDrugMiner: an information extraction system for mining pa-tient-reported adverse drug events in online patient forums. In International conference on smart health (pp. 134-150). Springer, Berlin, Heidelberg.
Lohrmann, B., Janacik, P., & Kao, O. (2015, June). Elastic stream processing with latency guarantees. In Distributed Computing Systems (ICDCS), 2015 IEEE 35th International Conference on (pp. 399-410). IEEE.
Mariani, M. M., Di Felice, M., & Mura, M. (2016). Facebook as a destination marketing tool: Evidence from Italian regional Destination Management Organizations. Tourism Management, 54, 321-343.
Marine-Roig, E., & Clavé, S. A. (2015). Tourism analytics with massive user-generated content: A case study of Barcelona. Journal of Destination Marketing & Management, 4(3), 162-172.
Martin-Sanchez, F., & Verspoor, K. (2014). Big data in medicine is driving big changes. Yearbook of medical informatics, 9(1), 14.
McKelvey, K., DiGrazia, J., & Rojas, F. (2014). Twitter publics: How online political communities sig-naled electoral outcomes in the 2010 US house election. Information, Communication & Socie-ty, 17(4), 436-450.
Miah, S. J., Vu, H. Q., Gammack, J., & McGrath, M. (2017). A big data analytics method for tourist behaviour analysis. Information & Management, 54(6), 771-785.
Miller, H. J. (2013). Beyond sharing: cultivating cooperative transportation systems through geographic information science. Journal of Transport Geography, 31, 296-308.
Mocanu, D., Baronchelli, A., Perra, N., Gon alves, B., Zhang, Q., & Vespignani, A. (2013). The twitter of babel: Mapping world languages through microblogging platforms. PloS one, 8(4), e61981.
Mohr, D., Burns, M., Schueller, S., Clarke, G., & Klinkman, M. (2013). Behavioral intervention tech-nologies: evidence review and recommendations for future research in mental health. General hospi-tal psychiatry, 35(4), 332--338.
Morone, F., & Makse, H. (2015). Influence maximization in complex networks through optimal percola-tion. Nature, 524(7563), 65.
Morone, F., Min, B., Bo, L., Mari, R., & Makse, H. A. (2016). Collective influence algorithm to find in-fluencers via optimal percolation in massively large social media. Scientific Reports, 6, 30062.
Oboler, A., Welsh, K., & Cruz, L. (2012). The danger of big data: Social media as computational social science. First Monday, 17(7).
O'Dea, B., Wan, S., Batterham, P. J., Calear, A. L., Paris, C., & Christensen, H. (2015). Detecting sui-cidality on Twitter. Internet Interventions, 2(2), 183-188.
Ordenes, FV. , Ludwig, S., De Ruyter, K., Grewal, D., & Wetzels, M. (2017). Unveiling what is writ-ten in the stars: Analyzing explicit, implicit, and discourse patterns of sentiment in social me-dia. Journal of Consumer Research, 43(6), 875-894.
Ou, M., Cui, P., Wang, F., Wang, J., Zhu, W., & Yang, S. (2013, August). Comparing apples to orang-es: a scalable solution with heterogeneous hashing. In Proceedings of the 19th ACM SIGKDD inter-national conference on Knowledge discovery and data mining (pp. 230-238). ACM.
Paldino, S., Bojic, I., Sobolevsky, S., Ratti, C., & González, M. C. (2015). Urban magnetism through the lens of geo-tagged photography. EPJ Data Science, 4(1), 5.
Papacharissi, Z. (2016). Affective publics and structures of storytelling: Sentiment, events and mediali-ty. Information, Communication & Society, 19(3), 307-324.
Park, G., Schwartz, H. A., Eichstaedt, J. C., Kern, M. L., Kosinski, M., Stillwell, D. J. & Seligman, M. E. (2015). Automatic personality assessment through social media language. Journal of personality and social psychology, 108(6), 934.
Park, S. B., Ok, C. M., & Chae, B. K. (2016). Using twitter data for cruise tourism marketing and re-search. Journal of Travel & Tourism Marketing, 33(6), 885-898.
Peek, N., Holmes, J. H., & Sun, J. (2014). Technical challenges for big data in biomedicine and health: data sources, infrastructure, and analytics. Yearbook of Medical Informatics, 9(1), 42.
Procter, R., Crump, J., Karstedt, S., Voss, A., & Cantijoch, M. (2017). Reading the riots: What were the police doing on Twitter?. In Policing Cybercrime (pp. 5-28). Routledge.
Procter, R., Vis, F., & Voss, A. (2013). Reading the riots on Twitter: methodological innovation for the analysis of big data. International Journal of Social Research Methodology, 16(3), 197-214.
Ram, S., Zhang, W., Williams, M., & Pengetnze, Y. (2015). Predicting asthma-related emergency de-partment visits using big data. IEEE J. Biomedical and Health Informatics, 19(4), 1216-1223.
Ribarsky, W., Wang, D. X., & Dou, W. (2014). Social media analytics for competitive ad-vantage. Computers & Graphics, 38, 328-331.
Ross, M. K., Wei, W., & Ohno-Machado, L. (2014). “Big data” and the electronic health rec-ord. YearBook of Medical Informatics, 23(01), 97-104.
Russell Neuman, W., Guggenheim, L., Mo Jang, S., & Bae, S. (2014). The dynamics of public atten-tion: Agenda-setting theory meets big data. Journal of Communication, 64(2), 193--214.
Sang, E. T. K., & van den Bosch, A. (2013). Dealing with big data: The case of twitter. Computational Linguistics in the Netherlands Journal, 3(121-134), 2013.
Sharma, S. (2016). Expanded cloud plumes hiding Big Data ecosystem. Future Generation Computer Systems, 59, 63-92.
Sharma, S., Tim, U. S., Wong, J., Gadia, S., & Sharma, S. (2014). A brief review on leading big data models. Data Science Journal, 13, 138-157.
Shelton, T., Poorthuis, A., Graham, M., & Zook, M. (2014). Mapping the data shadows of Hurricane Sandy: Uncovering the sociospatial dimensions of ‘big data’. Geoforum, 52, 167-179.
Shelton, T., Poorthuis, A., & Zook, M. (2015). Social media and the city: Rethinking urban socio-spatial inequality using user-generated geographic information. Landscape and Urban Planning, 142, 198-211.
Sikos, L. (2015). Mastering structured data on the Semantic Web: From HTML5 microdata to linked open data. Apress.
Singh, V. K., Gao, M., & Jain, R. (2012, October). Situation recognition: an evolving problem for het-erogeneous dynamic big multimedia data. In Proceedings of the 20th ACM international conference on Multimedia (pp. 1209-1218). ACM.
Slavakis, K., Kim, S. J., Mateos, G., & Giannakis, G. B. (2014). Stochastic approximation vis-a-vis online learning for big data analytics [lecture notes]. IEEE Signal Processing Magazine, 31(6), 124-129.
Smith, M., Szongott, C., Henne, B., & Von Voigt, G. (2012, June). Big data privacy issues in public so-cial media. In Digital Ecosystems Technologies (DEST), 2012 6th IEEE International Conference on (pp. 1-6). IEEE.
Stephansen, H. C., & Couldry, N. (2014). Understanding micro-processes of community building and mutual learning on Twitter: a ‘small data’approach. Information, Communication & Society, 17(10), 1212-1227.
Stephens, Z., and Lee, S., Faghri, F., Campbell, R., Zhai, C., Efron, M., Robinson, G. (2015). Big data: astronomical or genomical? PLoS biology, 13(7), e1002195.
Stieglitz, S., Dang-Xuan, L., Bruns, A., & Neuberger, C. (2014). Social media analyt-ics. Wirtschaftsinformatik, 56(2), 101-109.
Stieglitz, S., Mirbabaie, M., Ross, B., & Neuberger, C. (2018). Social media analytics–Challenges in topic discovery, data collection, and data preparation. International Journal of Information Manage-ment, 39, 156-168.
Tsou, M. H. (2015). Research challenges and opportunities in mapping social media and Big Da-ta. Cartography and Geographic Information Science, 42(sup1), 70-74.
Tufekci, Z. (2014). Big Questions for Social Media Big data: Representativeness, Validity and Other Methodological Pitfalls. Proceedings of the 8th International Conference on Weblogs and Social Me-dia (ICWSM 2014), 14, 505--514.
Tufekci, Z. (2014). Engineering the public: Big data, surveillance and computational politics. First Monday, 19(7).
Uldam, J. (2016). Corporate management of visibility and the fantasy of the post-political: Social media and surveillance. New Media & Society, 18(2), 201-219.
Vatsavai, R. R., Ganguly, A., Chandola, V., Stefanidis, A., Klasky, S., & Shekhar, S. (2012, Novem-ber). Spatiotemporal data mining in the era of big spatial data: algorithms and applications. In Proceedings of the 1st ACM SIGSPATIAL international workshop on analytics for big geospatial data (pp. 1-10). ACM.
Van Dijck, J. (2014). Datafication, dataism and dataveillance: Big Data between scientific paradigm and ideology. Surveillance \& Society, 12(2), 197--208.
Watson, H. J. (2014). Tutorial: Big data analytics: Concepts, technologies, and applica-tions. Communications of the Association for Information Systems, 34, 65.
White, M. (2012). Digital workplaces: Vision and reality. Business information review, 29(4), 205-214.
Whittington, R. (2014). Information systems strategy and strategy-as-practice: a joint agenda. The Journal of Strategic Information Systems, 23(1), 87-91.
Williams, M. L., & Burnap, P. (2015). Cyberhate on social media in the aftermath of Woolwich: A case study in computational criminology and big data. British Journal of Criminology, 56(2), 211-238.
Williams, M. L., Burnap, P., & Sloan, L. (2017). Crime sensing with big data: The affordances and limi-tations of using open-source communications to estimate crime patterns. The British Journal of Crim-inology, 57(2), 320-340.
Wilson, M. W. (2015). Morgan Freeman is dead and other big data stories. Cultural geographies, 22(2), 345-349.
Wood, D., King, M., Landis, D., Courtney, W., Wang, R., Kelly, R. & Calhoun, V. D. (2014). Harness-ing modern web application technology to create intuitive and efficient data visualization and shar-ing tools. Frontiers in Neuroinformatics, 8, 71.
Wood, S., Guerry, A., Silver, J., & Lacayo, M. (2013). Using social media to quantify nature-based tourism and recreation. Scientific Reports, 3, 2976.
Wu, K. J., Liao, C. J., Tseng, M. L., Lim, M. K., Hu, J., & Tan, K. (2017). Toward sustainability: using big data to explore the decisive attributes of supply chain risks and uncertainties. Journal of Cleaner Production, 142, 663-676.
Xie, H., Li, Q., Mao, X., Li, X., Cai, Y., & Rao, Y. (2014). Community-aware user profile enrichment in folksonomy. Neural Networks, 58, 111-121.
Xiang, Z., Schwartz, Z., Gerdes Jr, J., & Uysal, M. (2015). What can big data and text analytics tell us about hotel guest experience and satisfaction? International Journal of Hospitality Management, 44, 120--130.
Yang, M., Kiang, M., & Shang, W. (2015). Filtering big data from social media–Building an early warning system for adverse drug reactions. Journal of Biomedical Informatics, 54, 230-240.
Yaqoob, I., Hashem, I. A. T., Gani, A., Mokhtar, S., Ahmed, E., Anuar, N. B., & Vasilakos, A. V. (2016). Big data: From beginning to future. International Journal of Information Management, 36(6), 1231-1247.
Yang, W., Lipsitch, M., & Shaman, J. (2015). Inference of seasonal and pandemic influenza transmis-sion dynamics. Proceedings of the National Academy of Sciences, 112(9), 2723-2728.
Young, S. D., Rivers, C., & Lewis, B. (2014). Methods of using real-time social media technologies for detection and remote monitoring of HIV outcomes. Preventive medicine, 63, 112-115.
Young, S. D. (2015). A “big data” approach to HIV epidemiology and prevention. Preventive medi-cine, 70, 17-18.
Youyou, W., Kosinski, M., & Stillwell, D. (2015). Computer-based personality judgments are more ac-curate than those made by humans. Proceedings of the National Academy of Sciences, 112(4), 1036--1040.
Zheng, Y., Liu, T., Wang, Y., Zhu, Y., Liu, Y., & Chang, E. (2014, September). Diagnosing New York City’s noises with ubiquitous data. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing (pp. 715-725). ACM.
Zhong, E., Fan, W., Wang, J., Xiao, L., & Li, Y. (2012, August). Comsoc: adaptive transfer of user be-haviors over composite social network. In Proceedings of the 18th ACM SIGKDD international con-ference on Knowledge discovery and data mining (pp. 696-704). ACM.
Zhu, W., Cui, P., Wang, Z., & Hua, G. (2015). Multimedia big data computing. IEEE multimedia, 3, 96-c3.
Aragón, P., Kappler, K. E., Kaltenbrunner, A., Laniado, D., & Volkovich, Y. (2013). Communication dynamics in twitter during political campaigns: The case of the 2011 Spanish national elec-tion. Policy & Internet, 5(2), 183-206.
Aria, M., & Cuccurullo, C. (2017). Bibliometrix: An R-tool for comprehensive science mapping analy-sis. Journal of Informetrics, 11, 959-975.
Artikis, A., Etzion, O., Feldman, Z., & Fournier, F. (2012, July). Event processing under uncertainty. In Proceedings of the 6th ACM International Conference on Distributed Event-Based Systems (pp. 32-43). ACM.
Bagheri, H., & Shaltooki, A. A. (2015). Big data: challenges, opportunities and Cloud based solu-tions. International Journal of Electrical and Computer Engineering (IJECE), 5(2), 340-343.
Bail, C. A. (2014). The cultural environment: Measuring culture with big data. Theory and Socie-ty, 43(3-4), 465-482.
Bail, C. A. (2014). Terrified: How anti-Muslim fringe organizations became mainstream. Princeton Uni-versity Press.
Baker, T. B., Gustafson, D. H., & Shah, D. (2014). How can research keep up with eHealth? Ten strat-egies for increasing the timeliness and usefulness of eHealth research. Journal of Medical Internet Research, 16(2).
Bakillah, M., Lauer, J., Liang, S. H., Zipf, A., Jokar Arsanjani, J., Mobasheri, A., & Loos, L. (2014). Exploiting big VGI to improve routing and navigation services. Big data techniques and technologies in geoinformatics, 177-192.
Bansal, S., Chowell, G., Simonsen, L., Vespignani, A., & Viboud, C. (2016). Big data for infectious disease surveillance and modeling. The Journal of Infectious Diseases, 214(suppl_4), S375-S379.
Baym, N. K. (2013). Data not seen: The uses and shortcomings of social media metrics. First Mon-day, 18(10).
Beam, A. L., & Kohane, I. S. (2018). Big data and machine learning in health care. Journal of the American Medical Association, 319(13), 1317-1318.
Bello-Orgaz, G., Jung, J., & Camacho, D. (2016). Social big data: Recent achievements and new chal-lenges. Information Fusion, 28, 45--59.
Bentley, R. A., O'Brien, M. J., & Brock, W. A. (2014). Mapping collective behavior in the big-data era. Behavioral and Brain Sciences, 37(1), 63.
Bian, J., Topaloglu, U., & Yu, F. (2012, October). Towards large-scale twitter mining for drug-related adverse events. In Proceedings of the 2012 international workshop on Smart health and wellbe-ing (pp. 25-32). ACM.
Bliss, C. A., Kloumann, I. M., Harris, K. D., Danforth, C. M., & Dodds, P. S. (2012). Twitter reciprocal reply networks exhibit assortativity with respect to happiness. Journal of Computational Sci-ence, 3(5), 388-397.
Boyd, D., & Crawford, K. (2012). Critical questions for big data: Provocations for a cultural, techno-logical, and scholarly phenomenon. Information, Communication & Society, 15(5), 662-679.
Bravo-Marquez, F., Mendoza, M., & Poblete, B. (2014). Meta-level sentiment models for big social da-ta analysis. Knowledge-Based Systems, 69, 86-99.
Bruns, A. (2013). Faster than the speed of print: Reconciling ‘big data’ social media analysis and aca-demic scholarship. First Monday, 18(10).
Bruns, A., Highfield, T., & Burgess, J. (2013). The Arab Spring and social media audiences: English and Arabic Twitter users and their networks. American Behavioral Scientist, 57(7), 871-898.
Buhalis, D., & Foerste, M. (2015). SoCoMo marketing for travel and tourism: Empowering co-creation of value. Journal of Destination Marketing & Management, 4(3), 151-161.
Burnap, P., & Williams, M. L. (2015). Cyber hate speech on twitter: An application of machine classifi-cation and statistical modeling for policy and decision making. Policy & Internet, 7(2), 223-242.
Burns, R. (2015). Rethinking big data in digital humanitarianism: Practices, epistemologies, and social relations. GeoJournal, 80(4), 477-490.
Cai, J., Huang, B., & Song, Y. (2017). Using multi-source geospatial big data to identify the structure of polycentric cities. Remote Sensing of Environment, 202, 210-221.
Cai, Y., Li, Q., Xie, H., & Min, H. (2014). Exploring personalized searches using tag-based user profiles and resource profiles in folksonomy. Neural Networks, 58, 98-110.
Carley, K. M., Malik, M., Landwehr, P. M., Pfeffer, J., & Kowalchuck, M. (2016). Crowd sourcing disaster management: The complex nature of Twitter usage in Padang Indonesia. Safety Science, 90, 48-61.
Cao, G., Wang, S., Hwang, M., Padmanabhan, A., Zhang, Z., & Soltani, K. (2015). A scalable frame-work for spatiotemporal analysis of location-based social media data. Computers, Environment and Urban Systems, 51, 70-82.
Chae, B. K. (2015). Insights from hashtag# supplychain and Twitter Analytics: Considering Twitter and Twitter data for supply chain practice and research. International Journal of Production Eco-nomics, 165, 247-259.
Chiang, R. H., Goes, P., & Stohr, E. A. (2012). Business intelligence and analytics education, and pro-gram development: A unique opportunity for the information systems discipline. ACM Transactions on Management Information Systems (TMIS), 3(3), 12.
Ciulla, F., Mocanu, D., Baronchelli, A., Gonçalves, B., Perra, N., & Vespignani, A. (2012). Beating the news using social media: the case study of American Idol. EPJ Data Science, 1(1), 8.
Compton, R., Jurgens, D., & Allen, D. (2014, October). Geotagging one hundred million twitter ac-counts with total variation minimization. In Big Data (Big Data), 2014 IEEE International Confer-ence on (pp. 393-401). IEEE.
Conway, M. (2017). Determining the role of the internet in violent extremism and terrorism: Six sugges-tions for progressing research. Studies in Conflict & Terrorism, I(1), 77-98.
Couper, M. P. (2013, December). Is the sky falling? New technology, changing media, and the future of surveys. In Survey Research Methods, 7(3), 145-156.
Crampton, J., Graham, M., Poorthuis, A., Shelton, T., Stephens, M., Wilson, M., & Zook, M. (2013). Beyond the geotag: situating ‘big data’and leveraging the potential of the geoweb. Cartography and Geographic Information Science, 40(2), 130--139.
Culotta, A., & Cutler, J. (2016). Mining brand perceptions from twitter social networks. Marketing Sci-ence, 35(3), 343-362.
Dede, E., Sendir, B., Kuzlu, P., Hartog, J., & Govindaraju, M. (2013, June). An evaluation of cassandra for hadoop. In Cloud Computing (CLOUD), 2013 IEEE Sixth International Conference on (pp. 494-501). IEEE.
De Francisci Morales, G. (2013, May). SAMOA: A platform for mining big data streams. In Proceedings of the 22nd International Conference on World Wide Web (pp. 777-778). ACM.
Dehghani, M., Johnson, K., Hoover, J., Sagi, E., Garten, J., Parmar, N. J. & Graham, J. (2016). Purity homophily in social networks. Journal of Experimental Psychology: General, 145(3), 366.
De Maio, C., Fenza, G., Loia, V., & Parente, M. (2016). Time aware knowledge extraction for mi-croblog summarization on twitter. Information Fusion, 28, 60-74.
Driscoll, K., & Walker, S. (2014). Big data, big questions| working within a black box: Transparency in the collection and production of big twitter data. International Journal of Communication, 8, 20.
Eichstaedt, J. C., Schwartz, H. A., Kern, M. L., Park, G., Labarthe, D. R., Merchant, R. M. & Weeg, C. (2015). Psychological language on Twitter predicts county-level heart disease mortali-ty. Psychological science, 26(2), 159-169.
Fernández-Luque, L., & Bau, T. (2015). Health and social media: perfect storm of infor-mation. Healthcare Informatics Research, 21(2), 67-73.
Fleurence, R. L., Beal, A. C., Sheridan, S. E., Johnson, L. B., & Selby, J. V. (2014). Patient-powered research networks aim to improve patient care and health research. Health Affairs, 33(7), 1212-1219.
Fried, D., Surdeanu, M., Kobourov, S., Hingle, M., & Bell, D. (2014, October). Analyzing the language of food on social media. In Big Data (Big Data), 2014 IEEE International Conference on (pp. 778-783). IEEE.
Fulgoni, G., & Lipsman, A. (2014). Digital game changers: how social media will help usher in the era of mobile and multi-platform campaign-effectiveness measurement. Journal of Advertising Re-search, 54(1), 11-16.
Gittelman, S., Lange, V., Crawford, C. A. G., Okoro, C. A., Lieb, E., Dhingra, S. S., & Trimarchi, E. (2015). A new source of data for public health surveillance: Facebook likes. Journal of medical In-ternet research, 17(4).
Golder, S. A., & Macy, M. W. (2014). Digital footprints: Opportunities and challenges for online social research. Annual Review of Sociology, 40, 129-152.
Hansen, M. M., Miron-Shatz, T., Lau, A. Y. S., & Paton, C. (2014). Big data in science and healthcare: a review of recent literature and perspectives. Yearbook of Medical Informatics, 23(01), 21-26.
Hasan, S., & Ukkusuri, S. V. (2014). Urban activity pattern classification using topic models from online geo-location data. Transportation Research Part C: Emerging Technologies, 44, 363-381.
Haustein, S. (2016). Grand challenges in altmetrics: heterogeneity, data quality and dependen-cies. Scientometrics, 108(1), 413-423.
Hay, S. I., George, D. B., Moyes, C. L., & Brownstein, J. S. (2013). Big data opportunities for global infectious disease surveillance. PLoS Medicine, 10(4), e1001413.
He, W., Wu, H., Yan, G., Akula, V., & Shen, J. (2015). A novel social media competitive analytics framework with sentiment benchmarks. Information & Management, 52(7), 801-812.
Herland, M., Khoshgoftaar, T. M., & Wald, R. (2014). A review of data mining using big data in health informatics. Journal of Big data, 1(1), 2.
Huang, Y., Guo, D., Kasakoff, A., & Grieve, J. (2016). Understanding US regional linguistic variation with Twitter data analysis. Computers, Environment and Urban Systems, 59, 244-255.
Hu, H., Wen, Y., Luan, H., Chua, T. S., & Li, X. (2014). Toward multiscreen social TV with geoloca-tion-aware social sense. IEEE MultiMedia, 21(3), 10-19.
Hu, H., Wen, Y., Gao, Y., Chua, T. S., & Li, X. (2015). Towards SDN-Enabled Big Data Platform for Social TV Analytics.
Huda, M., Maseleno, A., Atmotiyoso, P., Siregar, M., Ahmad, R., Jasmi, K., & Muhamad, N. (2018). Big data emerging technology: insights into innovative environment for online learning re-sources. International Journal of Emerging Technologies in Learning (iJET), 13(1), 23-36.
Hussain, A., & Vatrapu, R. (2014, May). Social data analytics tool (sodato). In International Confer-ence on Design Science Research in Information Systems (pp. 368-372). Springer, Cham.
Immonen, A., Pääkkönen, P., & Ovaska, E. (2015). Evaluating the quality of social media data in big data architecture. IEEE Access, 3, 2028-2043.
Jiang, B. (2015). Geospatial analysis requires a different way of thinking: The problem of spatial heter-ogeneity. GeoJournal, 80(1), 1-13.
Jiang, B. (2016). Head/tail breaks for visualization of city structure and dynamics. European Handbook of Crowdsourced Geographic Information, 169.
Jiang, B., & Miao, Y. (2015). The evolution of natural cities from the perspective of location-based so-cial media. The Professional Geographer, 67(2), 295-306.
Jiang, K., & Zheng, Y. (2013, December). Mining twitter data for potential drug effects. In International Conference on Advanced Data Mining and Applications (pp. 434-443). Springer, Berlin, Heidelberg.
Jiang, W., Wang, Y., Tsou, M. H., & Fu, X. (2015). Using social media to detect outdoor air pollution and monitor air quality index (AQI): a geo-targeted spatiotemporal analysis framework with Sina Weibo (Chinese Twitter). PloS one, 10(10), e0141185.
Kafeza, E., Kanavos, A., Makris, C., & Vikatos, P. (2014, June). T-PICE: Twitter personality based in-fluential communities’ extraction system. In Big Data (BigData Congress), 2014 IEEE International Congress on (pp. 212-219). IEEE.
Kenney, M., & Zysman, J. (2016). The rise of the platform economy. Issues in Science and Technolo-gy, 32(3), 61.
Kepner, J., Anderson, C., Arcand, W., Bestor, D., Bergeron, B., Byun, C. & Prout, A. (2013, Septem-ber). D4M 2.0 schema: A general purpose high performance schema for the Accumulo database. In 2013 IEEE High Performance Extreme Computing Conference (HPEC) (pp. 1-6). IEEE.
Kepner, J., Gadepally, V., Michaleas, P., Schear, N., Varia, M., Yerukhimovich, A., & Cunningham, R. K. (2014, September). Computing on masked data: a high performance method for improving big data veracity. In High Performance Extreme Computing Conference (HPEC), 2014 IEEE (pp. 1-6). IEEE.
Kern, M. L., Eichstaedt, J. C., Schwartz, H. A., Park, G., Ungar, L. H., Stillwell, D. J. & Seligman, M. E. (2014). From “Sooo excited!!!” to “So proud”: Using language to study develop-ment. Developmental psychology, 50(1), 178.
Khare, R., Good, B. M., Leaman, R., Su, A. I., & Lu, Z. (2015). Crowdsourcing in biomedicine: chal-lenges and opportunities. Briefings in Bioinformatics, 17(1), 23-32.
Khoury, M., & Ioannidis, J. (2014). Big data meets public health. Science, 1054--1055.
Kim, H. S. (2015). Attracting views and going viral: How message features and news-sharing channels affect health news diffusion. Journal of Communication, 65(3), 512-534.
Kramer, A., Guillory, J., & Hancock, J. (2014). Experimental evidence of massive-scale emotional con-tagion through social networks. Proceedings of the National Academy of Sciences, 201320040.
Krawczyk, B. (2016). Learning from imbalanced data: open challenges and future directions. Progress in Artificial Intelligence, 5(4), 221-232.
Kwok, L., & Xie, K. L. (2016). Factors contributing to the helpfulness of online hotel reviews: Does manager response play a role?. International Journal of Contemporary Hospitality Manage-ment, 28(10), 2156-2177.
Lam, W., Liu, L., Prasad, S. T. S., Rajaraman, A., Vacheri, Z., & Doan, A. (2012). Muppet: MapRe-duce-style processing of fast data. Proceedings of the VLDB Endowment, 5(12), 1814-1825.
Lazer, D., Kennedy, R., King, G., & Vespignani, A. (2014). The parable of Google Flu: traps in big da-ta analysis. Science, 343(6176), 1203--1205.
Leeflang, P. S., Verhoef, P. C., Dahlström, P., & Freundt, T. (2014). Challenges and solutions for mar-keting in a digital era. European Management Journal, 32(1), 1-12.
Levin, N., Kark, S., & Crandall, D. (2015). Where have all the people gone? Enhancing global conser-vation using night lights and social media. Ecological Applications, 25(8), 2153-2167.
Lev-On, A., & Steinfeld, N. (2015). Local engagement online: Municipal Facebook pages as hubs of in-teraction. Government Information Quarterly, 32(3), 299-307.
Lima, A. C. E., de Castro, L. N., & Corchado, J. M. (2015). A polarity analysis framework for Twitter messages. Applied Mathematics and Computation, 270, 756-767.
Liu, C., Chen, J., Yang, L. T., Zhang, X., Yang, C., Ranjan, R., & Kotagiri, R. (2014). Authorized pub-lic auditing of dynamic big data storage on cloud with efficient verifiable fine-grained up-dates. IEEE Transactions on Parallel and Distributed Systems, 25(9), 2234-2244.
Liu, S. Q., & Mattila, A. S. (2017). Airbnb: Online targeted advertising, sense of power, and consumer decisions. International Journal of Hospitality Management, 60, 33-41.
Liu, X., & Chen, H. (2013, August). AZDrugMiner: an information extraction system for mining pa-tient-reported adverse drug events in online patient forums. In International conference on smart health (pp. 134-150). Springer, Berlin, Heidelberg.
Lohrmann, B., Janacik, P., & Kao, O. (2015, June). Elastic stream processing with latency guarantees. In Distributed Computing Systems (ICDCS), 2015 IEEE 35th International Conference on (pp. 399-410). IEEE.
Mariani, M. M., Di Felice, M., & Mura, M. (2016). Facebook as a destination marketing tool: Evidence from Italian regional Destination Management Organizations. Tourism Management, 54, 321-343.
Marine-Roig, E., & Clavé, S. A. (2015). Tourism analytics with massive user-generated content: A case study of Barcelona. Journal of Destination Marketing & Management, 4(3), 162-172.
Martin-Sanchez, F., & Verspoor, K. (2014). Big data in medicine is driving big changes. Yearbook of medical informatics, 9(1), 14.
McKelvey, K., DiGrazia, J., & Rojas, F. (2014). Twitter publics: How online political communities sig-naled electoral outcomes in the 2010 US house election. Information, Communication & Socie-ty, 17(4), 436-450.
Miah, S. J., Vu, H. Q., Gammack, J., & McGrath, M. (2017). A big data analytics method for tourist behaviour analysis. Information & Management, 54(6), 771-785.
Miller, H. J. (2013). Beyond sharing: cultivating cooperative transportation systems through geographic information science. Journal of Transport Geography, 31, 296-308.
Mocanu, D., Baronchelli, A., Perra, N., Gon alves, B., Zhang, Q., & Vespignani, A. (2013). The twitter of babel: Mapping world languages through microblogging platforms. PloS one, 8(4), e61981.
Mohr, D., Burns, M., Schueller, S., Clarke, G., & Klinkman, M. (2013). Behavioral intervention tech-nologies: evidence review and recommendations for future research in mental health. General hospi-tal psychiatry, 35(4), 332--338.
Morone, F., & Makse, H. (2015). Influence maximization in complex networks through optimal percola-tion. Nature, 524(7563), 65.
Morone, F., Min, B., Bo, L., Mari, R., & Makse, H. A. (2016). Collective influence algorithm to find in-fluencers via optimal percolation in massively large social media. Scientific Reports, 6, 30062.
Oboler, A., Welsh, K., & Cruz, L. (2012). The danger of big data: Social media as computational social science. First Monday, 17(7).
O'Dea, B., Wan, S., Batterham, P. J., Calear, A. L., Paris, C., & Christensen, H. (2015). Detecting sui-cidality on Twitter. Internet Interventions, 2(2), 183-188.
Ordenes, FV. , Ludwig, S., De Ruyter, K., Grewal, D., & Wetzels, M. (2017). Unveiling what is writ-ten in the stars: Analyzing explicit, implicit, and discourse patterns of sentiment in social me-dia. Journal of Consumer Research, 43(6), 875-894.
Ou, M., Cui, P., Wang, F., Wang, J., Zhu, W., & Yang, S. (2013, August). Comparing apples to orang-es: a scalable solution with heterogeneous hashing. In Proceedings of the 19th ACM SIGKDD inter-national conference on Knowledge discovery and data mining (pp. 230-238). ACM.
Paldino, S., Bojic, I., Sobolevsky, S., Ratti, C., & González, M. C. (2015). Urban magnetism through the lens of geo-tagged photography. EPJ Data Science, 4(1), 5.
Papacharissi, Z. (2016). Affective publics and structures of storytelling: Sentiment, events and mediali-ty. Information, Communication & Society, 19(3), 307-324.
Park, G., Schwartz, H. A., Eichstaedt, J. C., Kern, M. L., Kosinski, M., Stillwell, D. J. & Seligman, M. E. (2015). Automatic personality assessment through social media language. Journal of personality and social psychology, 108(6), 934.
Park, S. B., Ok, C. M., & Chae, B. K. (2016). Using twitter data for cruise tourism marketing and re-search. Journal of Travel & Tourism Marketing, 33(6), 885-898.
Peek, N., Holmes, J. H., & Sun, J. (2014). Technical challenges for big data in biomedicine and health: data sources, infrastructure, and analytics. Yearbook of Medical Informatics, 9(1), 42.
Procter, R., Crump, J., Karstedt, S., Voss, A., & Cantijoch, M. (2017). Reading the riots: What were the police doing on Twitter?. In Policing Cybercrime (pp. 5-28). Routledge.
Procter, R., Vis, F., & Voss, A. (2013). Reading the riots on Twitter: methodological innovation for the analysis of big data. International Journal of Social Research Methodology, 16(3), 197-214.
Ram, S., Zhang, W., Williams, M., & Pengetnze, Y. (2015). Predicting asthma-related emergency de-partment visits using big data. IEEE J. Biomedical and Health Informatics, 19(4), 1216-1223.
Ribarsky, W., Wang, D. X., & Dou, W. (2014). Social media analytics for competitive ad-vantage. Computers & Graphics, 38, 328-331.
Ross, M. K., Wei, W., & Ohno-Machado, L. (2014). “Big data” and the electronic health rec-ord. YearBook of Medical Informatics, 23(01), 97-104.
Russell Neuman, W., Guggenheim, L., Mo Jang, S., & Bae, S. (2014). The dynamics of public atten-tion: Agenda-setting theory meets big data. Journal of Communication, 64(2), 193--214.
Sang, E. T. K., & van den Bosch, A. (2013). Dealing with big data: The case of twitter. Computational Linguistics in the Netherlands Journal, 3(121-134), 2013.
Sharma, S. (2016). Expanded cloud plumes hiding Big Data ecosystem. Future Generation Computer Systems, 59, 63-92.
Sharma, S., Tim, U. S., Wong, J., Gadia, S., & Sharma, S. (2014). A brief review on leading big data models. Data Science Journal, 13, 138-157.
Shelton, T., Poorthuis, A., Graham, M., & Zook, M. (2014). Mapping the data shadows of Hurricane Sandy: Uncovering the sociospatial dimensions of ‘big data’. Geoforum, 52, 167-179.
Shelton, T., Poorthuis, A., & Zook, M. (2015). Social media and the city: Rethinking urban socio-spatial inequality using user-generated geographic information. Landscape and Urban Planning, 142, 198-211.
Sikos, L. (2015). Mastering structured data on the Semantic Web: From HTML5 microdata to linked open data. Apress.
Singh, V. K., Gao, M., & Jain, R. (2012, October). Situation recognition: an evolving problem for het-erogeneous dynamic big multimedia data. In Proceedings of the 20th ACM international conference on Multimedia (pp. 1209-1218). ACM.
Slavakis, K., Kim, S. J., Mateos, G., & Giannakis, G. B. (2014). Stochastic approximation vis-a-vis online learning for big data analytics [lecture notes]. IEEE Signal Processing Magazine, 31(6), 124-129.
Smith, M., Szongott, C., Henne, B., & Von Voigt, G. (2012, June). Big data privacy issues in public so-cial media. In Digital Ecosystems Technologies (DEST), 2012 6th IEEE International Conference on (pp. 1-6). IEEE.
Stephansen, H. C., & Couldry, N. (2014). Understanding micro-processes of community building and mutual learning on Twitter: a ‘small data’approach. Information, Communication & Society, 17(10), 1212-1227.
Stephens, Z., and Lee, S., Faghri, F., Campbell, R., Zhai, C., Efron, M., Robinson, G. (2015). Big data: astronomical or genomical? PLoS biology, 13(7), e1002195.
Stieglitz, S., Dang-Xuan, L., Bruns, A., & Neuberger, C. (2014). Social media analyt-ics. Wirtschaftsinformatik, 56(2), 101-109.
Stieglitz, S., Mirbabaie, M., Ross, B., & Neuberger, C. (2018). Social media analytics–Challenges in topic discovery, data collection, and data preparation. International Journal of Information Manage-ment, 39, 156-168.
Tsou, M. H. (2015). Research challenges and opportunities in mapping social media and Big Da-ta. Cartography and Geographic Information Science, 42(sup1), 70-74.
Tufekci, Z. (2014). Big Questions for Social Media Big data: Representativeness, Validity and Other Methodological Pitfalls. Proceedings of the 8th International Conference on Weblogs and Social Me-dia (ICWSM 2014), 14, 505--514.
Tufekci, Z. (2014). Engineering the public: Big data, surveillance and computational politics. First Monday, 19(7).
Uldam, J. (2016). Corporate management of visibility and the fantasy of the post-political: Social media and surveillance. New Media & Society, 18(2), 201-219.
Vatsavai, R. R., Ganguly, A., Chandola, V., Stefanidis, A., Klasky, S., & Shekhar, S. (2012, Novem-ber). Spatiotemporal data mining in the era of big spatial data: algorithms and applications. In Proceedings of the 1st ACM SIGSPATIAL international workshop on analytics for big geospatial data (pp. 1-10). ACM.
Van Dijck, J. (2014). Datafication, dataism and dataveillance: Big Data between scientific paradigm and ideology. Surveillance \& Society, 12(2), 197--208.
Watson, H. J. (2014). Tutorial: Big data analytics: Concepts, technologies, and applica-tions. Communications of the Association for Information Systems, 34, 65.
White, M. (2012). Digital workplaces: Vision and reality. Business information review, 29(4), 205-214.
Whittington, R. (2014). Information systems strategy and strategy-as-practice: a joint agenda. The Journal of Strategic Information Systems, 23(1), 87-91.
Williams, M. L., & Burnap, P. (2015). Cyberhate on social media in the aftermath of Woolwich: A case study in computational criminology and big data. British Journal of Criminology, 56(2), 211-238.
Williams, M. L., Burnap, P., & Sloan, L. (2017). Crime sensing with big data: The affordances and limi-tations of using open-source communications to estimate crime patterns. The British Journal of Crim-inology, 57(2), 320-340.
Wilson, M. W. (2015). Morgan Freeman is dead and other big data stories. Cultural geographies, 22(2), 345-349.
Wood, D., King, M., Landis, D., Courtney, W., Wang, R., Kelly, R. & Calhoun, V. D. (2014). Harness-ing modern web application technology to create intuitive and efficient data visualization and shar-ing tools. Frontiers in Neuroinformatics, 8, 71.
Wood, S., Guerry, A., Silver, J., & Lacayo, M. (2013). Using social media to quantify nature-based tourism and recreation. Scientific Reports, 3, 2976.
Wu, K. J., Liao, C. J., Tseng, M. L., Lim, M. K., Hu, J., & Tan, K. (2017). Toward sustainability: using big data to explore the decisive attributes of supply chain risks and uncertainties. Journal of Cleaner Production, 142, 663-676.
Xie, H., Li, Q., Mao, X., Li, X., Cai, Y., & Rao, Y. (2014). Community-aware user profile enrichment in folksonomy. Neural Networks, 58, 111-121.
Xiang, Z., Schwartz, Z., Gerdes Jr, J., & Uysal, M. (2015). What can big data and text analytics tell us about hotel guest experience and satisfaction? International Journal of Hospitality Management, 44, 120--130.
Yang, M., Kiang, M., & Shang, W. (2015). Filtering big data from social media–Building an early warning system for adverse drug reactions. Journal of Biomedical Informatics, 54, 230-240.
Yaqoob, I., Hashem, I. A. T., Gani, A., Mokhtar, S., Ahmed, E., Anuar, N. B., & Vasilakos, A. V. (2016). Big data: From beginning to future. International Journal of Information Management, 36(6), 1231-1247.
Yang, W., Lipsitch, M., & Shaman, J. (2015). Inference of seasonal and pandemic influenza transmis-sion dynamics. Proceedings of the National Academy of Sciences, 112(9), 2723-2728.
Young, S. D., Rivers, C., & Lewis, B. (2014). Methods of using real-time social media technologies for detection and remote monitoring of HIV outcomes. Preventive medicine, 63, 112-115.
Young, S. D. (2015). A “big data” approach to HIV epidemiology and prevention. Preventive medi-cine, 70, 17-18.
Youyou, W., Kosinski, M., & Stillwell, D. (2015). Computer-based personality judgments are more ac-curate than those made by humans. Proceedings of the National Academy of Sciences, 112(4), 1036--1040.
Zheng, Y., Liu, T., Wang, Y., Zhu, Y., Liu, Y., & Chang, E. (2014, September). Diagnosing New York City’s noises with ubiquitous data. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing (pp. 715-725). ACM.
Zhong, E., Fan, W., Wang, J., Xiao, L., & Li, Y. (2012, August). Comsoc: adaptive transfer of user be-haviors over composite social network. In Proceedings of the 18th ACM SIGKDD international con-ference on Knowledge discovery and data mining (pp. 696-704). ACM.
Zhu, W., Cui, P., Wang, Z., & Hua, G. (2015). Multimedia big data computing. IEEE multimedia, 3, 96-c3.