How to cite this paper
Fathollahi, M., Farsani, S & Azadeh, A. (2017). An intelligent algorithm for accurate forecasting of short term solid waste generation.International Journal of Data and Network Science, 1(2), 59-68.
Refrences
Antanasijević, D., Pocajt, V., Popović, I., Redžić, N., & Ristić, M. (2013). The forecasting of municipal waste generation us-ing artificial neural networks and sustainability indicators. Sustainability science, 8(1), 37-46.
Azadeh, A., Asadzadeh, S. M., & Ghanbari, A. (2010). An adaptive network-based fuzzy inference system for short-term natural gas demand estimation: uncertain and complex environments. Energy Policy, 38(3), 1529-1536.
Azadeh, A., Yazdanparast, R., Zadeh, S. A., & Zadeh, A. E. (2017). Performance optimization of integrated resilience engi-neering and lean production principles. Expert Systems with Applications, 84, 155-170.
Bandyopadhyay, G., & Chattopadhyay, S. (2007). Single hidden layer artificial neural network models versus multiple lin-ear regression model in forecasting the time series of total ozone. International Journal of Environmental Science & Technology, 4(1), 141-149.
Beede, D. N., & Bloom, D. E. (1995). The economics of municipal solid waste. The World Bank Research Observer, 10(2), 113-150.
Chi, Y., & ZHANG, D. P. (2005). HCl emission characteristics and BP neural networks prediction in MSW/coal co-fired flu-idized beds. Journal of Environmental Sciences, 17(4), 699-704.
Denafas, G., Ruzgas, T., Martuzevičius, D., Shmarin, S., Hoffmann, M., Mykhaylenko, V., ... & Turkadze, T. (2014). Sea-sonal variation of municipal solid waste generation and composition in four East European cities. Resources, conserva-tion and recycling, 89, 22-30.
Dong, C., Jin, B., & Li, D. (2003). Predicting the heating value of MSW with a feed forward neural network. Waste Man-agement, 23(2), 103-106.
Dreiseitl, S., & Ohno-Machado, L. (2002). Logistic regression and artificial neural network classification models: a method-ology review. Journal of biomedical informatics, 35(5-6), 352-359.
Erdogan, R., Zaimoglu, Z., Sucu, M. Y., Budak, F., & Kekec, S. (2008). Applicability of leachates originating from solid-waste landfills for irrigation in landfill restoration projects. Journal of environmental biology, 29(5), 779-784.
Gómez, G., Meneses, M., Ballinas, L., & Castells, F. (2009). Seasonal characterization of municipal solid waste (MSW) in the city of Chihuahua, Mexico. Waste Management, 29(7), 2018-2024.
Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural networks, 2(5), 359-366.
Karaca, F., & Özkaya, B. (2006). NN-LEAP: A neural network-based model for controlling leachate flow-rate in a munici-pal solid waste landfill site. Environmental Modelling & Software, 21(8), 1190-1197.
Kutner, M. H., Nachtsheim, C., & Neter, J. (2004). Applied linear regression models. McGraw-Hill/Irwin.
Liu, Z. F., Liu, X. P., Wang, S. W., & Liu, G. F. (2002). Recycling strategy and a recyclability assessment model based on an artificial neural network. Journal of materials processing technology, 129(1-3), 500-506.
Manaf, L. A., Samah, M. A. A., & Zukki, N. I. M. (2009). Municipal solid waste management in Malaysia: Practices and challenges. Waste management, 29(11), 2902-2906.
McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of mathe-matical biophysics, 5(4), 115-133.
Minsky, M., & Papert, S. (1969). Perceptrons Cambridge MA.
Mwenda, A., Kuznetsov, D., & Mirau, S. (2014). Time series forecasting of solid waste generation in Arusha city-Tanzania. Mathematical Theory and Modelling, 4(8), 29-39.
Nasiri, M. M., Heidari, R., Yazdanparast, R., & Akbarian, N. (2017a). Robust Possibilistic Programming Approach for the Design of Tehran Municipal Solid Waste Management System. Paper presented at the 13th International Conference on Industrial Engineering (IIEC 2017), Mazandaran, Iran.
Nasiri, M. M., Yazdanparast, R., & Jolai, F. (2017b). A simulation optimisation approach for real-time scheduling in an open shop environment using a composite dispatching rule. International Journal of Computer Integrated Manufactur-ing, 30(12), 1239-1252.
Noori, R., Abdoli, M. A., Ghazizade, M. J., & Samieifard, R. (2009a). Comparison of neural network and principal compo-nent-regression analysis to predict the solid waste generation in Tehran. Iranian Journal of Public Health, 38(1), 74-84.
Noori, R., Abdoli, M. A., Farokhnia, A., & Abbasi, M. (2009). RETRACTED: Results uncertainty of solid waste generation forecasting by hybrid of wavelet transform-ANFIS and wavelet transform-neural network.
Noori, R., Karbassi, A., & Sabahi, M. S. (2010). Evaluation of PCA and Gamma test techniques on ANN operation for weekly solid waste prediction. Journal of Environmental Management, 91(3), 767-771.
Pamnani, A., & Meka, S. (2015). Forecasting of municipal solid waste generation for small-scale towns and surrounding vil-lages located in state of Gujrat, India. International Journal of Current Engineering and Technology, 5(1), 283-287.
Qdais, H. A., Hani, K. B., & Shatnawi, N. (2010). Modeling and optimization of biogas production from a waste digester us-ing artificial neural network and genetic algorithm. Resources, Conservation and Recycling, 54(6), 359-363.
Rabbani, M., Heidari, R., Farrokhi-Asl, H., & Rahimi, N. (2018). Using metaheuristic algorithms to solve a multi-objective industrial hazardous waste location-routing problem considering incompatible waste types. Journal of Cleaner Produc-tion, 170, 227-241.
Rhyner, C. R. (1992). Monthly variations in solid waste generation. Waste management & research, 10(1), 67-71.
Rimaitytė, I., Ruzgas, T., Denafas, G., Račys, V., & Martuzevicius, D. (2012). Application and evaluation of forecasting methods for municipal solid waste generation in an eastern-European city. Waste Management & Research, 30(1), 89-98.
Rumelhart, D. E., McClelland, J. L, & Group, PDP Research. (1986). Parallel Distributed Processing: Exploration in the Microstructure of Cognition. Foundations, Vol. 1 [M]: Canbridge, Massachusetts: MIT Press.
Shu, H. Y., Lu, H. C., Fan, H. J., Chang, M. C., & Chen, J. C. (2006). Prediction for energy content of Taiwan municipal sol-id waste using multilayer perceptron neural networks. Journal of the Air & Waste Management Association, 56(6), 852-858.
Skovgaard, M., Moll, S., & Larsen, H. V. (2005). Outlook for waste and material flows. Baseline and alternative scenarios.
Strouboulis, J., Dillon, N., & Grosveld, F. (1992). Developmental regulation of a complete 70-kb human beta-globin locus in transgenic mice. Genes & Development, 6(10), 1857-1864.
Sy, N. L. (2006). Modelling the infiltration process with a multi-layer perceptron artificial neural network. Hydrological sci-ences journal, 51(1), 3-20.
Takahashi, F., Shimaoka, T., & Kida, A. (2012). Atmospheric mercury emissions from waste combustions measured by continuous monitoring devices. Journal of the Air & Waste Management Association, 62(6), 686-695.
Tiwari, M. K., Bajpai, S., & Dewangan, U. K. (2012). Prediction of industrial solid waste with ANFIS model and its compari-son with ANN model-A case study of Durg-Bhilai twin city India. International Journal of Engineering and Innovative Technology (IJEIT), 6(2), 192-201.
Toth-Nagy, C., Conley, J. J., Jarrett, R. P., & Clark, N. N. (2006). Further validation of artificial neural network-based emis-sions simulation models for conventional and hybrid electric vehicles. Journal of the Air & Waste Management Associa-tion, 56(7), 898-910.
Visvanathan, C, & Trankler, J. (2003). Municipal solid waste management in Asia: a comparative analysis. Paper presented at the Workshop on Sustainable Landfill Management.
Azadeh, A., Asadzadeh, S. M., & Ghanbari, A. (2010). An adaptive network-based fuzzy inference system for short-term natural gas demand estimation: uncertain and complex environments. Energy Policy, 38(3), 1529-1536.
Azadeh, A., Yazdanparast, R., Zadeh, S. A., & Zadeh, A. E. (2017). Performance optimization of integrated resilience engi-neering and lean production principles. Expert Systems with Applications, 84, 155-170.
Bandyopadhyay, G., & Chattopadhyay, S. (2007). Single hidden layer artificial neural network models versus multiple lin-ear regression model in forecasting the time series of total ozone. International Journal of Environmental Science & Technology, 4(1), 141-149.
Beede, D. N., & Bloom, D. E. (1995). The economics of municipal solid waste. The World Bank Research Observer, 10(2), 113-150.
Chi, Y., & ZHANG, D. P. (2005). HCl emission characteristics and BP neural networks prediction in MSW/coal co-fired flu-idized beds. Journal of Environmental Sciences, 17(4), 699-704.
Denafas, G., Ruzgas, T., Martuzevičius, D., Shmarin, S., Hoffmann, M., Mykhaylenko, V., ... & Turkadze, T. (2014). Sea-sonal variation of municipal solid waste generation and composition in four East European cities. Resources, conserva-tion and recycling, 89, 22-30.
Dong, C., Jin, B., & Li, D. (2003). Predicting the heating value of MSW with a feed forward neural network. Waste Man-agement, 23(2), 103-106.
Dreiseitl, S., & Ohno-Machado, L. (2002). Logistic regression and artificial neural network classification models: a method-ology review. Journal of biomedical informatics, 35(5-6), 352-359.
Erdogan, R., Zaimoglu, Z., Sucu, M. Y., Budak, F., & Kekec, S. (2008). Applicability of leachates originating from solid-waste landfills for irrigation in landfill restoration projects. Journal of environmental biology, 29(5), 779-784.
Gómez, G., Meneses, M., Ballinas, L., & Castells, F. (2009). Seasonal characterization of municipal solid waste (MSW) in the city of Chihuahua, Mexico. Waste Management, 29(7), 2018-2024.
Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural networks, 2(5), 359-366.
Karaca, F., & Özkaya, B. (2006). NN-LEAP: A neural network-based model for controlling leachate flow-rate in a munici-pal solid waste landfill site. Environmental Modelling & Software, 21(8), 1190-1197.
Kutner, M. H., Nachtsheim, C., & Neter, J. (2004). Applied linear regression models. McGraw-Hill/Irwin.
Liu, Z. F., Liu, X. P., Wang, S. W., & Liu, G. F. (2002). Recycling strategy and a recyclability assessment model based on an artificial neural network. Journal of materials processing technology, 129(1-3), 500-506.
Manaf, L. A., Samah, M. A. A., & Zukki, N. I. M. (2009). Municipal solid waste management in Malaysia: Practices and challenges. Waste management, 29(11), 2902-2906.
McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of mathe-matical biophysics, 5(4), 115-133.
Minsky, M., & Papert, S. (1969). Perceptrons Cambridge MA.
Mwenda, A., Kuznetsov, D., & Mirau, S. (2014). Time series forecasting of solid waste generation in Arusha city-Tanzania. Mathematical Theory and Modelling, 4(8), 29-39.
Nasiri, M. M., Heidari, R., Yazdanparast, R., & Akbarian, N. (2017a). Robust Possibilistic Programming Approach for the Design of Tehran Municipal Solid Waste Management System. Paper presented at the 13th International Conference on Industrial Engineering (IIEC 2017), Mazandaran, Iran.
Nasiri, M. M., Yazdanparast, R., & Jolai, F. (2017b). A simulation optimisation approach for real-time scheduling in an open shop environment using a composite dispatching rule. International Journal of Computer Integrated Manufactur-ing, 30(12), 1239-1252.
Noori, R., Abdoli, M. A., Ghazizade, M. J., & Samieifard, R. (2009a). Comparison of neural network and principal compo-nent-regression analysis to predict the solid waste generation in Tehran. Iranian Journal of Public Health, 38(1), 74-84.
Noori, R., Abdoli, M. A., Farokhnia, A., & Abbasi, M. (2009). RETRACTED: Results uncertainty of solid waste generation forecasting by hybrid of wavelet transform-ANFIS and wavelet transform-neural network.
Noori, R., Karbassi, A., & Sabahi, M. S. (2010). Evaluation of PCA and Gamma test techniques on ANN operation for weekly solid waste prediction. Journal of Environmental Management, 91(3), 767-771.
Pamnani, A., & Meka, S. (2015). Forecasting of municipal solid waste generation for small-scale towns and surrounding vil-lages located in state of Gujrat, India. International Journal of Current Engineering and Technology, 5(1), 283-287.
Qdais, H. A., Hani, K. B., & Shatnawi, N. (2010). Modeling and optimization of biogas production from a waste digester us-ing artificial neural network and genetic algorithm. Resources, Conservation and Recycling, 54(6), 359-363.
Rabbani, M., Heidari, R., Farrokhi-Asl, H., & Rahimi, N. (2018). Using metaheuristic algorithms to solve a multi-objective industrial hazardous waste location-routing problem considering incompatible waste types. Journal of Cleaner Produc-tion, 170, 227-241.
Rhyner, C. R. (1992). Monthly variations in solid waste generation. Waste management & research, 10(1), 67-71.
Rimaitytė, I., Ruzgas, T., Denafas, G., Račys, V., & Martuzevicius, D. (2012). Application and evaluation of forecasting methods for municipal solid waste generation in an eastern-European city. Waste Management & Research, 30(1), 89-98.
Rumelhart, D. E., McClelland, J. L, & Group, PDP Research. (1986). Parallel Distributed Processing: Exploration in the Microstructure of Cognition. Foundations, Vol. 1 [M]: Canbridge, Massachusetts: MIT Press.
Shu, H. Y., Lu, H. C., Fan, H. J., Chang, M. C., & Chen, J. C. (2006). Prediction for energy content of Taiwan municipal sol-id waste using multilayer perceptron neural networks. Journal of the Air & Waste Management Association, 56(6), 852-858.
Skovgaard, M., Moll, S., & Larsen, H. V. (2005). Outlook for waste and material flows. Baseline and alternative scenarios.
Strouboulis, J., Dillon, N., & Grosveld, F. (1992). Developmental regulation of a complete 70-kb human beta-globin locus in transgenic mice. Genes & Development, 6(10), 1857-1864.
Sy, N. L. (2006). Modelling the infiltration process with a multi-layer perceptron artificial neural network. Hydrological sci-ences journal, 51(1), 3-20.
Takahashi, F., Shimaoka, T., & Kida, A. (2012). Atmospheric mercury emissions from waste combustions measured by continuous monitoring devices. Journal of the Air & Waste Management Association, 62(6), 686-695.
Tiwari, M. K., Bajpai, S., & Dewangan, U. K. (2012). Prediction of industrial solid waste with ANFIS model and its compari-son with ANN model-A case study of Durg-Bhilai twin city India. International Journal of Engineering and Innovative Technology (IJEIT), 6(2), 192-201.
Toth-Nagy, C., Conley, J. J., Jarrett, R. P., & Clark, N. N. (2006). Further validation of artificial neural network-based emis-sions simulation models for conventional and hybrid electric vehicles. Journal of the Air & Waste Management Associa-tion, 56(7), 898-910.
Visvanathan, C, & Trankler, J. (2003). Municipal solid waste management in Asia: a comparative analysis. Paper presented at the Workshop on Sustainable Landfill Management.