How to cite this paper
Quadri, A., Bassey, R., Kupolati, W., Ackerman, C., Snyman, J & Ndambuki, J. (2025). Performance of aggregate sizes on crack bridging and capacity enhancement of deep beams.Engineering Solid Mechanics, 13(2), 199-216.
Refrences
Abadel, A., Abbas, H., Almusallam, T., Alshaikh, I. M. H., Khawaji, M., Alghamdi, H., & Salah, A. A. (2022). Experimental study of shear behavior of CFRP strengthened ultra-high-performance fiber-reinforced concrete deep beams. Case Studies in Construction Materials, 16, e01103. https://doi.org/10.1016/j.cscm.2022.e01103
Abtan, Y. G., & Hassan, H. F. (2020). A Review Of Behavior of Reinforced Concrete Deep Beams. Journal of Engineering and Sustainable Development, 24(5), 66–77. https://doi.org/10.31272/jeasd.24.5.10
Accornero, F., Rubino, A., & Carpinteri, A. (2022). Post-cracking regimes in the flexural behaviour of fibre-reinforced concrete beams. International Journal of Solids and Structures, 248, 111637. https://doi.org/10.1016/j.ijsolstr.2022.111637.
ACI 318:05. (2005). Performance and Assessment Requirements for Design Standards on Structural Concrete (No. ISO 19338.2003(E)). aci. https://inspectapedia.com/structure/Building_code_requirements_for_structural_concrete-ACI.pdf
ACI Committee 318. (1999). Building code requirements for structural concrete: (ACI 318-99) And Commentry (ACI 318R-99). Farmington Hills, MI : American Concrete Institute, [1999] ©1999. https://ia800601.us.archive.org/6/items/1.ACI31899/1.%20ACI%20-318-99.pdf
Albidah, A. S., Alqarni, A. S., Wasim, M., & Abadel, A. A. (2023a). Influence of aggregate source and size on the shear behavior of high strength reinforced concrete deep beams. Case Studies in Construction Materials, 19, e02260. https://doi.org/10.1016/j.cscm.2023.e02260
Alius, F., Piscesa, B., Faimun, F., Alrasyid, H., & Iranata, D. (2020). Non-linear finite element analysis of reinforced concrete deep beam with web opening. Journal of Civil Engineering, 35(1), 3. https://doi.org/10.12962/j20861206.v35i1.7480
Alqarni, A. S., Albidah, A. S., & Abadel, A. A. (2022). Shear performance of reinforced concrete deep beams using different coarse aggregates under the effect of elevated temperatures. Case Studies in Construction Materials, 16, e01087. https://doi.org/10.1016/j.cscm.2022.e01087
Apebo, N. S., Iorwua, M. B., & Agunwamba, J. C. (2013). Comparative Analysis of the Compressive Strength of Concrete with Gravel and Crushed Over Burnt Bricks as Coarse Aggregates. Nigerian Journal of Technology, 32(1), 7–12.
ASTM C33/C33M-18. (2024). Specification for Concrete Aggregates. ASTM International. https://doi.org/10.1520/C0033_C0033M-18
Bamigboye, G., Ede, A., Umana, U., Odewumi, T., & Olowu, O. (2016). Assessment of Strength Characteristics of Concrete Made from Locally Sourced Gravel Aggregate from South-South Nigeria. British Journal of Applied Science & Technology, 12(5), 1–10. https://doi.org/10.9734/BJAST/2016/20365
Beshr, H., Almusallam, A. A., & Maslehuddin, M. (2003). Effect of coarse aggregate quality on the mechanical properties of high strength concrete. Construction and Building Materials, 17(2), 97–103. https://doi.org/10.1016/S0950-0618(02)00097-1
Bhattacharjee, E., Nag, D., Sarkar, P. P., & Haldar, L. (2011). An experimental investigation of properties of crushed over burnt brick aggregate concrete. International Journal of Engineering Research and Technology, 4(1), 21–30.
BS 8110. (1997). Code of Practice for Design and Construction of Reinforced Concrete. British Standards Institution.
BS 812-121. (1975). Testing aggregates. British Standards Institution.
BS EN 12390-5. (2009). Testing of Hardened Concrete. Flexural Strength of test Specimen. BSi.
Campione, G., & Minafò, G. (2012). Behaviour of concrete deep beams with openings and low shear span-to-depth ratio. Engineering Structures, 41, 294–306. https://doi.org/10.1016/j.engstruct.2012.03.055
Chen, C.-C., Lin, K.-T., & Chen, Y.-J. (2018). Behavior and shear strength of steel shape reinforced concrete deep beams. Engineering Structures, 175, 425–435. https://doi.org/10.1016/j.engstruct.2018.08.045
Chen, H., Wang, L., & Zhong, J. (2019). Study on an Optimal Strut-And-Tie Model for Concrete Deep Beams. Applied Sciences, 9(17), 3637. https://doi.org/10.3390/app9173637
Cho, S., & Kim, M. O. (2024). Effect of Aggregate Type on the Shear Behavior of Reinforced Lightweight Concrete Beams. Applied Sciences, 14(14), 5992. https://doi.org/10.3390/app14145992
Daneshfar, M., Hassani, A., Aliha, M. M., & Berto, F. (2022). Investigating Flexural Performance of Fiber-Reinforced Concrete with Different Contents and Types of Macrosynthetic Fiber. Strength of Materials, 54(4), 650-661. https://doi.org/10.1007/s11223-022-00443-x
Daneshfar, M., Hassani, A., Aliha, M. R. M., & Sadowski, T. (2023b). Assessment of the specimen size effect on the fracture energy of macro-synthetic-fiber-reinforced concrete. Materials, 16(2), 673. https://doi.org/10.3390/ma16020673.
Daneshfar, M., Hassani, A., Aliha, M. R. M., Sadowski, T., & Karimi, A. (2023a). Experimental Model for Study of Thickness Effect on Flexural Fatigue Life of Macro-Synthetic-Fiber-Reinforced Concretes. Buildings, 13(3), 642. https://doi.org/10.3390/buildings13030642.
El-Demerdash, W. E., El-Metwally, S. E., El-Zoughiby, M. E., & Ghaleb, A. A. (2016). Behavior of RC Shallow and Deep Beams with Openings Via the Strut-and-Tie Model Method and Nonlinear Finite Element. Arabian Journal for Science and Engineering, 41(2), 401–424. https://doi.org/10.1007/s13369-015-1678-x
Eurocode 2: Design of concrete structures. Part 1-1, General rules and rules for buildings. (2008). BSI.
Farouk, M. A., Moubarak, A. M. R., Ibrahim, A., & Elwardany, H. (2023). New alternative techniques for strengthening deep beams with circular and rectangular openings. Case Studies in Construction Materials, 19, e02288. https://doi.org/10.1016/j.cscm.2023.e02288
Gand, A., Mohammed, M., & Jarrouj, S. (2020). Performance of perforated FRP stub beams subject to static transverse actions. Engineering Solid Mechanics, 8(2), 105-118. 10.5267/j.esm.2019.10.004.
Gand, A., Sharif, S., Saidani, M., Lumor, R., Fom, P., Yeboah, D., & Ogbologugo, U. (2019). Performance of lightweight granulated glass concrete beams reinforced with basalt FRP bars. Engineering Solid Mechanics, 7(3), 247-262. doi: 10.5267/j.esm.2019.4.004
Golewski, G. L. (2023). The phenomenon of cracking in cement concretes and reinforced concrete structures: the mechanism of cracks formation, causes of their initiation, types and places of occurrence, and methods of detection—a review. Buildings, 13(3), 765. https://doi.org/10.3390/buildings13030765.
Hasan, K., Islam, M. T., Ferdaus, R., & Yahaya, F. M. (2023). Experimental study on environment-friendly concrete production incorporating palm oil clinker and cockle shell powder as cement partial replacement. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.11.150
Hoseini, S. O., Mousavi, S. R., Sohrabi, M. R., & Ghasemi, M. (2023a). Using beam and ENDB specimens to evaluate fracture characteristics of wavy steel fiber‐reinforced self‐compacting concrete containing different coarse aggregate volumes. Fatigue & Fracture of Engineering Materials & Structures, 46(5), 1669-1686.https://doi.org/10.1111/ffe.13942.
Hoseini, S. O., Sohrabi, M. R., Mousavi, S. R., & Ghasemi, M. (2022). Effects of coarse aggregate and wavy steel fiber volumes on the critical stress intensity factors of modes I and III cracks in self-compacting concrete using ENDB specimens. Theoretical and Applied Fracture Mechanics, 121, 103421. https://doi.org/10.1016/j.tafmec.2022.103421.
Hoseini, S. O., Sohrabi, M. R., Mousavi, S. R., & Ghasemi, M. (2023b). Studying the rheological features, mechanical properties and flexural toughness of the WSFRSCC by varying the coarse aggregate volume. Structures, 57, 105115. https://doi.org/10.1016/j.istruc.2023.105115.
Hoseini, S. O., Sohrabi, M. R., Mousavi, S. R., Ghasemi, M., & Aliha, M. R. M. (2024). Comparing Different Procedures for Calculating Flexural Cracking Toughness Using Edge‐Notched Disc Bend Specimen Under Modes I and III. Fatigue & Fracture of Engineering Materials & Structures. 2024, https://doi.org/10.1111/ffe.14530.
Ibrahim, M. A., El Thakeb, A., Mostfa, A. A., & Kottb, H. A. (2018). Proposed formula for design of deep beams with shear openings. HBRC Journal, 14(3), 450–465. https://doi.org/10.1016/j.hbrcj.2018.06.001
Institute of Civil Engineers. (1993). CEB-FIP Design Manual Application of the CEB-FIP Model Code 1978 for Concrete Structures. ICE Publishing. http://www.tocasa.es/zona2/CEB_FIP_model_code_1990_ing.pdf
Kim, K.-H., Kim, W.-B., Kim, J.-M., & Kim, S.-W. (2009). Composite Strut and Tie Model for Reinforced Concrete Deep Beams. Journal of Advanced Concrete Technology, 7(1), 97–109. https://doi.org/10.3151/jact.7.97
Kore, S. D., & Patil, S. S. (2013). Analysis and Design of R.C. Deep Beams Using Code Provisions of Different Countries and Their Comparison. International Journal of Engineering and Advanced Technology, 2(3), 166–170.
Liu, J., & Mihaylov, B. (2020). Shear strength of RC deep beams with web openings based on two‐parameter kinematic theory. Structural Concrete, 21(1), 349–361. https://doi.org/10.1002/suco.201800356
Ma, C., Xie, C., Tuohuti, A., & Duan, Y. (2022). Analysis of influencing factors on shear behavior of the reinforced concrete deep beams. Journal of Building Engineering, 45, 103383. https://doi.org/10.1016/j.jobe.2021.103383
Megahed, K. (2024). Prediction and reliability analysis of shear strength of RC deep beams. Scientific Reports, 14(1), 14590. https://doi.org/10.1038/s41598-024-64386-w
Meyer, C. (2009). The greening of the concrete industry. Cement and Concrete Composites, 31(8), 601–605. https://doi.org/10.1016/j.cemconcomp.2008.12.010
Mohamed, A. R., Shoukry, M. S., & Saeed, J. M. (2014). Prediction of the behavior of reinforced concrete deep beams with web openings using the finite element method. Alexandria Engineering Journal, 53(2), 329–339. https://doi.org/10.1016/j.aej.2014.03.001
Mousavi, S., Ghasemi, M., & Dehghani, M. (2024). Investigating the fracture toughness of the self compacting concrete using ENDB samples by changing the aggregate size and percent of steel fiber. Engineering Solid Mechanics, 12(1), 17-26. doi: 10.5267/j.esm.2023.7.006
Nehdi, M. L. (2014). Clay in cement-based materials: Critical overview of state-of-the-art. Construction and Building Materials, 51, 372–382. https://doi.org/10.1016/j.conbuildmat.2013.10.059
Oviedo, R., Gutiérrez, S., & Santa María, H. (2016). Experimental evaluation of optimized strut‐and‐tie models for a dapped beam. Structural Concrete, 17(3), 469–480. https://doi.org/10.1002/suco.201500037
Quadri, A. I. (2020). Strut and Tie Modelling of Reinforced Concrete Deep Beams Under Static and Fixed Pulsating Loading. Al-Nahrain Journal for Engineering Sciences, 23(3), 306–312. https://doi.org/10.29194/NJES.23030306
Quadri, A. I. (2021). Assessment of reinforced concrete dapped end beams subjected to cyclic loading under bond deterioration and retrofitting approach. 横浜国立大学. https://doi.org/10.18880/00014111
Quadri, A. I. (2023a). Investigation of reinforced concrete members with bond deterioration under tensile load. Materiales de Construcción, 73(351), e319. https://doi.org/10.3989/mc.2023.297522
Quadri, A. I. (2023b). Shear response of reinforced concrete deep beams with and without web opening. Innovative Infrastructure Solutions, 8(12), 316. https://doi.org/10.1007/s41062-023-01286-4
Quadri, A. I., & Fujiyama, C. (2021). Response of Reinforced Concrete Dapped-End Beams Exhibiting Bond Deterioration Subjected to Static and Cyclic Loading. Journal of Advanced Concrete Technology, 19(5), 536–554. https://doi.org/10.3151/jact.19.536
Quadri, A. I., & Fujiyama, C. (2023). Assessment of repaired reinforced concrete dapped-end beams exhibiting bond deterioration under static and cyclic loading. Construction and Building Materials, 403, 133070. https://doi.org/10.1016/j.conbuildmat.2023.133070
Quadri, A. I., Lateef Oyedeji, A., Kehinde Kupolati, W., Ackerman, C., Snyman, J., & Musyoka Ndambuki, J. (2024). Performance evaluation of reinforced concrete culvert under monotonic loading. Ain Shams Engineering Journal, 15(11), 103001. https://doi.org/10.1016/j.asej.2024.103001
Quadri, A. I., Olanitori, L. M., & Sadiq, A. (2023). Effect of non-biodegradable waste materials on the strength performance of concrete. Research on Engineering Structures and Materials, 9(3), 1–13. https://doi.org/10.17515/resm2023.751st0428
Reddy, S. R., Kumar, B. S. C., & Monica, A. (2019). Comparitive Study on Behaviour of Deep Beams. International Journal of Recent Technology and Engineering, 7(6), 210–214.
Roy, N. C., & Brena, S. F. (2008). Behavior of Deep Beams with Short Longitudinal Bar Anchorages. ACI Structural Journal, 105(4), 460–470. https://doi.org/10.14359/19860
Saleh, M., AlHamaydeh, M., & Zakaria, M. (2023). Finite element analysis of reinforced concrete deep beams with square web openings using damage plasticity model. Engineering Structures, 278, 115496. https://doi.org/10.1016/j.engstruct.2022.115496
Souza, R. A., & Breña, S. (2016). Behavior predictions of deep beams with short straight bar anchorages using strut-and-tie models and nonlinear analysis. Revista IBRACON de Estruturas e Materiais, 9(5), 710–721. https://doi.org/10.1590/S1983-41952016000500004
Structural use of concrete (2nd ed). (1997). BSI.
Vu, N. S., Li, B., & Beyer, K. (2014). Effective stiffness of reinforced concrete coupling beams. Engineering Structures, 76, 371–382. https://doi.org/10.1016/j.engstruct.2014.07.014
Xu, S., Li, Q., Wu, Y., Dong, L., Lyu, Y., Reinhardt, H. W., ... & Hu, S. (2021). RILEM Standard: testing methods for determination of the double-K criterion for crack propagation in concrete using wedge-splitting tests and three-point bending beam tests, recommendation of RILEM TC265-TDK. Materials and Structures, 54, 1-11. https://doi.org/10.1617/s11527-021-01786-8.
Yang, K.-H., Chung, H.-S., Lee, E.-T., & Eun, H.-C. (2003). Shear characteristics of high-strength concrete deep beams without shear reinforcements. Engineering Structures, 25(10), 1343–1352. https://doi.org/10.1016/S0141-0296(03)00110-X
Yang, X., Wu, T., Liu, X., & Liu, Y. (2025). Influence of web reinforcement on shear behavior and size effect of lightweight aggregate concrete deep beams: Experimental and theoretical studies. Engineering Structures, 322, 119119. https://doi.org/10.1016/j.engstruct.2024.119119
Zhang, H.-Z., Luo, P., & Yuan, X.-X. (2024). Reinforcement layout design for deep beams based on bi-objective topology optimization. Automation in Construction, 158, 105237. https://doi.org/10.1016/j.autcon.2023.105237.
Abtan, Y. G., & Hassan, H. F. (2020). A Review Of Behavior of Reinforced Concrete Deep Beams. Journal of Engineering and Sustainable Development, 24(5), 66–77. https://doi.org/10.31272/jeasd.24.5.10
Accornero, F., Rubino, A., & Carpinteri, A. (2022). Post-cracking regimes in the flexural behaviour of fibre-reinforced concrete beams. International Journal of Solids and Structures, 248, 111637. https://doi.org/10.1016/j.ijsolstr.2022.111637.
ACI 318:05. (2005). Performance and Assessment Requirements for Design Standards on Structural Concrete (No. ISO 19338.2003(E)). aci. https://inspectapedia.com/structure/Building_code_requirements_for_structural_concrete-ACI.pdf
ACI Committee 318. (1999). Building code requirements for structural concrete: (ACI 318-99) And Commentry (ACI 318R-99). Farmington Hills, MI : American Concrete Institute, [1999] ©1999. https://ia800601.us.archive.org/6/items/1.ACI31899/1.%20ACI%20-318-99.pdf
Albidah, A. S., Alqarni, A. S., Wasim, M., & Abadel, A. A. (2023a). Influence of aggregate source and size on the shear behavior of high strength reinforced concrete deep beams. Case Studies in Construction Materials, 19, e02260. https://doi.org/10.1016/j.cscm.2023.e02260
Alius, F., Piscesa, B., Faimun, F., Alrasyid, H., & Iranata, D. (2020). Non-linear finite element analysis of reinforced concrete deep beam with web opening. Journal of Civil Engineering, 35(1), 3. https://doi.org/10.12962/j20861206.v35i1.7480
Alqarni, A. S., Albidah, A. S., & Abadel, A. A. (2022). Shear performance of reinforced concrete deep beams using different coarse aggregates under the effect of elevated temperatures. Case Studies in Construction Materials, 16, e01087. https://doi.org/10.1016/j.cscm.2022.e01087
Apebo, N. S., Iorwua, M. B., & Agunwamba, J. C. (2013). Comparative Analysis of the Compressive Strength of Concrete with Gravel and Crushed Over Burnt Bricks as Coarse Aggregates. Nigerian Journal of Technology, 32(1), 7–12.
ASTM C33/C33M-18. (2024). Specification for Concrete Aggregates. ASTM International. https://doi.org/10.1520/C0033_C0033M-18
Bamigboye, G., Ede, A., Umana, U., Odewumi, T., & Olowu, O. (2016). Assessment of Strength Characteristics of Concrete Made from Locally Sourced Gravel Aggregate from South-South Nigeria. British Journal of Applied Science & Technology, 12(5), 1–10. https://doi.org/10.9734/BJAST/2016/20365
Beshr, H., Almusallam, A. A., & Maslehuddin, M. (2003). Effect of coarse aggregate quality on the mechanical properties of high strength concrete. Construction and Building Materials, 17(2), 97–103. https://doi.org/10.1016/S0950-0618(02)00097-1
Bhattacharjee, E., Nag, D., Sarkar, P. P., & Haldar, L. (2011). An experimental investigation of properties of crushed over burnt brick aggregate concrete. International Journal of Engineering Research and Technology, 4(1), 21–30.
BS 8110. (1997). Code of Practice for Design and Construction of Reinforced Concrete. British Standards Institution.
BS 812-121. (1975). Testing aggregates. British Standards Institution.
BS EN 12390-5. (2009). Testing of Hardened Concrete. Flexural Strength of test Specimen. BSi.
Campione, G., & Minafò, G. (2012). Behaviour of concrete deep beams with openings and low shear span-to-depth ratio. Engineering Structures, 41, 294–306. https://doi.org/10.1016/j.engstruct.2012.03.055
Chen, C.-C., Lin, K.-T., & Chen, Y.-J. (2018). Behavior and shear strength of steel shape reinforced concrete deep beams. Engineering Structures, 175, 425–435. https://doi.org/10.1016/j.engstruct.2018.08.045
Chen, H., Wang, L., & Zhong, J. (2019). Study on an Optimal Strut-And-Tie Model for Concrete Deep Beams. Applied Sciences, 9(17), 3637. https://doi.org/10.3390/app9173637
Cho, S., & Kim, M. O. (2024). Effect of Aggregate Type on the Shear Behavior of Reinforced Lightweight Concrete Beams. Applied Sciences, 14(14), 5992. https://doi.org/10.3390/app14145992
Daneshfar, M., Hassani, A., Aliha, M. M., & Berto, F. (2022). Investigating Flexural Performance of Fiber-Reinforced Concrete with Different Contents and Types of Macrosynthetic Fiber. Strength of Materials, 54(4), 650-661. https://doi.org/10.1007/s11223-022-00443-x
Daneshfar, M., Hassani, A., Aliha, M. R. M., & Sadowski, T. (2023b). Assessment of the specimen size effect on the fracture energy of macro-synthetic-fiber-reinforced concrete. Materials, 16(2), 673. https://doi.org/10.3390/ma16020673.
Daneshfar, M., Hassani, A., Aliha, M. R. M., Sadowski, T., & Karimi, A. (2023a). Experimental Model for Study of Thickness Effect on Flexural Fatigue Life of Macro-Synthetic-Fiber-Reinforced Concretes. Buildings, 13(3), 642. https://doi.org/10.3390/buildings13030642.
El-Demerdash, W. E., El-Metwally, S. E., El-Zoughiby, M. E., & Ghaleb, A. A. (2016). Behavior of RC Shallow and Deep Beams with Openings Via the Strut-and-Tie Model Method and Nonlinear Finite Element. Arabian Journal for Science and Engineering, 41(2), 401–424. https://doi.org/10.1007/s13369-015-1678-x
Eurocode 2: Design of concrete structures. Part 1-1, General rules and rules for buildings. (2008). BSI.
Farouk, M. A., Moubarak, A. M. R., Ibrahim, A., & Elwardany, H. (2023). New alternative techniques for strengthening deep beams with circular and rectangular openings. Case Studies in Construction Materials, 19, e02288. https://doi.org/10.1016/j.cscm.2023.e02288
Gand, A., Mohammed, M., & Jarrouj, S. (2020). Performance of perforated FRP stub beams subject to static transverse actions. Engineering Solid Mechanics, 8(2), 105-118. 10.5267/j.esm.2019.10.004.
Gand, A., Sharif, S., Saidani, M., Lumor, R., Fom, P., Yeboah, D., & Ogbologugo, U. (2019). Performance of lightweight granulated glass concrete beams reinforced with basalt FRP bars. Engineering Solid Mechanics, 7(3), 247-262. doi: 10.5267/j.esm.2019.4.004
Golewski, G. L. (2023). The phenomenon of cracking in cement concretes and reinforced concrete structures: the mechanism of cracks formation, causes of their initiation, types and places of occurrence, and methods of detection—a review. Buildings, 13(3), 765. https://doi.org/10.3390/buildings13030765.
Hasan, K., Islam, M. T., Ferdaus, R., & Yahaya, F. M. (2023). Experimental study on environment-friendly concrete production incorporating palm oil clinker and cockle shell powder as cement partial replacement. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.11.150
Hoseini, S. O., Mousavi, S. R., Sohrabi, M. R., & Ghasemi, M. (2023a). Using beam and ENDB specimens to evaluate fracture characteristics of wavy steel fiber‐reinforced self‐compacting concrete containing different coarse aggregate volumes. Fatigue & Fracture of Engineering Materials & Structures, 46(5), 1669-1686.https://doi.org/10.1111/ffe.13942.
Hoseini, S. O., Sohrabi, M. R., Mousavi, S. R., & Ghasemi, M. (2022). Effects of coarse aggregate and wavy steel fiber volumes on the critical stress intensity factors of modes I and III cracks in self-compacting concrete using ENDB specimens. Theoretical and Applied Fracture Mechanics, 121, 103421. https://doi.org/10.1016/j.tafmec.2022.103421.
Hoseini, S. O., Sohrabi, M. R., Mousavi, S. R., & Ghasemi, M. (2023b). Studying the rheological features, mechanical properties and flexural toughness of the WSFRSCC by varying the coarse aggregate volume. Structures, 57, 105115. https://doi.org/10.1016/j.istruc.2023.105115.
Hoseini, S. O., Sohrabi, M. R., Mousavi, S. R., Ghasemi, M., & Aliha, M. R. M. (2024). Comparing Different Procedures for Calculating Flexural Cracking Toughness Using Edge‐Notched Disc Bend Specimen Under Modes I and III. Fatigue & Fracture of Engineering Materials & Structures. 2024, https://doi.org/10.1111/ffe.14530.
Ibrahim, M. A., El Thakeb, A., Mostfa, A. A., & Kottb, H. A. (2018). Proposed formula for design of deep beams with shear openings. HBRC Journal, 14(3), 450–465. https://doi.org/10.1016/j.hbrcj.2018.06.001
Institute of Civil Engineers. (1993). CEB-FIP Design Manual Application of the CEB-FIP Model Code 1978 for Concrete Structures. ICE Publishing. http://www.tocasa.es/zona2/CEB_FIP_model_code_1990_ing.pdf
Kim, K.-H., Kim, W.-B., Kim, J.-M., & Kim, S.-W. (2009). Composite Strut and Tie Model for Reinforced Concrete Deep Beams. Journal of Advanced Concrete Technology, 7(1), 97–109. https://doi.org/10.3151/jact.7.97
Kore, S. D., & Patil, S. S. (2013). Analysis and Design of R.C. Deep Beams Using Code Provisions of Different Countries and Their Comparison. International Journal of Engineering and Advanced Technology, 2(3), 166–170.
Liu, J., & Mihaylov, B. (2020). Shear strength of RC deep beams with web openings based on two‐parameter kinematic theory. Structural Concrete, 21(1), 349–361. https://doi.org/10.1002/suco.201800356
Ma, C., Xie, C., Tuohuti, A., & Duan, Y. (2022). Analysis of influencing factors on shear behavior of the reinforced concrete deep beams. Journal of Building Engineering, 45, 103383. https://doi.org/10.1016/j.jobe.2021.103383
Megahed, K. (2024). Prediction and reliability analysis of shear strength of RC deep beams. Scientific Reports, 14(1), 14590. https://doi.org/10.1038/s41598-024-64386-w
Meyer, C. (2009). The greening of the concrete industry. Cement and Concrete Composites, 31(8), 601–605. https://doi.org/10.1016/j.cemconcomp.2008.12.010
Mohamed, A. R., Shoukry, M. S., & Saeed, J. M. (2014). Prediction of the behavior of reinforced concrete deep beams with web openings using the finite element method. Alexandria Engineering Journal, 53(2), 329–339. https://doi.org/10.1016/j.aej.2014.03.001
Mousavi, S., Ghasemi, M., & Dehghani, M. (2024). Investigating the fracture toughness of the self compacting concrete using ENDB samples by changing the aggregate size and percent of steel fiber. Engineering Solid Mechanics, 12(1), 17-26. doi: 10.5267/j.esm.2023.7.006
Nehdi, M. L. (2014). Clay in cement-based materials: Critical overview of state-of-the-art. Construction and Building Materials, 51, 372–382. https://doi.org/10.1016/j.conbuildmat.2013.10.059
Oviedo, R., Gutiérrez, S., & Santa María, H. (2016). Experimental evaluation of optimized strut‐and‐tie models for a dapped beam. Structural Concrete, 17(3), 469–480. https://doi.org/10.1002/suco.201500037
Quadri, A. I. (2020). Strut and Tie Modelling of Reinforced Concrete Deep Beams Under Static and Fixed Pulsating Loading. Al-Nahrain Journal for Engineering Sciences, 23(3), 306–312. https://doi.org/10.29194/NJES.23030306
Quadri, A. I. (2021). Assessment of reinforced concrete dapped end beams subjected to cyclic loading under bond deterioration and retrofitting approach. 横浜国立大学. https://doi.org/10.18880/00014111
Quadri, A. I. (2023a). Investigation of reinforced concrete members with bond deterioration under tensile load. Materiales de Construcción, 73(351), e319. https://doi.org/10.3989/mc.2023.297522
Quadri, A. I. (2023b). Shear response of reinforced concrete deep beams with and without web opening. Innovative Infrastructure Solutions, 8(12), 316. https://doi.org/10.1007/s41062-023-01286-4
Quadri, A. I., & Fujiyama, C. (2021). Response of Reinforced Concrete Dapped-End Beams Exhibiting Bond Deterioration Subjected to Static and Cyclic Loading. Journal of Advanced Concrete Technology, 19(5), 536–554. https://doi.org/10.3151/jact.19.536
Quadri, A. I., & Fujiyama, C. (2023). Assessment of repaired reinforced concrete dapped-end beams exhibiting bond deterioration under static and cyclic loading. Construction and Building Materials, 403, 133070. https://doi.org/10.1016/j.conbuildmat.2023.133070
Quadri, A. I., Lateef Oyedeji, A., Kehinde Kupolati, W., Ackerman, C., Snyman, J., & Musyoka Ndambuki, J. (2024). Performance evaluation of reinforced concrete culvert under monotonic loading. Ain Shams Engineering Journal, 15(11), 103001. https://doi.org/10.1016/j.asej.2024.103001
Quadri, A. I., Olanitori, L. M., & Sadiq, A. (2023). Effect of non-biodegradable waste materials on the strength performance of concrete. Research on Engineering Structures and Materials, 9(3), 1–13. https://doi.org/10.17515/resm2023.751st0428
Reddy, S. R., Kumar, B. S. C., & Monica, A. (2019). Comparitive Study on Behaviour of Deep Beams. International Journal of Recent Technology and Engineering, 7(6), 210–214.
Roy, N. C., & Brena, S. F. (2008). Behavior of Deep Beams with Short Longitudinal Bar Anchorages. ACI Structural Journal, 105(4), 460–470. https://doi.org/10.14359/19860
Saleh, M., AlHamaydeh, M., & Zakaria, M. (2023). Finite element analysis of reinforced concrete deep beams with square web openings using damage plasticity model. Engineering Structures, 278, 115496. https://doi.org/10.1016/j.engstruct.2022.115496
Souza, R. A., & Breña, S. (2016). Behavior predictions of deep beams with short straight bar anchorages using strut-and-tie models and nonlinear analysis. Revista IBRACON de Estruturas e Materiais, 9(5), 710–721. https://doi.org/10.1590/S1983-41952016000500004
Structural use of concrete (2nd ed). (1997). BSI.
Vu, N. S., Li, B., & Beyer, K. (2014). Effective stiffness of reinforced concrete coupling beams. Engineering Structures, 76, 371–382. https://doi.org/10.1016/j.engstruct.2014.07.014
Xu, S., Li, Q., Wu, Y., Dong, L., Lyu, Y., Reinhardt, H. W., ... & Hu, S. (2021). RILEM Standard: testing methods for determination of the double-K criterion for crack propagation in concrete using wedge-splitting tests and three-point bending beam tests, recommendation of RILEM TC265-TDK. Materials and Structures, 54, 1-11. https://doi.org/10.1617/s11527-021-01786-8.
Yang, K.-H., Chung, H.-S., Lee, E.-T., & Eun, H.-C. (2003). Shear characteristics of high-strength concrete deep beams without shear reinforcements. Engineering Structures, 25(10), 1343–1352. https://doi.org/10.1016/S0141-0296(03)00110-X
Yang, X., Wu, T., Liu, X., & Liu, Y. (2025). Influence of web reinforcement on shear behavior and size effect of lightweight aggregate concrete deep beams: Experimental and theoretical studies. Engineering Structures, 322, 119119. https://doi.org/10.1016/j.engstruct.2024.119119
Zhang, H.-Z., Luo, P., & Yuan, X.-X. (2024). Reinforcement layout design for deep beams based on bi-objective topology optimization. Automation in Construction, 158, 105237. https://doi.org/10.1016/j.autcon.2023.105237.