How to cite this paper
Obiko, J., Whitefield, D & Bodunrin, M. (2025). On the effect of heat treatment schedules on the structure-property behaviour of heat-affected zones of ASTM A335 steel: Gleeble thermal-mechanical simulation.Engineering Solid Mechanics, 13(2), 175-198.
Refrences
Abson, D. J., & Rothwell, J. S. (2013). Review of type IV cracking of weldments in 9–12%Cr creep strength enhanced ferritic steels. International Materials Reviews, 58(8), 437–473. https://doi.org/10.1179/1743280412Y.0000000016
Albert, S. K., Matsui, M., Watanabe, T., Hongo, H., Kubo, K., & Tabuchi, M. (2003). Variation in the type IV cracking behaviour of a high Cr steel weld with post weld heat treatment. International Journal of Pressure Vessels and Piping, 80(6), 405–413. https://doi.org/10.1016/S0308-0161(03)00072-3
ASTM E 23-12c. (2012). Standard test methods for notched bar impact testing of metallic materials. In Standards: Vol. i. https://doi.org/10.1520/E0023-12C.2
Barbadikar, D. R., Deshmukh, G. S., Maddi, L., Laha, K., Parameswaran, P., Ballal, A. R., Peshwe, D. R., Paretkar, R. K., Nandagopal, M., & Mathew, M. D. (2015). Effect of normalizing and tempering temperatures on microstructure and mechanical properties of P92 steel. International Journal of Pressure Vessels and Piping, 132–133, 97–105. https://doi.org/10.1016/j.ijpvp.2015.07.001
Barbadikar, D. R., Sakthivel, T., Ballal, A. R., Peshwe, D. R., Syamala Rao, P., & Mathew, M. D. (2018). An assessment of mechanical properties of P92 steel weld joint and simulated heat affected zones by ball indentation technique. Materials at High Temperatures, 35(5), 427–437. https://doi.org/10.1080/09603409.2017.1371913
Chalk, K. M., Shipway, P. H., & Allen, D. J. (2011). Austenite formation during heat treatment of P92 power plant steel welds: Dependence of A1 temperature on compositional changes. Science and Technology of Welding and Joining, 16(7), 613–618. https://doi.org/10.1179/1362171811Y.0000000042
Czyrska-filemonowicz, A., Zielińska-lipiec, A., & Ennis, P. J. (2006). Modified 9 % Cr Steels for Advanced Power Generation : Microstructure and Properties. Journal of Achievements in Materials and Manufacturing Engineering, 19(2), 43–48.
Dunđer, M., Vuherer, T., Samardžić, I., & Marić, D. (2019). Analysis of heat-affected zone microstructures of steel P92 after welding and after post-weld heat treatment. International Journal of Advanced Manufacturing Technology, 102(9–12), 3801–3812. https://doi.org/10.1007/s00170-019-03513-8
Ennis, P. J., & Czyrska-Filemonowicz, A. (2003). Recent advances in creep-resistant steels for power plant applications. Sadhana - Academy Proceedings in Engineering Sciences, 28(3–4), 709–730. https://doi.org/10.1007/BF02706455
Esposito, L. (2016). Type IV creep cracking of welded joints: numerical study of the grain size effect in HAZ. Procedia Structural Integrity, 2, 919–926. https://doi.org/10.1016/j.prostr.2016.06.118
Falat, L., Kepič, J., Čiripová, L., Ševc, P., & Dlouhý, I. (2016). The effects of postweld heat treatment and isothermal aging on T92 steel heat-affected zone mechanical properties of T92/TP316H dissimilar weldments. Journal of Materials Research, 31(10), 1532–1543. https://doi.org/10.1557/jmr.2016.134
Francis, J. A., Mazur, W., & Bhadeshia, H. K. D. H. (2006). Type IV cracking in ferritic power plant steels. In Materials Science and Technology (Vol. 22, Issue 12, pp. 1387–1395). https://doi.org/10.1179/174328406X148778
Gleeble. (1999). Gleeble Manual QuickSimTM HAZ Programming Manual and Samples, DSI Dynamic System Inc. In Gleeble and Hydrawedge Quicksim, Poestenikll, NewYork, USA, (pp. 1–26).
Guo, Q., Lu, F., Liu, X., Yang, R., Cui, H., & Gao, Y. (2015). Correlation of microstructure and fracture toughness of advanced 9Cr/CrMoV dissimilarly welded joint. Materials Science and Engineering: A, 638, 240–250. https://doi.org/10.1016/j.msea.2015.04.011
Gutiérrez, N. Z., Alvarado, J. V., de Cicco, H., & Danón, A. (2015). Microstructural Study of Welded Joints in a High Temperature Martensitic-ferritic ASTM A335 P91 Steel. Procedia Materials Science, 8(1992), 1140–1149. https://doi.org/10.1016/j.mspro.2015.04.178
Hasegawa, Y., Sugiyama, M., & Kawakami, K. (2009). Type Iv Damage Mechanism Due To The Microstructure Weakening In The Haz Of A Multi-Layer Welded Joint Of The W Containing 9 % Cr Ferritic Creep Resistant Steel. Ommi, 6(2), 1–16.
Hurtado-noreña, C., Danón, C. A., Luppo, M. I., & Bruzzoni, P. (2015). Evolution of Minor Phases in a P91 Steel Normalized and Tempered at Different Temperatures. Procedia Materials Science, 8, 1089–1098. https://doi.org/10.1016/j.mspro.2015.04.172
Kim, H., Inoue, J., Okada, M., & Nagata, K. (2017). Prediction of Ac3 and martensite start temperatures by a data-driven model selection approach. ISIJ International, 57(12), 2229–2236. https://doi.org/10.2355/isijinternational.ISIJINT-2017-212
Lim, B. S., Jeong, C. S., & Keum, Y. T. (2003). Effect of Temperature on Fatigue Crack Growth in P92 Steel. Metals and Materials International, 9(6), 543–547. https://doi.org/10.1007/BF03027253
Liu, Y., Tsukamoto, S., Sawada, K., & Abe, F. (2014). Role of boundary strengthening on prevention of type IV failure in high Cr ferritic heat-resistant steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 45(3), 1306–1314. https://doi.org/10.1007/s11661-013-2072-5
Liu, Y., Tsukamoto, S., Shirane, T., & Abe, F. (2013). Formation mechanism of type IV failure in high Cr ferritic heat-resistant steel-welded joint. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 44(10). https://doi.org/10.1007/s11661-013-1801-0
Łomozik, M., & Zielińska-Lipiec, A. (2008). Microscopic Analysis of the Influence of Multiple Thermal Cycle on Simulated HAZ Toughness in P91 Steel. Archives of Metallurgy and Materials, 53(4), 1025–1034.
Milović, L., Vuherer, T., Blačić, I., Vrhovac, M., & Stanković, M. (2013). Microstructures and mechanical properties of creep resistant steel for application at elevated temperatures. Materials and Design, 46, 660–667. https://doi.org/10.1016/j.matdes.2012.10.057
Moon, J., Lee, C. H., Lee, T. H., & Kim, H. C. (2015). Effect of Heat Input on Microstructure Evolution and Mechanical Properties in the Weld Heat-Affected Zone of 9Cr-2W-VTa Reduced Activation Ferritic-Martensitic Steel for Fusion Reactor. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 46(1), 156–163. https://doi.org/10.1007/s11661-014-2623-4
Nagode, A., Kosec, L., Ule, B., & Kosec, G. (2011). Review of creep resistant alloys for power plant applications. In Metalurgija (Vol. 50, Issue 1, pp. 45–48).
Ohgami, M., Naoi, H., Kinbara, S., Mimura, H., Ikemoto, T., & Fujita, T. (1997). Development of 9CrW tube, pipe and forging for ultra supercritical power plant boilers. In Nippon Steel Technical Report (Issue 72, pp. 59–64).
Pandey, C., Giri, A., & Mahapatra, M. M. (2016). Effect of normalizing temperature on microstructural stability and mechanical properties of creep strength enhanced ferritic P91 steel. Materials Science & Engineering A, 657, 173–184. https://doi.org/10.1016/j.msea.2016.01.066
Pandey, C., & Mahapatra, M. M. (2016). Evolution of phases during tempering of P91 steel at 760oC for varying tempering time and their effect on microstructure and mechanical properties. 0(0), 1–21. https://doi.org/10.1177/0954408916656678
Pandey, C., Mahapatra, M. M., Kumar, P., Daniel, F., & Adhithan, B. (2019). Softening mechanism of P91 steel weldments using heat treatments. Archives of Civil and Mechanical Engineering, 19(2), 297–310. https://doi.org/10.1016/j.acme.2018.10.005
Pandey, C., Mahapatra, M. M., Kumar, P., & Saini, N. (2018a). Homogenization of P91 weldments using varying normalizing and tempering treatment. Materials Science and Engineering A, 710(June 2017), 86–101. https://doi.org/10.1016/j.msea.2017.10.086
Pandey, C., Mahapatra, M. M., Kumar, P., & Saini, N. (2018b). Some studies on P91 steel and their weldments. In Journal of Alloys and Compounds (Vol. 743, pp. 332–364). Elsevier B.V. https://doi.org/10.1016/j.jallcom.2018.01.120
Pandey, C., Mohan Mahapatra, M., Kumar, P., Thakre, J. G., & Saini, N. (2019). Role of evolving microstructure on the mechanical behaviour of P92 steel welded joint in as-welded and post weld heat treated state. Journal of Materials Processing Technology, 263(June 2018), 241–255. https://doi.org/10.1016/j.jmatprotec.2018.08.032
Parameswaran, P., & Laha, K. (2013). Role of microstructure on creep rupture behaviour of similar and dissimilar joints of modified 9Cr-1Mo steel. Procedia Engineering, 55, 438–442. https://doi.org/10.1016/j.proeng.2013.03.277
Peng, Y. Q., Chen, T. C., Chung, T. J., Jeng, S. L., Huang, R. T., & Tsay, L. W. (2017). Creep rupture of the simulated HAZ of T92 steel compared to that of a T91 steel. Materials, 10(2). https://doi.org/10.3390/ma10020139
Ryu, S. H., & Yu, J. (1998). A new equation for the Cr equivalent in 9 to 12 pct Cr steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 29(6), 1573–1578. https://doi.org/10.1007/s11661-998-0080-7
Saini, N., Pandey, C., & Mahapatra, M. M. (2017). Characterization and evaluation of mechanical properties of CSEF P92 steel for varying normalizing temperature. Materials Science and Engineering A, 688(February), 250–261. https://doi.org/10.1016/j.msea.2017.02.022
Sakthivel, T., Laha, K., Chandravathi, K. S., Parameswaran, P., Tailor, H. M., Vasudevan, M., & Mathew, M. D. (2014). Integrity assessment of grade 92 welded joint under creep condition. Procedia Engineering, 86, 215–222. https://doi.org/10.1016/j.proeng.2014.11.031
Shankar, V., Mariappan, K., Sandhya, R., & Mathew, M. D. (2013). Evaluation of low cycle fatigue damage in grade 91 steel weld joints for high temperature applications. Procedia Engineering, 55, 128–135. https://doi.org/10.1016/j.proeng.2013.03.231
Sklenička, V., Kuchařová, K., Svobodová, M., Kvapilová, M., Král, P., & Horváth, L. (2016). Creep properties in similar weld joint of a thick-walled P92 steel pipe. Materials Characterization, 119, 1–12. https://doi.org/10.1016/j.matchar.2016.06.033
Tabuchi, M., Watanabe, T., Kubo, K., Matsui, M., Kinugawa, J., & Abe, F. (2001). Creep crack growth behavior in the HAZ of weldments of W containing high Cr steel. International Journal of Pressure Vessels and Piping, 78(11–12), 779–784. https://doi.org/10.1016/S0308-0161(01)00090-4
Tanaka, Y., Kubushiro, K., Takahashi, S., Saito, N., & Nakagawa, H. (2013). Creep-induced microstructural changes in large welded joints of high Cr heat resistant steel. Procedia Engineering, 55, 41–44. https://doi.org/10.1016/j.proeng.2013.03.216
Trzaska, J. (2015). Empirical formulae for the calculation of austenite supercooled transformation temperatures. Archives of Metallurgy and Materials, 60(1), 182–185. https://doi.org/10.1515/amm-2015-0029
Vodopivec, F., Jenko, M., Celin, R., & Skobir, D. A. (2011). Creep Resistance of Microstructure of Welds of Creep Resistant Steels. 45(2), 6–10.
Wang, S. S., Peng, D. L., Chang, L., & Hui, X. D. (2013). Enhanced mechanical properties induced by refined heat treatment for 9Cr-0.5Mo-1.8W martensitic heat resistant steel. Materials and Design, 50, 174–180. https://doi.org/10.1016/j.matdes.2013.01.072
Wang, X., Li, Y., Li, H., Yang, C., & Yang, Q. X. (2016). Mechanical properties of T23 steel welded joints without post-weld heat treatment for fossil fired boilers. Journal of Materials Research, 31(24), 4000–4008. https://doi.org/10.1557/jmr.2016.423
Wang, X., Xu, Q., Liu, H. wei, Liu, H., Shang, W., Ren, Y. yao, & Yu, S. min. (2014). The method for reproducing fine grained HAZ of W strengthened high Cr steel. Materials Science and Engineering A, 589, 50–56. https://doi.org/10.1016/j.msea.2013.09.064
Xue, W., Pan, Q. gang, Ren, Y. yao, Shang, W., Zeng, H. qiang, & Liu, H. (2012). Microstructure and type IV cracking behavior of HAZ in P92 steel weldment. Materials Science and Engineering A, 552, 493–501. https://doi.org/10.1016/j.msea.2012.05.076
Xue, W., Qian-Gang, P., Zhi-Jun, L., Hui-Qiang, Z., & Yong-Shun, T. (2011). Creep rupture behaviour of P92 steel weldment. Engineering Failure Analysis, 18(1), 186–191. https://doi.org/10.1016/j.engfailanal.2010.08.020
Zhao, L., Jing, H., Xiu, J., Han, Y., & Xu, L. (2014). Experimental investigation of specimen size effect on creep crack growth behavior in P92 steel welded joint. Materials and Design, 57, 736–743. https://doi.org/10.1016/j.matdes.2013.12.062
Albert, S. K., Matsui, M., Watanabe, T., Hongo, H., Kubo, K., & Tabuchi, M. (2003). Variation in the type IV cracking behaviour of a high Cr steel weld with post weld heat treatment. International Journal of Pressure Vessels and Piping, 80(6), 405–413. https://doi.org/10.1016/S0308-0161(03)00072-3
ASTM E 23-12c. (2012). Standard test methods for notched bar impact testing of metallic materials. In Standards: Vol. i. https://doi.org/10.1520/E0023-12C.2
Barbadikar, D. R., Deshmukh, G. S., Maddi, L., Laha, K., Parameswaran, P., Ballal, A. R., Peshwe, D. R., Paretkar, R. K., Nandagopal, M., & Mathew, M. D. (2015). Effect of normalizing and tempering temperatures on microstructure and mechanical properties of P92 steel. International Journal of Pressure Vessels and Piping, 132–133, 97–105. https://doi.org/10.1016/j.ijpvp.2015.07.001
Barbadikar, D. R., Sakthivel, T., Ballal, A. R., Peshwe, D. R., Syamala Rao, P., & Mathew, M. D. (2018). An assessment of mechanical properties of P92 steel weld joint and simulated heat affected zones by ball indentation technique. Materials at High Temperatures, 35(5), 427–437. https://doi.org/10.1080/09603409.2017.1371913
Chalk, K. M., Shipway, P. H., & Allen, D. J. (2011). Austenite formation during heat treatment of P92 power plant steel welds: Dependence of A1 temperature on compositional changes. Science and Technology of Welding and Joining, 16(7), 613–618. https://doi.org/10.1179/1362171811Y.0000000042
Czyrska-filemonowicz, A., Zielińska-lipiec, A., & Ennis, P. J. (2006). Modified 9 % Cr Steels for Advanced Power Generation : Microstructure and Properties. Journal of Achievements in Materials and Manufacturing Engineering, 19(2), 43–48.
Dunđer, M., Vuherer, T., Samardžić, I., & Marić, D. (2019). Analysis of heat-affected zone microstructures of steel P92 after welding and after post-weld heat treatment. International Journal of Advanced Manufacturing Technology, 102(9–12), 3801–3812. https://doi.org/10.1007/s00170-019-03513-8
Ennis, P. J., & Czyrska-Filemonowicz, A. (2003). Recent advances in creep-resistant steels for power plant applications. Sadhana - Academy Proceedings in Engineering Sciences, 28(3–4), 709–730. https://doi.org/10.1007/BF02706455
Esposito, L. (2016). Type IV creep cracking of welded joints: numerical study of the grain size effect in HAZ. Procedia Structural Integrity, 2, 919–926. https://doi.org/10.1016/j.prostr.2016.06.118
Falat, L., Kepič, J., Čiripová, L., Ševc, P., & Dlouhý, I. (2016). The effects of postweld heat treatment and isothermal aging on T92 steel heat-affected zone mechanical properties of T92/TP316H dissimilar weldments. Journal of Materials Research, 31(10), 1532–1543. https://doi.org/10.1557/jmr.2016.134
Francis, J. A., Mazur, W., & Bhadeshia, H. K. D. H. (2006). Type IV cracking in ferritic power plant steels. In Materials Science and Technology (Vol. 22, Issue 12, pp. 1387–1395). https://doi.org/10.1179/174328406X148778
Gleeble. (1999). Gleeble Manual QuickSimTM HAZ Programming Manual and Samples, DSI Dynamic System Inc. In Gleeble and Hydrawedge Quicksim, Poestenikll, NewYork, USA, (pp. 1–26).
Guo, Q., Lu, F., Liu, X., Yang, R., Cui, H., & Gao, Y. (2015). Correlation of microstructure and fracture toughness of advanced 9Cr/CrMoV dissimilarly welded joint. Materials Science and Engineering: A, 638, 240–250. https://doi.org/10.1016/j.msea.2015.04.011
Gutiérrez, N. Z., Alvarado, J. V., de Cicco, H., & Danón, A. (2015). Microstructural Study of Welded Joints in a High Temperature Martensitic-ferritic ASTM A335 P91 Steel. Procedia Materials Science, 8(1992), 1140–1149. https://doi.org/10.1016/j.mspro.2015.04.178
Hasegawa, Y., Sugiyama, M., & Kawakami, K. (2009). Type Iv Damage Mechanism Due To The Microstructure Weakening In The Haz Of A Multi-Layer Welded Joint Of The W Containing 9 % Cr Ferritic Creep Resistant Steel. Ommi, 6(2), 1–16.
Hurtado-noreña, C., Danón, C. A., Luppo, M. I., & Bruzzoni, P. (2015). Evolution of Minor Phases in a P91 Steel Normalized and Tempered at Different Temperatures. Procedia Materials Science, 8, 1089–1098. https://doi.org/10.1016/j.mspro.2015.04.172
Kim, H., Inoue, J., Okada, M., & Nagata, K. (2017). Prediction of Ac3 and martensite start temperatures by a data-driven model selection approach. ISIJ International, 57(12), 2229–2236. https://doi.org/10.2355/isijinternational.ISIJINT-2017-212
Lim, B. S., Jeong, C. S., & Keum, Y. T. (2003). Effect of Temperature on Fatigue Crack Growth in P92 Steel. Metals and Materials International, 9(6), 543–547. https://doi.org/10.1007/BF03027253
Liu, Y., Tsukamoto, S., Sawada, K., & Abe, F. (2014). Role of boundary strengthening on prevention of type IV failure in high Cr ferritic heat-resistant steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 45(3), 1306–1314. https://doi.org/10.1007/s11661-013-2072-5
Liu, Y., Tsukamoto, S., Shirane, T., & Abe, F. (2013). Formation mechanism of type IV failure in high Cr ferritic heat-resistant steel-welded joint. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 44(10). https://doi.org/10.1007/s11661-013-1801-0
Łomozik, M., & Zielińska-Lipiec, A. (2008). Microscopic Analysis of the Influence of Multiple Thermal Cycle on Simulated HAZ Toughness in P91 Steel. Archives of Metallurgy and Materials, 53(4), 1025–1034.
Milović, L., Vuherer, T., Blačić, I., Vrhovac, M., & Stanković, M. (2013). Microstructures and mechanical properties of creep resistant steel for application at elevated temperatures. Materials and Design, 46, 660–667. https://doi.org/10.1016/j.matdes.2012.10.057
Moon, J., Lee, C. H., Lee, T. H., & Kim, H. C. (2015). Effect of Heat Input on Microstructure Evolution and Mechanical Properties in the Weld Heat-Affected Zone of 9Cr-2W-VTa Reduced Activation Ferritic-Martensitic Steel for Fusion Reactor. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 46(1), 156–163. https://doi.org/10.1007/s11661-014-2623-4
Nagode, A., Kosec, L., Ule, B., & Kosec, G. (2011). Review of creep resistant alloys for power plant applications. In Metalurgija (Vol. 50, Issue 1, pp. 45–48).
Ohgami, M., Naoi, H., Kinbara, S., Mimura, H., Ikemoto, T., & Fujita, T. (1997). Development of 9CrW tube, pipe and forging for ultra supercritical power plant boilers. In Nippon Steel Technical Report (Issue 72, pp. 59–64).
Pandey, C., Giri, A., & Mahapatra, M. M. (2016). Effect of normalizing temperature on microstructural stability and mechanical properties of creep strength enhanced ferritic P91 steel. Materials Science & Engineering A, 657, 173–184. https://doi.org/10.1016/j.msea.2016.01.066
Pandey, C., & Mahapatra, M. M. (2016). Evolution of phases during tempering of P91 steel at 760oC for varying tempering time and their effect on microstructure and mechanical properties. 0(0), 1–21. https://doi.org/10.1177/0954408916656678
Pandey, C., Mahapatra, M. M., Kumar, P., Daniel, F., & Adhithan, B. (2019). Softening mechanism of P91 steel weldments using heat treatments. Archives of Civil and Mechanical Engineering, 19(2), 297–310. https://doi.org/10.1016/j.acme.2018.10.005
Pandey, C., Mahapatra, M. M., Kumar, P., & Saini, N. (2018a). Homogenization of P91 weldments using varying normalizing and tempering treatment. Materials Science and Engineering A, 710(June 2017), 86–101. https://doi.org/10.1016/j.msea.2017.10.086
Pandey, C., Mahapatra, M. M., Kumar, P., & Saini, N. (2018b). Some studies on P91 steel and their weldments. In Journal of Alloys and Compounds (Vol. 743, pp. 332–364). Elsevier B.V. https://doi.org/10.1016/j.jallcom.2018.01.120
Pandey, C., Mohan Mahapatra, M., Kumar, P., Thakre, J. G., & Saini, N. (2019). Role of evolving microstructure on the mechanical behaviour of P92 steel welded joint in as-welded and post weld heat treated state. Journal of Materials Processing Technology, 263(June 2018), 241–255. https://doi.org/10.1016/j.jmatprotec.2018.08.032
Parameswaran, P., & Laha, K. (2013). Role of microstructure on creep rupture behaviour of similar and dissimilar joints of modified 9Cr-1Mo steel. Procedia Engineering, 55, 438–442. https://doi.org/10.1016/j.proeng.2013.03.277
Peng, Y. Q., Chen, T. C., Chung, T. J., Jeng, S. L., Huang, R. T., & Tsay, L. W. (2017). Creep rupture of the simulated HAZ of T92 steel compared to that of a T91 steel. Materials, 10(2). https://doi.org/10.3390/ma10020139
Ryu, S. H., & Yu, J. (1998). A new equation for the Cr equivalent in 9 to 12 pct Cr steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 29(6), 1573–1578. https://doi.org/10.1007/s11661-998-0080-7
Saini, N., Pandey, C., & Mahapatra, M. M. (2017). Characterization and evaluation of mechanical properties of CSEF P92 steel for varying normalizing temperature. Materials Science and Engineering A, 688(February), 250–261. https://doi.org/10.1016/j.msea.2017.02.022
Sakthivel, T., Laha, K., Chandravathi, K. S., Parameswaran, P., Tailor, H. M., Vasudevan, M., & Mathew, M. D. (2014). Integrity assessment of grade 92 welded joint under creep condition. Procedia Engineering, 86, 215–222. https://doi.org/10.1016/j.proeng.2014.11.031
Shankar, V., Mariappan, K., Sandhya, R., & Mathew, M. D. (2013). Evaluation of low cycle fatigue damage in grade 91 steel weld joints for high temperature applications. Procedia Engineering, 55, 128–135. https://doi.org/10.1016/j.proeng.2013.03.231
Sklenička, V., Kuchařová, K., Svobodová, M., Kvapilová, M., Král, P., & Horváth, L. (2016). Creep properties in similar weld joint of a thick-walled P92 steel pipe. Materials Characterization, 119, 1–12. https://doi.org/10.1016/j.matchar.2016.06.033
Tabuchi, M., Watanabe, T., Kubo, K., Matsui, M., Kinugawa, J., & Abe, F. (2001). Creep crack growth behavior in the HAZ of weldments of W containing high Cr steel. International Journal of Pressure Vessels and Piping, 78(11–12), 779–784. https://doi.org/10.1016/S0308-0161(01)00090-4
Tanaka, Y., Kubushiro, K., Takahashi, S., Saito, N., & Nakagawa, H. (2013). Creep-induced microstructural changes in large welded joints of high Cr heat resistant steel. Procedia Engineering, 55, 41–44. https://doi.org/10.1016/j.proeng.2013.03.216
Trzaska, J. (2015). Empirical formulae for the calculation of austenite supercooled transformation temperatures. Archives of Metallurgy and Materials, 60(1), 182–185. https://doi.org/10.1515/amm-2015-0029
Vodopivec, F., Jenko, M., Celin, R., & Skobir, D. A. (2011). Creep Resistance of Microstructure of Welds of Creep Resistant Steels. 45(2), 6–10.
Wang, S. S., Peng, D. L., Chang, L., & Hui, X. D. (2013). Enhanced mechanical properties induced by refined heat treatment for 9Cr-0.5Mo-1.8W martensitic heat resistant steel. Materials and Design, 50, 174–180. https://doi.org/10.1016/j.matdes.2013.01.072
Wang, X., Li, Y., Li, H., Yang, C., & Yang, Q. X. (2016). Mechanical properties of T23 steel welded joints without post-weld heat treatment for fossil fired boilers. Journal of Materials Research, 31(24), 4000–4008. https://doi.org/10.1557/jmr.2016.423
Wang, X., Xu, Q., Liu, H. wei, Liu, H., Shang, W., Ren, Y. yao, & Yu, S. min. (2014). The method for reproducing fine grained HAZ of W strengthened high Cr steel. Materials Science and Engineering A, 589, 50–56. https://doi.org/10.1016/j.msea.2013.09.064
Xue, W., Pan, Q. gang, Ren, Y. yao, Shang, W., Zeng, H. qiang, & Liu, H. (2012). Microstructure and type IV cracking behavior of HAZ in P92 steel weldment. Materials Science and Engineering A, 552, 493–501. https://doi.org/10.1016/j.msea.2012.05.076
Xue, W., Qian-Gang, P., Zhi-Jun, L., Hui-Qiang, Z., & Yong-Shun, T. (2011). Creep rupture behaviour of P92 steel weldment. Engineering Failure Analysis, 18(1), 186–191. https://doi.org/10.1016/j.engfailanal.2010.08.020
Zhao, L., Jing, H., Xiu, J., Han, Y., & Xu, L. (2014). Experimental investigation of specimen size effect on creep crack growth behavior in P92 steel welded joint. Materials and Design, 57, 736–743. https://doi.org/10.1016/j.matdes.2013.12.062