How to cite this paper
Alshaibani, M., Taheri-Behrooz, F., Khoramishad, H & Diwan, A. (2024). Influence of adding nanomaterials on shear properties of epoxy resin at different temperatures.Engineering Solid Mechanics, 12(4), 395-408.
Refrences
American Society for Testing and Materials—ASTM. (2014). ASTM-E1356: standard test method for assignment of the glass transition temperatures by differential calorimetry. West Conshohocken: ASTM. doi.10.1520/E1356-08R14.
American Society for Testing and Materials—ASTM. (2019). ASTM-D1002: Standard Test Method for Apparent Shear Strength of Single-Lap-Joint Adhesively Bonded Metal Specimens by Tension Loading (Metal-to-Metal) (ASTM D1002 – 10). doi.10.1520/D1002-10R19.
Bora, C., Gogoi, P., Baglari, S., & Dolui, S. K. (2013). Preparation of polyester resin/graphene oxide nanocomposite with improved mechanical strength. Journal of Applied Polymer Science, 129(6), 3432-3438. doi.10.1002/app.39068.
Chen, S., Zhu, J., Wu, X., Han, Q., & Wang, X. (2010). Graphene oxide− MnO2 nanocomposites for supercapacitors. ACS nano, 4(5), 2822-2830. doi.org/10.1021/nn901311t.
Du, X., Wang, C., Chen, M., Jiao, Y., & Wang, J. (2009). Electrochemical performances of nanoparticle Fe3O4/activated carbon supercapacitor using KOH electrolyte solution. The Journal of Physical Chemistry C, 113(6), 2643-2646. doi.org/10.1021/jp8088269.
Frank, I. W., Tanenbaum, D. M., van der Zande, A. M., & McEuen, P. L. (2007). Mechanical properties of suspended graphene sheets. Journal of Vacuum Science & Technology B, 25(6), 2558-2561. doi.org/10.1116/1.2789446.
Frounchi, M., & Hadi, M. (2013). Effect of synthesis method on magnetic and thermal properties of polyvinylidene fluoride/Fe3O4 nanocomposites. Journal of Reinforced Plastics and Composites, 32(14), 1044-1051. doi.org/10.1177/0731684413480397.
Gudarzi, M. M., & Sharif, F. (2012). Enhancement of dispersion and bonding of graphene-polymer through wet transfer of functionalized graphene oxide. Express Polymer Letters, 6(12). doi.10.3144/expresspolymlett.2012.107.
Hou, W., Gao, Y., Wang, J., Blackwood, D. J., & Teo, S. (2020). Recent advances and future perspectives for graphene oxide reinforced epoxy resins. Materials Today Communications, 23, 100883. doi.10.1016/j.mtcomm.2019.100883.
Khazaka, R., Mendizabal, L., & Henry, D. (2014). Review on joint shear strength of nano-silver paste and its long-term high temperature reliability. Journal of electronic materials, 43, 2459-2466. doi.10.1007/s11664-014-3202-6.
Khoramishad, H., Hamzenejad, M., & Ashofteh, R. S. (2016). Characterizing cohesive zone model using a mixed-mode direct method. Engineering Fracture Mechanics, 153, 175-189. doi.org/10.1016/j.engfracmech.2015.10.045.
Khoramishad, H., Ashofteh, R.S., Mobasheri, M., Berto, F. (2018a). Temperature dependence of the shear strength in adhesively bonded joints reinforced with multi-walled carbon nanotubes. Engineering Fracture Mechanics 199, 179-187. doi.org/10.1016/j.engfracmech.2018.05.032.
Khoramishad, H., Ashofteh, R.S., Pourang, H., Berto, F. (2018b). Experimental investigation of the influence of temperature on the reinforcing effect of graphene oxide nano-platelet on nanocomposite adhesively bonded joints. Theoretical and Applied Fracture Mechanics 94, 95-100. doi.org/10.1016/j.tafmec.2018.01.010.
Khotbehsara, M. M., Manalo, A., Aravinthan, T., Turner, J., Ferdous, W., & Hota, G. (2020). Effects of ultraviolet solar radiation on the properties of particulate-filled epoxy-based polymer coating. Polymer Degradation and Stability, 181, 109352. doi.org/10.1016/j.polymdegradstab.2020.109352.
Knoerr, M., & Schletz, A. (2010). Power semiconductor joining through sintering of silver nanoparticles: Evaluation of influence of parameters time, temperature and pressure on density, strength and reliability. 6th International Conference on Integrated Power Electronics Systems (pp. 1-6). IEEE. doi.ieeexplore.ieee.org/document/5730660.
Liang, J., Huang, Y., Oh, J., Kozlov, M., Sui, D., Fang, S., & Chen, Y. (2011). Electromechanical actuators based on graphene and graphene/Fe3O4 hybrid paper. Advanced Functional Materials, 21(19), 3778-3784. doi.10.1002/adfm.201101072.
Li, Z., Young, R. J., Wang, R., Yang, F., Hao, L., Jiao, W., & Liu, W. (2013). The role of functional groups on graphene oxide in epoxy nanocomposites. Polymer, 54(21),5821-5829. doi.org/10.1016/j.polymer.2013.08.026 .
Loh., K. P., Qiaoliang B., Ang P.K., Yang J. (2010). The chemistry of graphene. Journal of Materials Chemistry, 20(12), 2277-2289. doi.org/10.039/B920539J.
Mu, J., Chen, B., Guo, Z., Zhang, M., Zhang, Z., Zhang, P., ... & Liu, Y. (2011). Highly dispersed Fe3O4 nanosheets on one-dimensional carbon nanofibers: Synthesis, formation mechanism, and electrochemical performance as supercapacitor electrode materials. Nanoscale, 3(12), 5034-5040. doi.10.1039/c1nr10972c.
Sánchez-Romate, X. F., Del Bosque, A., Crespo, A., Alonso, R., Sánchez, M., & Ureña, A. (2022). Fe3O4-Nanoparticle-Doped Epoxy Resin as a Detachable Adhesive by Electromagnetic Heating for GFRP Single-Lap Joints. Nanomaterials, 12(21), 3913. doi.org/10.3390/nano12213913
Schwarzbauer, H. (1991). Novel Large Area Joining Technique for Improved Power Device Performance. IEEE Transactions on Industry Applications. doi. 10.1109/28.67536.
Shi, W., Zhu, J., Sim, D. H., Tay, Y. Y., Lu, Z., Zhang, X., & Yan, Q. (2011). Achieving high specific charge capacitances in Fe 3 O 4/reduced graphene oxide nanocomposites. Journal of Materials Chemistry, 21(10), 3422-3427. doi.10.1039/C0JM03175E.
Siow, K. S. (2012). Mechanical properties of nano-silver joints as die attach materials. Journal of alloys and compounds, 514, 6-19. doi.org/10.1016/j.jallcom.2011.10.092.
Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. carbon, 45(7), 1558-1565. doi.org/10.1016/j.carbon.2007.02.034.
Suk, J. W., Piner, R. D., An, J., & Ruoff, R. S. (2010). Mechanical properties of monolayer graphene oxide. ACS nano, 4(11), 6557-6564. doi.org/10.1021/nn101781v.
Wang, T., Chen, X., Lu, G. Q., & Lei, G. Y. (2007). Low-temperature sintering with nano-silver paste in die-attached interconnection. Journal of electronic materials, 36, 1333-1340. doi.10.1007/s11664-007-0230-5.
Wilson, J. L., Poddar, P., Frey, N. A., Srikanth, H., Mohomed, K., Harmon, J. P., & Wachsmuth, J. (2004). Synthesis and magnetic properties of polymer nanocomposites with embedded iron nanoparticles. Journal of Applied Physics, 95(3), 1439-1443. doi.10.1063/1.1637705.
Wu, Z. S., Wang, D. W., Ren, W., Zhao, J., Zhou, G., Li, F., & Cheng, H. M. (2010). Anchoring hydrous RuO2 on graphene sheets for high‐performance electrochemical capacitors. Advanced Functional Materials, 20(20), 3595-3602. doi.org/10.1002/adfm.201001054.
Yan, J., Zou, G., Wu, A. P., Ren, J., Yan, J., Hu, A., & Zhou, Y. (2012). Pressureless bonding process using Ag nanoparticle paste for flexible electronics packaging. Scripta Materialia, 66(8), 582-585. doi.10.1016/j.scriptamat.2012.01.007.
American Society for Testing and Materials—ASTM. (2019). ASTM-D1002: Standard Test Method for Apparent Shear Strength of Single-Lap-Joint Adhesively Bonded Metal Specimens by Tension Loading (Metal-to-Metal) (ASTM D1002 – 10). doi.10.1520/D1002-10R19.
Bora, C., Gogoi, P., Baglari, S., & Dolui, S. K. (2013). Preparation of polyester resin/graphene oxide nanocomposite with improved mechanical strength. Journal of Applied Polymer Science, 129(6), 3432-3438. doi.10.1002/app.39068.
Chen, S., Zhu, J., Wu, X., Han, Q., & Wang, X. (2010). Graphene oxide− MnO2 nanocomposites for supercapacitors. ACS nano, 4(5), 2822-2830. doi.org/10.1021/nn901311t.
Du, X., Wang, C., Chen, M., Jiao, Y., & Wang, J. (2009). Electrochemical performances of nanoparticle Fe3O4/activated carbon supercapacitor using KOH electrolyte solution. The Journal of Physical Chemistry C, 113(6), 2643-2646. doi.org/10.1021/jp8088269.
Frank, I. W., Tanenbaum, D. M., van der Zande, A. M., & McEuen, P. L. (2007). Mechanical properties of suspended graphene sheets. Journal of Vacuum Science & Technology B, 25(6), 2558-2561. doi.org/10.1116/1.2789446.
Frounchi, M., & Hadi, M. (2013). Effect of synthesis method on magnetic and thermal properties of polyvinylidene fluoride/Fe3O4 nanocomposites. Journal of Reinforced Plastics and Composites, 32(14), 1044-1051. doi.org/10.1177/0731684413480397.
Gudarzi, M. M., & Sharif, F. (2012). Enhancement of dispersion and bonding of graphene-polymer through wet transfer of functionalized graphene oxide. Express Polymer Letters, 6(12). doi.10.3144/expresspolymlett.2012.107.
Hou, W., Gao, Y., Wang, J., Blackwood, D. J., & Teo, S. (2020). Recent advances and future perspectives for graphene oxide reinforced epoxy resins. Materials Today Communications, 23, 100883. doi.10.1016/j.mtcomm.2019.100883.
Khazaka, R., Mendizabal, L., & Henry, D. (2014). Review on joint shear strength of nano-silver paste and its long-term high temperature reliability. Journal of electronic materials, 43, 2459-2466. doi.10.1007/s11664-014-3202-6.
Khoramishad, H., Hamzenejad, M., & Ashofteh, R. S. (2016). Characterizing cohesive zone model using a mixed-mode direct method. Engineering Fracture Mechanics, 153, 175-189. doi.org/10.1016/j.engfracmech.2015.10.045.
Khoramishad, H., Ashofteh, R.S., Mobasheri, M., Berto, F. (2018a). Temperature dependence of the shear strength in adhesively bonded joints reinforced with multi-walled carbon nanotubes. Engineering Fracture Mechanics 199, 179-187. doi.org/10.1016/j.engfracmech.2018.05.032.
Khoramishad, H., Ashofteh, R.S., Pourang, H., Berto, F. (2018b). Experimental investigation of the influence of temperature on the reinforcing effect of graphene oxide nano-platelet on nanocomposite adhesively bonded joints. Theoretical and Applied Fracture Mechanics 94, 95-100. doi.org/10.1016/j.tafmec.2018.01.010.
Khotbehsara, M. M., Manalo, A., Aravinthan, T., Turner, J., Ferdous, W., & Hota, G. (2020). Effects of ultraviolet solar radiation on the properties of particulate-filled epoxy-based polymer coating. Polymer Degradation and Stability, 181, 109352. doi.org/10.1016/j.polymdegradstab.2020.109352.
Knoerr, M., & Schletz, A. (2010). Power semiconductor joining through sintering of silver nanoparticles: Evaluation of influence of parameters time, temperature and pressure on density, strength and reliability. 6th International Conference on Integrated Power Electronics Systems (pp. 1-6). IEEE. doi.ieeexplore.ieee.org/document/5730660.
Liang, J., Huang, Y., Oh, J., Kozlov, M., Sui, D., Fang, S., & Chen, Y. (2011). Electromechanical actuators based on graphene and graphene/Fe3O4 hybrid paper. Advanced Functional Materials, 21(19), 3778-3784. doi.10.1002/adfm.201101072.
Li, Z., Young, R. J., Wang, R., Yang, F., Hao, L., Jiao, W., & Liu, W. (2013). The role of functional groups on graphene oxide in epoxy nanocomposites. Polymer, 54(21),5821-5829. doi.org/10.1016/j.polymer.2013.08.026 .
Loh., K. P., Qiaoliang B., Ang P.K., Yang J. (2010). The chemistry of graphene. Journal of Materials Chemistry, 20(12), 2277-2289. doi.org/10.039/B920539J.
Mu, J., Chen, B., Guo, Z., Zhang, M., Zhang, Z., Zhang, P., ... & Liu, Y. (2011). Highly dispersed Fe3O4 nanosheets on one-dimensional carbon nanofibers: Synthesis, formation mechanism, and electrochemical performance as supercapacitor electrode materials. Nanoscale, 3(12), 5034-5040. doi.10.1039/c1nr10972c.
Sánchez-Romate, X. F., Del Bosque, A., Crespo, A., Alonso, R., Sánchez, M., & Ureña, A. (2022). Fe3O4-Nanoparticle-Doped Epoxy Resin as a Detachable Adhesive by Electromagnetic Heating for GFRP Single-Lap Joints. Nanomaterials, 12(21), 3913. doi.org/10.3390/nano12213913
Schwarzbauer, H. (1991). Novel Large Area Joining Technique for Improved Power Device Performance. IEEE Transactions on Industry Applications. doi. 10.1109/28.67536.
Shi, W., Zhu, J., Sim, D. H., Tay, Y. Y., Lu, Z., Zhang, X., & Yan, Q. (2011). Achieving high specific charge capacitances in Fe 3 O 4/reduced graphene oxide nanocomposites. Journal of Materials Chemistry, 21(10), 3422-3427. doi.10.1039/C0JM03175E.
Siow, K. S. (2012). Mechanical properties of nano-silver joints as die attach materials. Journal of alloys and compounds, 514, 6-19. doi.org/10.1016/j.jallcom.2011.10.092.
Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. carbon, 45(7), 1558-1565. doi.org/10.1016/j.carbon.2007.02.034.
Suk, J. W., Piner, R. D., An, J., & Ruoff, R. S. (2010). Mechanical properties of monolayer graphene oxide. ACS nano, 4(11), 6557-6564. doi.org/10.1021/nn101781v.
Wang, T., Chen, X., Lu, G. Q., & Lei, G. Y. (2007). Low-temperature sintering with nano-silver paste in die-attached interconnection. Journal of electronic materials, 36, 1333-1340. doi.10.1007/s11664-007-0230-5.
Wilson, J. L., Poddar, P., Frey, N. A., Srikanth, H., Mohomed, K., Harmon, J. P., & Wachsmuth, J. (2004). Synthesis and magnetic properties of polymer nanocomposites with embedded iron nanoparticles. Journal of Applied Physics, 95(3), 1439-1443. doi.10.1063/1.1637705.
Wu, Z. S., Wang, D. W., Ren, W., Zhao, J., Zhou, G., Li, F., & Cheng, H. M. (2010). Anchoring hydrous RuO2 on graphene sheets for high‐performance electrochemical capacitors. Advanced Functional Materials, 20(20), 3595-3602. doi.org/10.1002/adfm.201001054.
Yan, J., Zou, G., Wu, A. P., Ren, J., Yan, J., Hu, A., & Zhou, Y. (2012). Pressureless bonding process using Ag nanoparticle paste for flexible electronics packaging. Scripta Materialia, 66(8), 582-585. doi.10.1016/j.scriptamat.2012.01.007.