How to cite this paper
Obiko, J., Kachomba, T., Mutua, J., Ngoret, J., Jeje, S., Shongwe, M & Malatji, N. (2024). A brief review on industrial remanufacturing of structural and functional components: Wire-Arc Additive Manufacturing Technique.Engineering Solid Mechanics, 12(4), 363-386.
Refrences
Acharya, R., & Das, S. (2015). Additive Manufacturing of IN100 Superalloy Through Scanning Laser Epitaxy for Turbine Engine Hot-Section Component Repair: Process Development, Modeling, Microstructural Characterization, and Process Control. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 46(9), 3864–3875. https://doi.org/10.1007/s11661-015-2912-6
Ahn, D. G. (2021). Directed Energy Deposition (DED) Process: State of the Art. In International Journal of Precision Engineering and Manufacturing - Green Technology (Vol. 8, Issue 2). Korean Society for Precision Engineering. https://doi.org/10.1007/s40684-020-00302-7
Ahsan, M. R. U., Tanvir, A. N. M., Ross, T., Elsawy, A., Oh, M. S., & Kim, D. B. (2020). Fabrication of bimetallic additively manufactured structure (BAMS) of low carbon steel and 316L austenitic stainless steel with wire + arc additive manufacturing. Rapid Prototyping Journal, 26(3), 519–530. https://doi.org/10.1108/RPJ-09-2018-0235
Albannai, A. I. (2022). A Brief Review on The Common Defects in Wire Arc Additive Manufacturing ( Review Paper ). International Journal of Current Science Research and Review, 05(12), 4556–4576. https://doi.org/10.47191/ijcsrr/V5-i12-19
Alberti, E. A., Bueno, B. M. P., & D’Oliveira, A. S. C. M. (2016). Additive manufacturing using plasma transferred arc. The International Journal of Advanced Manufacturing Technology, 83(9), 1861–1871. https://doi.org/10.1007/s00170-015-7697-7
Aldalur, E., Veiga, F., Suárez, A., Bilbao, J., & Lamikiz, A. (2020). Analysis of the wall geometry with different strategies for high deposition wire arc additive manufacturing of mild steel. Metals, 10(7), 1–19. https://doi.org/10.3390/met10070892
Andersen, K., Cook, G. E., Karsai, G., & Ramaswamy, K. (1990). Artificial Neural Networks Applied to Arc Welding Process Modeling and Control. IEEE Transactions on Industry Applications, 26(5), 824–830. https://doi.org/10.1109/28.60056
Artaza, T., Suárez, A., Murua, M., García, J. C., Tabernero, I., & Lamikiz, A. (2019). Wire arc additive manufacturing of Mn4Ni2CrMo steel: Comparison of mechanical and metallographic properties of PAW and GMAW. Procedia Manufacturing, 41, 1071–1078. https://doi.org/10.1016/j.promfg.2019.10.035
Artaza, T., Suárez, A., Veiga, F., Braceras, I., Tabernero, I., Larrañaga, O., & Lamikiz, A. (2020). Wire arc additive manufacturing Ti6Al4V aeronautical parts using plasma arc welding: Analysis of heat-treatment processes in different atmospheres. Journal of Materials Research and Technology, 9(6), 15454–15466. https://doi.org/10.1016/J.JMRT.2020.11.012
ASTM. (1995). Designation: E3-95. Standard Practice sor Preparation of Metallographic Specimens (p. 8). ASTM.
ASTM. (2008). Determining Residual Stresses by the Hole-Drilling Strain-Gage Method. Standard Test Method E837-13a, i, 1–16. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Standard+Test+Method+for+Determining+Residual+Stresses+by+the+Hole-Drilling+Strain-#0
ASTM E8. (2010). ASTM E8/E8M standard test methods for tension testing of metallic materials 1. Annual Book of ASTM Standards 4, C, 1–27. https://doi.org/10.1520/E0008
Attaran, M. (2017). The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Business Horizons, 60(5), 677–688. https://doi.org/10.1016/j.bushor.2017.05.011
Babu, S. S., Love, L., Dehoff, R., Peter, W., Watkins, T. R., & Pannala, S. (2015). Additive manufacturing of materials : Opportunities and challenges. 40(December), 1154–1161. https://doi.org/10.1557/mrs.2015.234
Baffa, F., Venturini, G., Campatelli, G., & Galvanetto, E. (2022). Effect of stepover and torch tilting angle on a repair process using WAAM. Advances in Manufacturing, 10(4), 541–555. https://doi.org/10.1007/s40436-022-00393-2
Bai, X., Colegrove, P., Ding, J., Zhou, X., Diao, C., Bridgeman, P., roman Hönnige, J., Zhang, H., & Williams, S. (2018). Numerical analysis of heat transfer and fluid flow in multilayer deposition of PAW-based wire and arc additive manufacturing. International Journal of Heat and Mass Transfer, 124, 504–516. https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.085
Balashanmugam, N. (2021). Chapter 7 - Perspectives on additive manufacturing in Industry 4.0. In M. Manjaiah, K. Raghavendra, N. Balashanmugam, & J. P. B. T.-A. M. Davim (Eds.), Woodhead Publishing Reviews: Mechanical Engineering Series (pp. 127–150). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-12-822056-6.00001-1
Balit, Y., Joly, L. R., Szmytka, F., Durbecq, S., Charkaluk, E., & Constantinescu, A. (2020). Self-heating behavior during cyclic loadings of 316L stainless steel specimens manufactured or repaired by Directed Energy Deposition. Materials Science and Engineering A, 786. https://doi.org/10.1016/j.msea.2020.139476
Bandyopadhyay, A., Zhang, Y., & Onuike, B. (2022). Additive manufacturing of bimetallic structures. Virtual and Physical Prototyping, 17(2), 256–294. https://doi.org/10.1080/17452759.2022.2040738
Barath Kumar, M. D., & Manikandan, M. (2022). Assessment of Process, Parameters, Residual Stress Mitigation, Post Treatments and Finite Element Analysis Simulations of Wire Arc Additive Manufacturing Technique. In Metals and Materials International (Vol. 28, Issue 1). The Korean Institute of Metals and Materials. https://doi.org/10.1007/s12540-021-01015-5
Behera, A. (2020). Processes and Application in Additive Manufacturing: Practices in Aerospace, Automobile, Medical, and Electronic Industries. In Additive Manufacturing applications for metals and composites (pp. 25–47). IGI Global.
Bennett, J., Dudas, R., Cao, J., Ehmann, K., & Hyatt, G. (2016). Control of heating and cooling for direct laser deposition repair of cast iron components. International Symposium on Flexible Automation, ISFA 2016, 229–236. https://doi.org/10.1109/ISFA.2016.7790166
Bewlay, B. P., Jackson, M. R., Subramanian, P. R., & Lewandowski, J. J. (2004). Very high-temperature Nb-silicide-based composites. Proceedings of the International Symposium on Niobium for High Temperature Applications, 34(October), 51–61.
Bi, G., & Gasser, A. (2011). Restoration of nickel-base turbine blade knife-edges with controlled laser aided additive manufacturing. Physics Procedia, 12(PART 1), 402–409. https://doi.org/10.1016/j.phpro.2011.03.051
Bourell, D. L. (2016). Perspectives on Additive Manufacturing. Annual Review of Materials Research, 46, 1–18. https://doi.org/10.1146/annurev-matsci-070115-031606
Branza, T., Deschaux-Beaume, F., Sierra, G., & Lours, P. (2009). Study and prevention of cracking during weld-repair of heat-resistant cast steels. Journal of Materials Processing Technology, 209(1), 536–547. https://doi.org/10.1016/j.jmatprotec.2008.02.033
Caballero, A., Ding, J., Ganguly, S., & Williams, S. (2019). Wire + Arc Additive Manufacture of 17-4 PH stainless steel: Effect of different processing conditions on microstructure, hardness, and tensile strength. Journal of Materials Processing Technology, 268, 54–62. https://doi.org/10.1016/j.jmatprotec.2019.01.007
Cagan, S. C., & Buldum, B. B. (2021). Machinability investigation of Incoloy 825 in high-speed turning under dry conditions. Revista Materia, 26(4). https://doi.org/10.1590/S1517-707620210004.1366
Campatelli, G., Venturini, G., Grossi, N., Baffa, F., Scippa, A., & Yamazaki, K. (2021). Design and testing of a waam retrofit kit for repairing operations on a milling machine. Machines, 9(12). https://doi.org/10.3390/machines9120322
Carroll, B. E., Palmer, T. A., & Beese, A. M. (2015). Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing. Acta Materialia, 87, 309–320. https://doi.org/10.1016/j.actamat.2014.12.054
Chandrasekaran, S., Hari, S., & Amirthalingam, M. (2020). Wire arc additive manufacturing of functionally graded material for marine risers. Materials Science and Engineering A, 792, 139530. https://doi.org/10.1016/j.msea.2020.139530
Chaturvedi, M., Scutelnicu, E., Rusu, C. C., Mistodie, L. R., Mihailescu, D., & Subbiah, A. V. (2021). Wire Arc Additive Manufacturing: Review on Recent Findings and Challenges in Industrial Applications and Materials Characterization. Metals, 11(6), 939. https://doi.org/10.3390/met11060939
Clare, A. T., Oyelola, O., Abioye, T. E., & Farayibi, P. K. (2013). Laser cladding of rail steel with Co-Cr. Surface Engineering, 29(10), 731–736. https://doi.org/10.1179/1743294412Y.0000000075
Colegrove, P. A., Coules, H. E., Fairman, J., Martina, F., Kashoob, T., Mamash, H., & Cozzolino, L. D. (2013). Microstructure and residual stress improvement in wire and arc additively manufactured parts through high-pressure rolling. Journal of Materials Processing Technology, 213(10), 1782–1791. https://doi.org/10.1016/j.jmatprotec.2013.04.012
Cunningham, C. R., Flynn, J. M., Shokrani, A., Dhokia, V., & Newman, S. T. (2018). Invited review article: Strategies and processes for high quality wire arc additive manufacturing. Additive Manufacturing, 22, 672–686. https://doi.org/10.1016/J.ADDMA.2018.06.020
Cunningham, C. R., Wikshåland, S., Xu, F., Kemakolam, N., Shokrani, A., Dhokia, V., & Newman, S. T. (2017). Cost Modelling and Sensitivity Analysis of Wire and Arc Additive Manufacturing. Procedia Manufacturing, 11(June 2017), 650–657. https://doi.org/10.1016/j.promfg.2017.07.163
Dargusch, M. S. (2017). Metallurgical and geometrical characterisation of the 316L stainless steel clad deposited on a mild steel substrate. Surface & Coatings Technology. https://doi.org/10.1016/j.surfcoat.2017.08.013
Dass, A., & Moridi, A. (2019). State of the art in directed energy deposition: From additive manufacturing to materials design. In Coatings (Vol. 9, Issue 7, p. 418). Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/COATINGS9070418
DebRoy, T., Wei, H. L., Zuback, J. S., Mukherjee, T., Elmer, J. W., Milewski, J. O., Beese, A. M., Wilson-Heid, A., De, A., & Zhang, W. (2018). Additive manufacturing of metallic components – Process, structure and properties. Progress in Materials Science, 92, 112–224. https://doi.org/10.1016/j.pmatsci.2017.10.001
Deng, F., Yang, G., Wu, B., Qin, L., Zheng, J., & Zhou, S. (2022). Microstructure and Mechanical Properties of Hybrid-Manufactured Maraging Steel Component Using 4% Nitrogen Shielding Gas Fabricated by Wrought-Wire Arc Additive Manufacturing. In Coatings (Vol. 12, Issue 3). https://doi.org/10.3390/coatings12030356
Di, L., Chandel, R. S., & Srikanthan, T. (1999). Static modeling of GMAW process using artificial neural networks. Materials and Manufacturing Processes, 14(1), 13–35. https://doi.org/10.1080/10426919908914802
Dias, M., Pragana, J. P. M., Ferreira, B., Ribeiro, I., & Silva, C. M. A. (2022). Economic and Environmental Potential of Wire-Arc Additive Manufacturing. Sustainability (Switzerland), 14(9). https://doi.org/10.3390/su14095197
Ding, D., Pan, Z., Cuiuri, D., & Li, H. (2014). A tool-path generation strategy for wire and arc additive manufacturing. International Journal of Advanced Manufacturing Technology, 73(1–4), 173–183. https://doi.org/10.1007/s00170-014-5808-5
Ding, D., Pan, Z., Cuiuri, D., & Li, H. (2015). Wire-feed additive manufacturing of metal components: technologies, developments and future interests. The International Journal of Advanced Manufacturing Technology, 81(1), 465–481. https://doi.org/10.1007/s00170-015-7077-3
Ding, J., Martina, F., & Williams, S. (2015). Production of large metallic components by additive manufacture – issues and achievements. 1st Metallic Materials and Processes: Industrial Challenges, November.
Dinovitzer, M., Chen, X., Laliberte, J., Huang, X., & Frei, H. (2019). Effect of wire and arc additive manufacturing (WAAM) process parameters on bead geometry and microstructure. Additive Manufacturing, 26, 138–146. https://doi.org/10.1016/J.ADDMA.2018.12.013
Diourté, A., Bugarin, F., Bordreuil, C., & Segonds, S. (2021). Continuous three-dimensional path planning (CTPP) for complex thin parts with wire arc additive manufacturing. Additive Manufacturing, 37, 101622. https://doi.org/10.1016/j.addma.2020.101622
Eimer, E., Williams, S., Ding, J., Ganguly, S., & Chehab, B. (2021). Effect of substrate alloy type on the microstructure of the substrate and deposited material interface in aluminium wire + arc additive manufacturing. Metals, 11(6). https://doi.org/10.3390/met11060916
Elgazzar, H., & Abdelghany, K. (2022). Recent Research Progress and Future Prospects in the Additive Manufacturing of Biomedical Magnesium and Titanium Implants. In Additive and Subtractive Manufacturing Processes. https://doi.org/10.1201/9781003327394-8
Elsheikh, A. H., Shanmugan, S., Muthuramalingam, T., Thakur, A. K., Essa, F. A., Ibrahim, A. M. M., & Mosleh, A. O. (2022). A comprehensive review on residual stresses in turning. Advances in Manufacturing, 10(2), 287–312. https://doi.org/10.1007/s40436-021-00371-0
Fairfax, E., & Steinzig, M. (2016). A Summary of Failures Caused by Residual Stresses (pp. 209–214). https://doi.org/10.1007/978-3-319-21765-9_26
Ford, S. (2016). Additive manufacturing and sustainability : an exploratory study of the advantages and challenges. 137. https://doi.org/10.1016/j.jclepro.2016.04.150
Foster, J., Cullen, C., Fitzpatrick, S., Payne, G., Hall, L., & Marashi, J. (2019). Remanufacture of hot forging tools and dies using laser metal deposition with powder and a hard-facing alloy Stellite 21®. Journal of Remanufacturing, 9(3), 189–203. https://doi.org/10.1007/s13243-018-0063-9
Frazier, W. E. (2014). Metal additive manufacturing: A review. In Journal of Materials Engineering and Performance (Vol. 23, Issue 6, pp. 1917–1928). https://doi.org/10.1007/s11665-014-0958-z
Friel, R. J. (2015). Power ultrasonics for additive manufacturing and consolidating of materials. Power Ultrasonics: Applications of High-Intensity Ultrasound, 313–335. https://doi.org/10.1016/B978-1-78242-028-6.00013-2
G.P., R., Kamaraj, M., & Bakshi, S. R. (2017). Hardfacing of AISI H13 tool steel with Stellite 21 alloy using cold metal transfer welding process. Surface and Coatings Technology, 326, 63–71. https://doi.org/10.1016/j.surfcoat.2017.07.050
Gary S. Schajer, C. O. R. (2013). Overview of Residual Stresses and Their Measurement. 8(10), 2565–2567.
Gasser, A., Backes, G., Kelbassa, I., Weisheit, A., & Wissenbach, K. (2010). Laser additive manufacturing: laser metal deposition (LMD) and selective laser melting (SLM) in turbo-engine applications. Laser Material Processing, 2, 58–63.
Ge, J., Lin, J., Chen, Y., Lei, Y., & Fu, H. (2018). Characterization of wire arc additive manufacturing 2Cr13 part: Process stability, microstructural evolution, and tensile properties. Journal of Alloys and Compounds, 748, 911–921. https://doi.org/10.1016/j.jallcom.2018.03.222
Geng, H., Li, J., Xiong, J., Lin, X., & Zhang, F. (2017). Optimization of wire feed for GTAW based additive manufacturing. Journal of Materials Processing Technology, 243, 40–47. https://doi.org/10.1016/j.jmatprotec.2016.11.027
Ghafoori, E., Dahaghin, H., Diao, C., Pichler, N., Li, L., Mohri, M., Ding, J., Ganguly, S., & Williams, S. (2023). Fatigue strengthening of damaged steel members using wire arc additive manufacturing. Engineering Structures, 284(March), 115911. https://doi.org/10.1016/j.engstruct.2023.115911
Gibson, I., Rosen, D., & Stucker, B. (2015a). 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing. In Additive Manufacturing Technologies.
Gibson, I., Rosen, D., & Stucker, B. (2015b). Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing, second edition. Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, Second Edition, Dmd, 1–498. https://doi.org/10.1007/978-1-4939-2113-3
Gierth, M., Henckell, P., Ali, Y., Scholl, J., & Bergmann, J. P. (2020). Wire Arc Additive Manufacturing (WAAM) of aluminum alloy AlMg5Mn with energy-reduced Gas Metal Arc Welding (GMAW). Materials, 13(12), 1–22. https://doi.org/10.3390/ma13122671
Gornet, T. (2017). History of Additive Manufacturing. 1–24. https://doi.org/10.4018/978-1-5225-2289-8.ch001
Gorsse, S., Hutchinson, C., Gouné, M., & Banerjee, R. (2017). Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys. Science and Technology of Advanced Materials, 18(1), 584–610. https://doi.org/10.1080/14686996.2017.1361305
Graf, B., Gumenyuk, A., & Rethmeier, M. (2012). Laser Metal Deposition as Repair Technology for Stainless Steel and Titanium Alloys. Physics Procedia, 39, 376–381. https://doi.org/10.1016/j.phpro.2012.10.051
GUO, J., FU, H., PAN, B., & KANG, R. (2021). Recent progress of residual stress measurement methods: A review. Chinese Journal of Aeronautics, 34(2), 54–78. https://doi.org/10.1016/j.cja.2019.10.010
Guo, N., & Leu, M. C. (2013). Additive manufacturing: Technology, applications and research needs. Frontiers of Mechanical Engineering, 8(3), 215–243. https://doi.org/10.1007/s11465-013-0248-8
Haden, C. V., Zeng, G., Carter, F. M., Ruhl, C., Krick, B. A., & Harlow, D. G. (2017). Wire and arc additive manufactured steel: Tensile and wear properties. Additive Manufacturing, 16, 115–123. https://doi.org/10.1016/j.addma.2017.05.010
Hassel, T., & Carstensen, T. (2020). Properties and anisotropy behaviour of a nickel base alloy material produced by robot-based wire and arc additive manufacturing. Welding in the World, 64(11), 1921–1931. https://doi.org/10.1007/s40194-020-00971-7
Hawaldar, N., & Zhang, J. (2018). A comparative study of fabrication of sand casting mold using additive manufacturing and conventional process. International Journal of Advanced Manufacturing Technology, 97(1–4), 1037–1045. https://doi.org/10.1007/s00170-018-2020-z
Hönnige, J. R., Colegrove, P. A., Ahmad, B., Fitzpatrick, M. E., Ganguly, S., Lee, T. L., & Williams, S. W. (2018). Residual stress and texture control in Ti-6Al-4V wire + arc additively manufactured intersections by stress relief and rolling. Materials and Design, 150(2017), 193–205. https://doi.org/10.1016/j.matdes.2018.03.065
Hu, Z., Qin, X., & Shao, T. (2017). Welding Thermal Simulation and Metallurgical Characteristics Analysis in WAAM for 5CrNiMo Hot Forging Die Remanufacturing. Procedia Engineering, 207, 2203–2208. https://doi.org/10.1016/j.proeng.2017.10.982
ISO/ASTM International. (2017). Designation: E384-17 Standard Test Method for Microindentation Hardness of Materials. The Biology of the Xenarthra, 281–293. https://doi.org/10.1520/E0384-17
Ivanova, O., Williams, C., & Campbell, T. (2013). Additive manufacturing (AM) and nanotechnology: Promises and challenges. Rapid Prototyping Journal, 19(5), 353–364. https://doi.org/10.1108/RPJ-12-2011-0127
Ivántabernero, Paskual, A., Álvarez, P., & Suárez, A. (2018). Study on Arc Welding Processes for High Deposition Rate Additive Manufacturing. Procedia CIRP, 68, 358–362. https://doi.org/10.1016/j.procir.2017.12.095
Javaid, M., & Haleem, A. (2019). Current status and applications of additive manufacturing in dentistry: A literature-based review. Journal of Oral Biology and Craniofacial Research, 9(3), 179–185. https://doi.org/10.1016/j.jobcr.2019.04.004
Kanishka, K., & Acherjee, B. (2023). A systematic review of additive manufacturing-based remanufacturing techniques for component repair and restoration. Journal of Manufacturing Processes, 89, 220–283. https://doi.org/https://doi.org/10.1016/j.jmapro.2023.01.034
Kapil, S., Joshi, P., Kulkarni, P. M., Negi, S., Kumar, R., & Karunakaran, K. P. (2018). Elimination of support mechanism in additive manufacturing through substrate tilting. Rapid Prototyping Journal, 24(7), 1155–1165. https://doi.org/10.1108/RPJ-07-2017-0139
Kapil, S., Kulkarni, P., Joshi, P., Negi, S., & Karunakaran, K. P. (2019). Retrofitment of a CNC machine for omni-directional tungsten inert gas cladding. Virtual and Physical Prototyping, 14(3), 293–306. https://doi.org/10.1080/17452759.2018.1552484
Kapil, S., Rajput, A. S., & Sarma, R. (2022). Hybridization in wire arc additive manufacturing. Frontiers in Mechanical Engineering, 8(September), 1–19. https://doi.org/10.3389/fmech.2022.981846
Karpagaraj, A., Baskaran, S., Arunnellaiappan, T., & Kumar, N. R. (2020). A review on the suitability of wire arc additive manufacturing (WAAM) for stainless steel 316. AIP Conference Proceedings, 2247(July). https://doi.org/10.1063/5.0004148
Karunakaran, K. P., Suryakumar, S., Pushpa, V., & Akula, S. (2009). Retrofitment of a CNC machine for hybrid layered manufacturing. International Journal of Advanced Manufacturing Technology, 45(7–8), 690–703. https://doi.org/10.1007/s00170-009-2002-2
Kim, I. S., Son, K. J., Yang, Y. S., & Yaragada, P. K. D. V. (2003). Sensitivity analysis for process parameters in GMA welding processes using a factorial design method. International Journal of Machine Tools and Manufacture, 43(8), 763–769. https://doi.org/10.1016/S0890-6955(03)00054-3
Kim, K. C., & Maev, R. G. (2004). Neural network analysis for evaluating welding process. Key Engineering Materials, 270–273(III), 2357–2364. https://doi.org/10.4028/www.scientific.net/kem.270-273.2357
Koehler, H., Partes, K., Seefeld, T., & Vollertsen, F. (2010). Laser reconditioning of crankshafts: From lab to application. Physics Procedia, 5(PART 1), 387–397. https://doi.org/10.1016/j.phpro.2010.08.160
Köhler, M., Fiebig, S., Hensel, J., & Dilger, K. (2019). Wire and arc additive manufacturing of aluminum components. Metals, 9(5), 1–9. https://doi.org/10.3390/met9050608
Koli, Y., Arora, S., Ahmad, S., Priya, Yuvaraj, N., & Khan, Z. A. (2023). Investigations and Multi-response Optimization of Wire Arc Additive Manufacturing Cold Metal Transfer Process Parameters for Fabrication of SS308L Samples. Journal of Materials Engineering and Performance, 32(5), 2463–2475. https://doi.org/10.1007/s11665-022-07282-6
Kozamernik, N., & Bra, D. (2020). WAAM system with interpass temperature control and forced cooling for near-net-shape printing of small metal components. 1955–1968.
Krishna, R., Manjaiah, M., & Mohan, C. B. (2021). Chapter 3 - Developments in additive manufacturing. In M. Manjaiah, K. Raghavendra, N. Balashanmugam, & J. P. B. T.-A. M. Davim (Eds.), Woodhead Publishing Reviews: Mechanical Engineering Series (pp. 37–62). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-12-822056-6.00002-3
Kulkarni, A., Dwivedi, D. K., & Vasudevan, M. (2020). Microstructure and mechanical properties of A-TIG welded AISI 316L SS-Alloy 800 dissimilar metal joint. Materials Science & Engineering A, 139685. https://doi.org/10.1016/j.msea.2020.139685
Lakshminarayanan, A. K., Balasubramanian, V., & Elangovan, K. (2009). Effect of welding processes on tensile properties of AA6061 aluminium alloy joints. International Journal of Advanced Manufacturing Technology, 40(3–4), 286–296. https://doi.org/10.1007/s00170-007-1325-0
Le, V. T., Si, D., Khoa, T., & Paris, H. (2021). Wire and arc additive manufacturing of 308L stainless steel components : Optimization of processing parameters and material properties. Engineering Science and Technology, an International Journal, 24(4), 1015–1026. https://doi.org/10.1016/j.jestch.2021.01.009
Lee, J. H., Lee, C. M., & Kim, D. H. (2022). Repair of damaged parts using wire arc additive manufacturing in machine tools. Journal of Materials Research and Technology, 16, 13–24. https://doi.org/10.1016/j.jmrt.2021.11.156
Leino, M., Pekkarinen, J., & Soukka, R. (2016). The role of laser additive manufacturing methods of metals in repair, refurbishment and remanufacturing - Enabling circular economy. Physics Procedia, 83, 752–760. https://doi.org/10.1016/j.phpro.2016.08.077
Lewis, S. R., Lewis, R., & Fletcher, D. I. (2015). Assessment of laser cladding as an option for repairing/enhancing rails. Wear, 330–331, 581–591. https://doi.org/10.1016/j.wear.2015.02.027
Li, F., Chen, S., Shi, J., Tian, H., & Zhao, Y. (2017). Evaluation and Optimization of a Hybrid Manufacturing Process Combining Wire Arc Additive Manufacturing with Milling for the Fabrication of Stiffened Panels. Applied Sciences, 7(12), 1233. https://doi.org/10.3390/app7121233
Li, Y., Dong, S., Yan, S., Liu, X., He, P., & Xu, B. (2018). Surface remanufacturing of ductile cast iron by laser cladding Ni-Cu alloy coatings. Surface and Coatings Technology, 347(March), 20–28. https://doi.org/10.1016/j.surfcoat.2018.04.065
Li, Y., Han, Q., Horváth, I., & Zhang, G. (2019a). Repairing surface defects of metal parts by groove machining and wire + arc based filling. Journal of Materials Processing Technology, 274, 116268. https://doi.org/10.1016/J.JMATPROTEC.2019.116268
Li, Y., Han, Q., Horváth, I., & Zhang, G. (2019b). Repairing surface defects of metal parts by groove machining and wire + arc based filling. Journal of Materials Processing Technology, 274(92), 116268. https://doi.org/10.1016/j.jmatprotec.2019.116268
Li, Y., Su, C., & Zhu, J. (2022). Comprehensive review of wire arc additive manufacturing: Hardware system, physical process, monitoring, property characterization, application and future prospects. Results in Engineering, 13(December 2021), 100330. https://doi.org/10.1016/j.rineng.2021.100330
Lin, Z., Song, K., & Yu, X. (2021). A review on wire and arc additive manufacturing of titanium alloy. Journal of Manufacturing Processes, 70(May), 24–45. https://doi.org/10.1016/j.jmapro.2021.08.018
Lipskas, J., Deep, K., & Yao, W. (2019). Robotic-Assisted 3D Bio-printing for Repairing Bone and Cartilage Defects through a Minimally Invasive Approach. Scientific Reports, 9(1), 0–31. https://doi.org/10.1038/s41598-019-38972-2
Liu, D., Lippold, J. C., Li, J., Rohklin, S. R., Vollbrecht, J., & Grylls, R. (2014). Laser engineered net shape (LENS) technology for the repair of Ni-base superalloy turbine components. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 45(10), 4454–4469. https://doi.org/10.1007/s11661-014-2397-8
Liu, L., Zhuang, Z., Liu, F., & Zhu, M. (2013). Additive manufacturing of steel-bronze bimetal by shaped metal deposition: Interface characteristics and tensile properties. International Journal of Advanced Manufacturing Technology, 69(9–12), 2131–2137. https://doi.org/10.1007/s00170-013-5191-7
Liu, Y., Wang, W., Xie, J., Sun, S., Wang, L., Qian, Y., Meng, Y., & Wei, Y. (2012). Microstructure and mechanical properties of aluminum 5083 weldments by gas tungsten arc and gas metal arc welding. Materials Science and Engineering A, 549, 7–13. https://doi.org/10.1016/j.msea.2012.03.108
Lorenz, K. A., Jones, J. B., Wimpenny, D. I., & Jackson, M. R. (2020). A review of hybrid manufacturing. Proceedings - 26th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2015, 96–108.
Lu, G., & Zangari, G. (2002). Corrosion resistance of ternary Ni-P based alloys in sulfuric acid solutions. Electrochimica Acta, 47(18), 2969–2979. https://doi.org/10.1016/S0013-4686(02)00198-6
Maranhão, C., & Davim, J. P. (2012). Residual stresses in machining using FEM analysis - A review. Reviews on Advanced Materials Science, 30(3), 267–272.
Marenych, O. O., Kostryzhev, A. G., Pan, Z., Li, H., & van Duin, S. (2021). Application of wire arc additive manufacturing for repair of Monel alloy components. Australian Journal of Mechanical Engineering, 19(5), 609–617. https://doi.org/10.1080/14484846.2021.1981528
Marinelli, G., Martina, F., Ganguly, S., Williams, S., Lewtas, H., Hancock, D., Mehraban, S., & Lavery, N. (2019). Microstructure and thermal properties of unalloyed tungsten deposited by Wire + Arc Additive Manufacture. Journal of Nuclear Materials, 522, 45–53. https://doi.org/10.1016/J.JNUCMAT.2019.04.049
Martina, F., Colegrove, P. A., Williams, S. W., & Meyer, J. (2015). Microstructure of Interpass Rolled Wire + Arc Additive Manufacturing Ti-6Al-4V Components. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 46(12), 6103–6118. https://doi.org/10.1007/s11661-015-3172-1
Martina, F., Roy, M., Colegrove, P., & Williams, S. W. (2014). Residual stress reduction in high pressure interpass rolled wire+arc additive manufacturing TI-6AL-4V components. 25th Annual International Solid Freeform Fabrication Symposium � An Additive Manufacturing Conference, SFF 2014, 89–94.
Meiners, F., Ihne, J., Jürgens, P., Hemes, S., Mathes, M., Sizova, I., Bambach, M., Hama-Saleh, R., & Weisheit, A. (2020). New hybrid manufacturing routes combining forging and additive manufacturing to efficiently produce high performance components from Ti-6Al-4V. Procedia Manufacturing, 47(2019), 261–267. https://doi.org/10.1016/j.promfg.2020.04.215
Mhapsekar, K., McConaha, M., & Anand, S. (2018). Additive Manufacturing Constraints in Topology Optimization for Improved Manufacturability. Journal of Manufacturing Science and Engineering, 140(5). https://doi.org/10.1115/1.4039198
Michel, F., Lockett, H., Ding, J., Martina, F., Marinelli, G., & Williams, S. (2019). A modular path planning solution for Wire + Arc Additive Manufacturing. Robotics and Computer-Integrated Manufacturing, 60(April), 1–11. https://doi.org/10.1016/j.rcim.2019.05.009
Montgomery, D. C. A. S. U. (2017). D esign and Analysis of Experiments Ninth Edition. In Arizona State University.
Motallebi, R., Savaedi, Z., & Mirzadeh, H. (2022). Additive manufacturing – A review of hot deformation behavior and constitutive modeling of flow stress. Current Opinion in Solid State and Materials Science, 26(3), 100992. https://doi.org/10.1016/j.cossms.2022.100992
Mudge, R. P., & Wald, N. R. (2007). Laser engineered net shaping advances additive manufacturing and repair. Welding Journal (Miami, Fla), 86(1), 44–48.
Murr, L. E., Gaytan, S. M., Ceylan, A., Martinez, E., & Martinez, J. L. (2010). Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting. Acta Materialia, 58(5), 1887–1894. https://doi.org/10.1016/j.actamat.2009.11.032
Najmon, J. C., Raeisi, S., & Tovar, A. (2019). Review of additive manufacturing technologies and applications in the aerospace industry. Additive Manufacturing for the Aerospace Industry, 7–31. https://doi.org/10.1016/B978-0-12-814062-8.00002-9
Negi, S., Kapil, S., Sharma, A., Choudhary, P., Bhargava, P., & Karunakaran, K. P. (2020). Retrofitment of Laser Cladding System with CNC Machine for Hybrid Layer Manufacturing. In M. S. Shunmugam & M. Kanthababu (Eds.), Advances in Additive Manufacturing and Joining (pp. 47–59). Springer Singapore.
Negi, S., Nambolan, A. A., Kapil, S., Joshi, P. S., R, M., Karunakaran, K. P., & Bhargava, P. (2020). Review on electron beam based additive manufacturing. Rapid Prototyping Journal, 26(3), 485–498. https://doi.org/10.1108/RPJ-07-2019-0182
Nowotny, S., Scharek, S., Beyer, E., & Richter, K. H. (2007). Laser beam build-up welding: Precision in repair, surface cladding, and direct 3D metal deposition. Journal of Thermal Spray Technology, 16(3), 344–348. https://doi.org/10.1007/s11666-007-9028-5
Oh, W. J., Lee, W. J., Kim, M. S., Jeon, J. B., & Shim, D. S. (2019). Repairing additive-manufactured 316L stainless steel using direct energy deposition. Optics and Laser Technology, 117, 6–17. https://doi.org/10.1016/j.optlastec.2019.04.012
Onuike, B., & Bandyopadhyay, A. (2019). Additive manufacturing in repair: Influence of processing parameters on properties of Inconel 718. Materials Letters, 252, 256–259. https://doi.org/10.1016/j.matlet.2019.05.114
Pant, P. (2020). Residual stress distributions in additively manufactured parts: effect of build orientation (Vol. 1869). Linköping University Electronic Press.
Patel, M., Mulgaonkar, S., Desai, H., & Borse, T. (2021). Development and Implementation of Wire Arc Additive Manufacturing (WAAM) Based on Pulse Spray GMAW for Aluminum Alloy (AlSi7Mg). Transactions of the Indian Institute of Metals, 74(5), 1129–1140. https://doi.org/10.1007/s12666-020-02154-w
Peng, X., Kong, L., Fuh, J. Y. H., & Wang, H. (2021). A review of post-processing technologies in additive manufacturing. In Journal of Manufacturing and Materials Processing (Vol. 5, Issue 2). https://doi.org/10.3390/jmmp5020038
Pinkerton, A. J. (2010). Laser direct metal deposition: Theory and applications in manufacturing and maintenance. Advances in Laser Materials Processing: Technology, Research and Application, 461–491. https://doi.org/10.1533/9781845699819.6.461
Piscopo, G., & Iuliano, L. (2022). Current research and industrial application of laser powder directed energy deposition. International Journal of Advanced Manufacturing Technology, 119(11–12), 6893–6917. https://doi.org/10.1007/s00170-021-08596-w
Poonnayom, P., & Kimapong, K. (2018). SMAW electrodes selection for producing hard-faced layer on FC25 cast iron surface. Key Engineering Materials, 777 KEM, 339–343. https://doi.org/10.4028/www.scientific.net/KEM.777.339
Prado-Cerqueira, J. L., Diéguez, J. L., & Camacho, A. M. (2017). Preliminary development of a Wire and Arc Additive Manufacturing system (WAAM). Procedia Manufacturing, 13, 895–902. https://doi.org/10.1016/j.promfg.2017.09.154
Radaj, D. (1990). Fracture mechanics approach for assessment of fatigue strength of seam welded joints. Design and Analysis of Fatigue Resistant Welded Structures, 277–298. https://doi.org/10.1533/9781845698751.277
Rahito, Wahab, D. A., & Azman, A. H. (2019). Additive manufacturing for repair and restoration in remanufacturing: An overview from object design and systems perspectives. In Processes (Vol. 7, Issue 11). https://doi.org/10.3390/pr7110802
Raut, L. P., & Taiwade, R. V. (2021). Wire Arc Additive Manufacturing: A Comprehensive Review and Research Directions. Journal of Materials Engineering and Performance, 30(7), 4768–4791. https://doi.org/10.1007/s11665-021-05871-5
Ravi, G., Murugan, N., & Arulmani, R. (2020). Microstructure and mechanical properties of Inconel-625 slab component fabricated by wire arc additive manufacturing. Materials Science and Technology (United Kingdom), 36(16), 1785–1795. https://doi.org/10.1080/02670836.2020.1836737
Reisch, R., Hauser, T., Kamps, T., & Knoll, A. (2020). Robot based wire arc additive manufacturing system with context-sensitive multivariate monitoring framework. Procedia Manufacturing, 51(2019), 732–739. https://doi.org/10.1016/j.promfg.2020.10.103
Reisgen, U., Sharma, R., Mann, S., & Oster, L. (2020). Increasing the manufacturing efficiency of WAAM by advanced cooling strategies. Welding in the World, 64(8), 1409–1416. https://doi.org/10.1007/s40194-020-00930-2
Ren, L., Gu, H., Wang, W., Wang, S., Li, C., Wang, Z., Zhai, Y., & Ma, P. (2020). The Microstructure and Properties of an Al-Mg-0.3Sc Alloy Deposited by Wire Arc Additive Manufacturing. Metals, 10(320).
Ren, L., Padathu, A. P., Ruan, J., Sparks, T., & Liou, F. W. (2006). Three dimensional die repair using a hybrid manufacturing system. 17th Solid Freeform Fabrication Symposium, SFF 2006, 51–59.
Ríos, S., Colegrove, P. A., & Williams, S. W. (2019). Metal transfer modes in plasma Wire + Arc additive manufacture. Journal of Materials Processing Technology, 264, 45–54. https://doi.org/10.1016/J.JMATPROTEC.2018.08.043
Rodrigues, T. A., Bairrão, N., Farias, F. W. C., Shamsolhodaei, A., Shen, J., Zhou, N., Maawad, E., Schell, N., Santos, T. G., & Oliveira, J. P. (2022). Steel-copper functionally graded material produced by twin-wire and arc additive manufacturing (T-WAAM). Materials and Design, 213, 110270. https://doi.org/10.1016/j.matdes.2021.110270
Rodrigues, T. A., Duarte, V., Miranda, R. M., Santos, T. G., & Oliveira, J. P. (2019). Current status and perspectives on wire and arc additive manufacturing (WAAM). Materials, 12(7). https://doi.org/10.3390/ma12071121
Rodrigues, T. A., Duarte, V. R., Miranda, R. M., Santos, T. G., & Oliveira, J. P. (2021). Ultracold-Wire and arc additive manufacturing (UC-WAAM). Journal of Materials Processing Technology, 296(April), 117196. https://doi.org/10.1016/j.jmatprotec.2021.117196
Rodriguez, N., Vázquez, L., Huarte, I., Arruti, E., Tabernero, I., & Alvarez, P. (2018). Wire and arc additive manufacturing: a comparison between CMT and TopTIG processes applied to stainless steel. Welding in the World, 62(5), 1083–1096. https://doi.org/10.1007/s40194-018-0606-6
Rosli, N. A., Alkahari, M. R., bin Abdollah, M. F., Maidin, S., Ramli, F. R., & Herawan, S. G. (2021). Review on effect of heat input for wire arc additive manufacturing process. Journal of Materials Research and Technology, 11, 2127–2145. https://doi.org/10.1016/J.JMRT.2021.02.002
Rossini, N. S., Dassisti, M., Benyounis, K. Y., & Olabi, A. G. (2012). Methods of measuring residual stresses in components. Materials and Design, 35, 572–588. https://doi.org/10.1016/j.matdes.2011.08.022
Rumman, R., Lewis, D. A., Hascoet, J. Y., & Quinton, J. S. (2019). Laser metal deposition and wire arc additive manufacturing of materials: An overview. Archives of Metallurgy and Materials, 64(2), 467–473. https://doi.org/10.24425/amm.2019.127561
Ryan, E. M. (2018). On Wire and Arc Additive Manufacture of Aluminium (Issue September).
Saboori, A., Aversa, A., Marchese, G., Biamino, S., Lombardi, M., & Fino, P. (2019). Application of directed energy deposition-based additive manufacturing in repair. Applied Sciences (Switzerland), 9(16). https://doi.org/10.3390/app9163316
Salmi, M. (2021). Additive Manufacturing Processes in Medical Applications. Materials, 14(1), 191. https://doi.org/10.3390/ma14010191
Sames, W. J., List, F. A., Pannala, S., Dehoff, R. R., & Babu, S. S. (2016). The metallurgy and processing science of metal additive manufacturing. International Materials Reviews, 61(5), 315–360. https://doi.org/10.1080/09506608.2015.1116649
Sarathchandra, D. T., Davidson, M. J., & Visvanathan, G. (2020). Parameters effect on SS304 beads deposited by wire arc additive manufacturing. Materials and Manufacturing Processes, 35(7), 852–858. https://doi.org/10.1080/10426914.2020.1743852
Schroepfer, D., Kromm, A., & Kannengiesser, T. (2017). Engineering approach to assess residual stresses in welded components. Welding in the World, 61(1), 91–106. https://doi.org/10.1007/s40194-016-0394-9
Selvi, S., Vishvaksenan, A., & Rajasekar, E. (2017). SC. Defence Technology. https://doi.org/10.1016/j.dt.2017.08.002
Senthil, T. S., Ramesh Babu, S., Puviyarasan, M., & Dhinakaran, V. (2021). Mechanical and microstructural characterization of functionally graded Inconel 825 - SS316L fabricated using wire arc additive manufacturing. Journal of Materials Research and Technology, 15, 661–669. https://doi.org/10.1016/j.jmrt.2021.08.060
Seow, C. E., Coules, H. E., Wu, G., Khan, R. H. U., Xu, X., & Williams, S. (2019). Wire + Arc Additively Manufactured Inconel 718: Effect of post-deposition heat treatments on microstructure and tensile properties. Materials and Design, 183, 108157. https://doi.org/10.1016/j.matdes.2019.108157
Shah, A., Aliyev, R., Zeidler, H., & Krinke, S. (2023). A Review of the Recent Developments and Challenges in Wire Arc Additive Manufacturing (WAAM) Process. Journal of Manufacturing and Materials Processing, 7(3), 1–30. https://doi.org/10.3390/jmmp7030097
Shim, D. S., Lee, H., Son, Y., & Oh, W. J. (2021). Effects of pre- and post-repair heat treatments on microstructure and tensile behaviors of 630 stainless steel repaired by metal additive manufacturing. Journal of Materials Research and Technology, 13, 980–999. https://doi.org/10.1016/j.jmrt.2021.05.039
Shojaati, M., Farshid, S., Bozorg, K., Vatanara, M., Yazdizadeh, M., Abbasi, M., & Ph, D. (2020). International Journal of Pressure Vessels and Piping The heat affected zone of X20Cr13 martensitic stainless steel after multiple repair welding : Microstructure and mechanical properties assessment. International Journal of Pressure Vessels and Piping, 188(September), 104205. https://doi.org/10.1016/j.ijpvp.2020.104205
Singh, A., Kapil, S., & Das, M. (2020). A comprehensive review of the methods and mechanisms for powder feedstock handling in directed energy deposition. Additive Manufacturing, 35, 101388. https://doi.org/10.1016/J.ADDMA.2020.101388
Singh, S. R., & Khanna, P. (2021). Wire arc additive manufacturing (WAAM): A new process to shape engineering materials. Materials Today: Proceedings, 44(xxxx), 118–128. https://doi.org/10.1016/j.matpr.2020.08.030
Somlo, K., & Sziebig, G. (2019). Aspects of multi-pass GTAW of low alloyed steels. IFAC-PapersOnLine, 52(22), 101–107. https://doi.org/10.1016/j.ifacol.2019.11.056
Squires, L., Roberts, E., & Bandyopadhyay, A. (2023). Radial bimetallic structures via wire arc directed energy deposition-based additive manufacturing. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-39230-w
Srivastava, M., & Rathee, S. (2022). Additive manufacturing: recent trends, applications and future outlooks. Progress in Additive Manufacturing, 7(2), 261–287. https://doi.org/10.1007/s40964-021-00229-8
Srivastava, S., & Garg, R. K. (2017). Process parameter optimization of gas metal arc welding on IS:2062 mild steel using response surface methodology. Journal of Manufacturing Processes, 25, 296–305. https://doi.org/10.1016/j.jmapro.2016.12.016
Srivastava, S., Garg, R. K., Sharma, V. S., & Sachdeva, A. (2021). Measurement and Mitigation of Residual Stress in Wire-Arc Additive Manufacturing: A Review of Macro-Scale Continuum Modelling Approach. Archives of Computational Methods in Engineering, 28(5), 3491–3515. https://doi.org/10.1007/s11831-020-09511-4
Sun, S. Da, Liu, Q., Brandt, M., Luzin, V., Cottam, R., Janardhana, M., & Clark, G. (2014). Effect of laser clad repair on the fatigue behaviour of ultra-high strength AISI 4340 steel. Materials Science and Engineering A, 606, 46–57. https://doi.org/10.1016/j.msea.2014.03.077
Svetlizky, D., Das, M., Zheng, B., Vyatskikh, A. L., Bose, S., Bandyopadhyay, A., Schoenung, J. M., Lavernia, E. J., & Eliaz, N. (2021). Directed energy deposition (DED) additive manufacturing: Physical characteristics, defects, challenges and applications. Materials Today, 49, 271–295. https://doi.org/10.1016/J.MATTOD.2021.03.020
Szost, B. A., Terzi, S., Martina, F., Boisselier, D., Prytuliak, A., Pirling, T., Hofmann, M., & Jarvis, D. J. (2016). A comparative study of additive manufacturing techniques: Residual stress and microstructural analysis of CLAD and WAAM printed Ti-6Al-4V components. Materials and Design, 89, 559–567. https://doi.org/10.1016/j.matdes.2015.09.115
Taek, A., Kim, B., Yue, S., Zhang, Z., Jones, E., Jones, J. R., & Lee, P. D. (2014). Ac ce p t. Journal of Materials Processing Tech. https://doi.org/10.1016/j.jmatprotec.2014.05.006
Tanvir, A. N. M., Ahsan, M. R. U., Seo, G., Kim, J. duk, Ji, C., Bates, B., Lee, Y., & Kim, D. B. (2020). Heat treatment effects on Inconel 625 components fabricated by wire + arc additively manufacturing (WAAM)—part 2: mechanical properties. International Journal of Advanced Manufacturing Technology, 110(7–8), 1709–1721. https://doi.org/10.1007/s00170-020-05980-w
Tarng, Y. S., Juang, S. C., & Chang, C. H. (2002). The use of grey-based Taguchi methods to determine submerged arc welding process parameters in hardfacing. Journal of Materials Processing Technology, 128(1–3), 1–6. https://doi.org/10.1016/S0924-0136(01)01261-4
Taşdemir, A., & Nohut, S. (2020). An overview of wire arc additive manufacturing (WAAM) in shipbuilding industry. Ships and Offshore Structures, 0(0), 1–18. https://doi.org/10.1080/17445302.2020.1786232
Thapliyal, S. (2019). Challenges associated with the wire arc additive manufacturing (WAAM) of aluminum alloys. In Materials Research Express (Vol. 6, Issue 11, p. 112006). https://doi.org/10.1088/2053-1591/ab4dd4
Tomar, B., Shiva, S., & Nath, T. (2022). A review on wire arc additive manufacturing: Processing parameters, defects, quality improvement and recent advances. Materials Today Communications, 31, 103739. https://doi.org/10.1016/J.MTCOMM.2022.103739
Ünsal, I., Hirtler, M., Sviridov, A., & Bambach, M. (2020). Material properties of features produced from EN AW 6016 by wire-arc additive manufacturing. Procedia Manufacturing, 47(2019), 1129–1133. https://doi.org/10.1016/j.promfg.2020.04.131
Uriondo, A., Esperon-Miguez, M., & Perinpanayagam, S. (2015). The present and future of additive manufacturing in the aerospace sector: A review of important aspects. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 229(11), 2132–2147. https://doi.org/10.1177/0954410014568797
Varghese, O. K. (2003). Crystallization and high-temperature structural stability of titanium oxide nanotube arrays.
Veiga, F., Del Val, A. G., Suárez, A., & Alonso, U. (2020). Analysis of the machining process of titanium Ti6Al-4V parts manufactured by wire arc additive manufacturing (WAAM). Materials, 13(3). https://doi.org/10.3390/ma13030766
Veiga, F., Suárez, A., Aldalur, E., Goenaga, I., & Amondarain, J. (2023). Wire Arc Additive Manufacturing Process for Topologically Optimized Aeronautical Fixtures. 3D Printing and Additive Manufacturing, 10(1), 23–33. https://doi.org/10.1089/3dp.2021.0008
Vishnukumar, M., Pramod, R., & Rajesh Kannan, A. (2021). Wire arc additive manufacturing for repairing aluminium structures in marine applications. Materials Letters, 299, 130112. https://doi.org/10.1016/j.matlet.2021.130112
Wandtke, K., Schroepfer, D., Scharf-Wildenhain, R., Haelsig, A., Kannengiesser, T., Kromm, A., & Hensel, J. (2023). Influence of the WAAM process and design aspects on residual stresses in high-strength structural steels. Welding in the World, 0123456789, 1–10. https://doi.org/10.1007/s40194-023-01503-9
Wang, J. F., Sun, Q. J., Wang, H., Liu, J. P., & Feng, J. C. (2016). Effect of location on microstructure and mechanical properties of additive layer manufactured Inconel 625 using gas tungsten arc welding. Materials Science and Engineering A, 676, 395–405. https://doi.org/10.1016/j.msea.2016.09.015
Wang, J., Lin, X., Li, J., Xue, A., Liu, F., Huang, W., & Liang, E. (2020). A study on obtaining equiaxed prior-β grains of wire and arc additive manufactured Ti–6Al–4V. Materials Science and Engineering A, 772, 138703. https://doi.org/10.1016/j.msea.2019.138703
Wang, J., Zhu, K., Zhang, W., Zhu, X., & Lu, X. (2023). Microstructural and defect evolution during WAAM resulting in mechanical property differences for AA5356 component. Journal of Materials Research and Technology, 22, 982–996. https://doi.org/10.1016/j.jmrt.2022.11.116
Wang, X., Wang, A., & Li, Y. (2020). Study on the deposition accuracy of omni-directional GTAW-based additive manufacturing. Journal of Materials Processing Technology, 282(February), 116649. https://doi.org/10.1016/j.jmatprotec.2020.116649
Warsi, R., Kazmi, K. H., & Chandra, M. (2022). Mechanical properties of wire and arc additive manufactured component deposited by a CNC controlled GMAW. Materials Today: Proceedings, 56, 2818–2825. https://doi.org/10.1016/J.MATPR.2021.10.114
Williams, S. W., Martina, F., Addison, A. C., Ding, J., Pardal, G., & Colegrove, P. (2016). Wire + Arc additive manufacturing. Materials Science and Technology, 32(7), 641–647. https://doi.org/10.1179/1743284715Y.0000000073
Williams, S. W., Martina, F., Addison, A. C., Ding, J., Pardal, G., Colegrove, P., Number, D., Waammat, S. W. W., Oct, A., Williams, S. W., Martina, F., & Williams, S. W. (2015). Wire+arc additive manufacturing vs. traditional machining from solid: a cost comparison. Materials Science and Technology (United Kingdom), 32(October), 27.
Wilson, J. M., Piya, C., Shin, Y. C., Zhao, F., & Ramani, K. (2014). Remanufacturing of turbine blades by laser direct deposition with its energy and environmental impact analysis. Journal of Cleaner Production, 80, 170–178. https://doi.org/10.1016/j.jclepro.2014.05.084
Withers, P. J., & Bhadeshia, H. K. D. H. (2001). Residual stress part 2 - Nature and origins. Materials Science and Technology, 17(4), 366–375. https://doi.org/10.1179/026708301101510087
Wu, B., Pan, Z., Ding, D., Cuiuri, D., Li, H., Xu, J., & Norrish, J. (2018). A review of the wire arc additive manufacturing of metals: properties, defects and quality improvement. Journal of Manufacturing Processes, 35, 127–139. https://doi.org/10.1016/J.JMAPRO.2018.08.001
Wu, B., Qiu, Z., Pan, Z., Carpenter, K., Wang, T., Ding, D., Duin, S. Van, & Li, H. (2020). Enhanced interface strength in steel-nickel bimetallic component fabricated using wire arc additive manufacturing with interweaving deposition strategy. Journal of Materials Science and Technology, 52, 226–234. https://doi.org/10.1016/j.jmst.2020.04.019
Xia, Y., Peng, M., Teng, H., Chen, Y., & Zhang, X. (2021). Multi-properties optimization of welding parameters of wire arc additive manufacture in dissimilar joint of iron-based alloy and nickel-based superalloy using grey-based Taguchi method. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 235(23), 6984–6995. https://doi.org/10.1177/09544062211008928
Xin, H., Tarus, I., Cheng, L., Veljkovic, M., Persem, N., & Lorich, L. (2021). Experiments and numerical simulation of wire and arc additive manufactured steel materials. Structures, 34, 1393–1402. https://doi.org/10.1016/J.ISTRUC.2021.08.055
Xiong, J., Liu, G., & Pi, Y. (2019). Increasing stability in robotic GTA-based additive manufacturing through optical measurement and feedback control. Robotics and Computer-Integrated Manufacturing, 59(May 2018), 385–393. https://doi.org/10.1016/j.rcim.2019.05.012
Xu, F. J., Lv, Y. H., Xu, B. S., Liu, Y. X., Shu, F. Y., & He, P. (2013). Effect of deposition strategy on the microstructure and mechanical properties of Inconel 625 superalloy fabricated by pulsed plasma arc deposition. Materials and Design, 45, 446–455. https://doi.org/10.1016/j.matdes.2012.07.013
Yan, L. (2013). Wire and Arc Additive Manufacture (WAAM) reusable tooling investigation. SCHOOL OF APPLIED SCIENCE MRes Welding Engineering, October, 1–34.
Yang, H., & Luo, D. (2019). A Study of Additive Manufacturing Technology’s Development and Impact - Through the Multi-Level Perspective Framework and the Case of Adidas.
Yehorov, Y., da Silva, L. J., & Scotti, A. (2019). Balancing WAAM production costs and wall surface quality through parameter selection: A case study of an Al-Mg5 alloy multilayer-non-oscillated single pass wall. Journal of Manufacturing and Materials Processing, 3(2). https://doi.org/10.3390/jmmp3020032
Yilmaz, O., Gindy, N., & Gao, J. (2010). A repair and overhaul methodology for aeroengine components. Robotics and Computer-Integrated Manufacturing, 26(2), 190–201. https://doi.org/10.1016/j.rcim.2009.07.001
Yoo, S. W., Lee, C. M., & Kim, D. H. (2023). Effect of Functionally Graded Material (FGM) Interlayer in Metal Additive Manufacturing of Inconel-Stainless Bimetallic Structure by Laser Melting Deposition (LMD) and Wire Arc Additive Manufacturing (WAAM). Materials, 16(2). https://doi.org/10.3390/ma16020535
Yuan, L., Ding, D., Pan, Z., Yu, Z., Wu, B., Van Duin, S., Li, H., & Li, W. (2020). Application of multidirectional robotic wire arc additive manufacturing process for the fabrication of complex metallic parts. IEEE Transactions on Industrial Informatics, 16(1), 454–464. https://doi.org/10.1109/TII.2019.2935233
Yuan, L., Pan, Z., Ding, D., He, F., van Duin, S., Li, H., & Li, W. (2020). Investigation of humping phenomenon for the multi-directional robotic wire and arc additive manufacturing. Robotics and Computer-Integrated Manufacturing, 63(July 2019), 101916. https://doi.org/10.1016/j.rcim.2019.101916
Yusuf, S. M., Cutler, S., & Gao, N. (2019). Review : The Impact of Metal Additive. Metals, 9, 1286.
Zeng, Z., Cong, B. Q., Oliveira, J. P., Ke, W. C., Schell, N., Peng, B., Qi, Z. W., Ge, F. G., Zhang, W., & Ao, S. S. (2020). Wire and arc additive manufacturing of a Ni-rich NiTi shape memory alloy: Microstructure and mechanical properties. Additive Manufacturing, 32, 101051. https://doi.org/10.1016/j.addma.2020.101051
Zhai, Y., & Ma, P. (2016). Materials Science & Engineering A The strengthening effect of inter-layer cold working and post-deposition heat treatment on the additively manufactured Al – 6 . 3Cu alloy. Materials Science & Engineering A, 651, 18–26. https://doi.org/10.1016/j.msea.2015.10.101
Zhang, W., Ding, C., Wang, H., Meng, W., Xu, Z., & Wang, J. (2021). The Forming Profile Model for Cold Metal Transfer and Plasma Wire-Arc Deposition of Nickel-Based Alloy. Journal of Materials Engineering and Performance, 30(7), 4872–4881. https://doi.org/10.1007/s11665-021-05485-x
Zhang, X., Cui, W., Li, W., & Liou, F. (2019). A hybrid process integrating reverse engineering, pre-repair processing, additive manufacturing, and material testing for component remanufacturing. Materials, 12(12). https://doi.org/10.3390/ma12121961
Zhang, X., & Liou, F. (2021). Introduction to additive manufacturing. Additive Manufacturing, 1–31. https://doi.org/10.1016/B978-0-12-818411-0.00009-4
Zhang, X., Wang, K., Zhou, Q., Ding, J., Ganguly, S., Grasso, M., Yang, D., Xu, X., Dirisu, P., & Williams, S. W. (2019). Microstructure and mechanical properties of TOP-TIG-wire and arc additive manufactured super duplex stainless steel (ER2594). Materials Science and Engineering A, 762(August 2018), 138097. https://doi.org/10.1016/j.msea.2019.138097
Zhou, Y., Lin, X., Kang, N., Huang, W., & Wang, Z. (2021). Mechanical properties and precipitation behavior of the heat-treated wire + arc additively manufactured 2219 aluminum alloy. Materials Characterization, 171, 110735. https://doi.org/10.1016/j.matchar.2020.110735
Zhuo, Y., Yang, C., Fan, C., Lin, S., Chen, C., & Cai, X. (2020). Microstructure and mechanical properties of wire arc additive repairing Ti–6.5Al–2Sn–2Zr–4Mo–4Cr titanium alloy. Materials Science and Technology (United Kingdom), 36(15), 1712–1719. https://doi.org/10.1080/02670836.2020.1822061
Ziółkowski, M., & Dyl, T. (2020). Possible applications of additive manufacturing technologies in shipbuilding: A review. Machines, 8(4), 1–34. https://doi.org/10.3390/machines8040084
Ahn, D. G. (2021). Directed Energy Deposition (DED) Process: State of the Art. In International Journal of Precision Engineering and Manufacturing - Green Technology (Vol. 8, Issue 2). Korean Society for Precision Engineering. https://doi.org/10.1007/s40684-020-00302-7
Ahsan, M. R. U., Tanvir, A. N. M., Ross, T., Elsawy, A., Oh, M. S., & Kim, D. B. (2020). Fabrication of bimetallic additively manufactured structure (BAMS) of low carbon steel and 316L austenitic stainless steel with wire + arc additive manufacturing. Rapid Prototyping Journal, 26(3), 519–530. https://doi.org/10.1108/RPJ-09-2018-0235
Albannai, A. I. (2022). A Brief Review on The Common Defects in Wire Arc Additive Manufacturing ( Review Paper ). International Journal of Current Science Research and Review, 05(12), 4556–4576. https://doi.org/10.47191/ijcsrr/V5-i12-19
Alberti, E. A., Bueno, B. M. P., & D’Oliveira, A. S. C. M. (2016). Additive manufacturing using plasma transferred arc. The International Journal of Advanced Manufacturing Technology, 83(9), 1861–1871. https://doi.org/10.1007/s00170-015-7697-7
Aldalur, E., Veiga, F., Suárez, A., Bilbao, J., & Lamikiz, A. (2020). Analysis of the wall geometry with different strategies for high deposition wire arc additive manufacturing of mild steel. Metals, 10(7), 1–19. https://doi.org/10.3390/met10070892
Andersen, K., Cook, G. E., Karsai, G., & Ramaswamy, K. (1990). Artificial Neural Networks Applied to Arc Welding Process Modeling and Control. IEEE Transactions on Industry Applications, 26(5), 824–830. https://doi.org/10.1109/28.60056
Artaza, T., Suárez, A., Murua, M., García, J. C., Tabernero, I., & Lamikiz, A. (2019). Wire arc additive manufacturing of Mn4Ni2CrMo steel: Comparison of mechanical and metallographic properties of PAW and GMAW. Procedia Manufacturing, 41, 1071–1078. https://doi.org/10.1016/j.promfg.2019.10.035
Artaza, T., Suárez, A., Veiga, F., Braceras, I., Tabernero, I., Larrañaga, O., & Lamikiz, A. (2020). Wire arc additive manufacturing Ti6Al4V aeronautical parts using plasma arc welding: Analysis of heat-treatment processes in different atmospheres. Journal of Materials Research and Technology, 9(6), 15454–15466. https://doi.org/10.1016/J.JMRT.2020.11.012
ASTM. (1995). Designation: E3-95. Standard Practice sor Preparation of Metallographic Specimens (p. 8). ASTM.
ASTM. (2008). Determining Residual Stresses by the Hole-Drilling Strain-Gage Method. Standard Test Method E837-13a, i, 1–16. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Standard+Test+Method+for+Determining+Residual+Stresses+by+the+Hole-Drilling+Strain-#0
ASTM E8. (2010). ASTM E8/E8M standard test methods for tension testing of metallic materials 1. Annual Book of ASTM Standards 4, C, 1–27. https://doi.org/10.1520/E0008
Attaran, M. (2017). The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Business Horizons, 60(5), 677–688. https://doi.org/10.1016/j.bushor.2017.05.011
Babu, S. S., Love, L., Dehoff, R., Peter, W., Watkins, T. R., & Pannala, S. (2015). Additive manufacturing of materials : Opportunities and challenges. 40(December), 1154–1161. https://doi.org/10.1557/mrs.2015.234
Baffa, F., Venturini, G., Campatelli, G., & Galvanetto, E. (2022). Effect of stepover and torch tilting angle on a repair process using WAAM. Advances in Manufacturing, 10(4), 541–555. https://doi.org/10.1007/s40436-022-00393-2
Bai, X., Colegrove, P., Ding, J., Zhou, X., Diao, C., Bridgeman, P., roman Hönnige, J., Zhang, H., & Williams, S. (2018). Numerical analysis of heat transfer and fluid flow in multilayer deposition of PAW-based wire and arc additive manufacturing. International Journal of Heat and Mass Transfer, 124, 504–516. https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.085
Balashanmugam, N. (2021). Chapter 7 - Perspectives on additive manufacturing in Industry 4.0. In M. Manjaiah, K. Raghavendra, N. Balashanmugam, & J. P. B. T.-A. M. Davim (Eds.), Woodhead Publishing Reviews: Mechanical Engineering Series (pp. 127–150). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-12-822056-6.00001-1
Balit, Y., Joly, L. R., Szmytka, F., Durbecq, S., Charkaluk, E., & Constantinescu, A. (2020). Self-heating behavior during cyclic loadings of 316L stainless steel specimens manufactured or repaired by Directed Energy Deposition. Materials Science and Engineering A, 786. https://doi.org/10.1016/j.msea.2020.139476
Bandyopadhyay, A., Zhang, Y., & Onuike, B. (2022). Additive manufacturing of bimetallic structures. Virtual and Physical Prototyping, 17(2), 256–294. https://doi.org/10.1080/17452759.2022.2040738
Barath Kumar, M. D., & Manikandan, M. (2022). Assessment of Process, Parameters, Residual Stress Mitigation, Post Treatments and Finite Element Analysis Simulations of Wire Arc Additive Manufacturing Technique. In Metals and Materials International (Vol. 28, Issue 1). The Korean Institute of Metals and Materials. https://doi.org/10.1007/s12540-021-01015-5
Behera, A. (2020). Processes and Application in Additive Manufacturing: Practices in Aerospace, Automobile, Medical, and Electronic Industries. In Additive Manufacturing applications for metals and composites (pp. 25–47). IGI Global.
Bennett, J., Dudas, R., Cao, J., Ehmann, K., & Hyatt, G. (2016). Control of heating and cooling for direct laser deposition repair of cast iron components. International Symposium on Flexible Automation, ISFA 2016, 229–236. https://doi.org/10.1109/ISFA.2016.7790166
Bewlay, B. P., Jackson, M. R., Subramanian, P. R., & Lewandowski, J. J. (2004). Very high-temperature Nb-silicide-based composites. Proceedings of the International Symposium on Niobium for High Temperature Applications, 34(October), 51–61.
Bi, G., & Gasser, A. (2011). Restoration of nickel-base turbine blade knife-edges with controlled laser aided additive manufacturing. Physics Procedia, 12(PART 1), 402–409. https://doi.org/10.1016/j.phpro.2011.03.051
Bourell, D. L. (2016). Perspectives on Additive Manufacturing. Annual Review of Materials Research, 46, 1–18. https://doi.org/10.1146/annurev-matsci-070115-031606
Branza, T., Deschaux-Beaume, F., Sierra, G., & Lours, P. (2009). Study and prevention of cracking during weld-repair of heat-resistant cast steels. Journal of Materials Processing Technology, 209(1), 536–547. https://doi.org/10.1016/j.jmatprotec.2008.02.033
Caballero, A., Ding, J., Ganguly, S., & Williams, S. (2019). Wire + Arc Additive Manufacture of 17-4 PH stainless steel: Effect of different processing conditions on microstructure, hardness, and tensile strength. Journal of Materials Processing Technology, 268, 54–62. https://doi.org/10.1016/j.jmatprotec.2019.01.007
Cagan, S. C., & Buldum, B. B. (2021). Machinability investigation of Incoloy 825 in high-speed turning under dry conditions. Revista Materia, 26(4). https://doi.org/10.1590/S1517-707620210004.1366
Campatelli, G., Venturini, G., Grossi, N., Baffa, F., Scippa, A., & Yamazaki, K. (2021). Design and testing of a waam retrofit kit for repairing operations on a milling machine. Machines, 9(12). https://doi.org/10.3390/machines9120322
Carroll, B. E., Palmer, T. A., & Beese, A. M. (2015). Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing. Acta Materialia, 87, 309–320. https://doi.org/10.1016/j.actamat.2014.12.054
Chandrasekaran, S., Hari, S., & Amirthalingam, M. (2020). Wire arc additive manufacturing of functionally graded material for marine risers. Materials Science and Engineering A, 792, 139530. https://doi.org/10.1016/j.msea.2020.139530
Chaturvedi, M., Scutelnicu, E., Rusu, C. C., Mistodie, L. R., Mihailescu, D., & Subbiah, A. V. (2021). Wire Arc Additive Manufacturing: Review on Recent Findings and Challenges in Industrial Applications and Materials Characterization. Metals, 11(6), 939. https://doi.org/10.3390/met11060939
Clare, A. T., Oyelola, O., Abioye, T. E., & Farayibi, P. K. (2013). Laser cladding of rail steel with Co-Cr. Surface Engineering, 29(10), 731–736. https://doi.org/10.1179/1743294412Y.0000000075
Colegrove, P. A., Coules, H. E., Fairman, J., Martina, F., Kashoob, T., Mamash, H., & Cozzolino, L. D. (2013). Microstructure and residual stress improvement in wire and arc additively manufactured parts through high-pressure rolling. Journal of Materials Processing Technology, 213(10), 1782–1791. https://doi.org/10.1016/j.jmatprotec.2013.04.012
Cunningham, C. R., Flynn, J. M., Shokrani, A., Dhokia, V., & Newman, S. T. (2018). Invited review article: Strategies and processes for high quality wire arc additive manufacturing. Additive Manufacturing, 22, 672–686. https://doi.org/10.1016/J.ADDMA.2018.06.020
Cunningham, C. R., Wikshåland, S., Xu, F., Kemakolam, N., Shokrani, A., Dhokia, V., & Newman, S. T. (2017). Cost Modelling and Sensitivity Analysis of Wire and Arc Additive Manufacturing. Procedia Manufacturing, 11(June 2017), 650–657. https://doi.org/10.1016/j.promfg.2017.07.163
Dargusch, M. S. (2017). Metallurgical and geometrical characterisation of the 316L stainless steel clad deposited on a mild steel substrate. Surface & Coatings Technology. https://doi.org/10.1016/j.surfcoat.2017.08.013
Dass, A., & Moridi, A. (2019). State of the art in directed energy deposition: From additive manufacturing to materials design. In Coatings (Vol. 9, Issue 7, p. 418). Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/COATINGS9070418
DebRoy, T., Wei, H. L., Zuback, J. S., Mukherjee, T., Elmer, J. W., Milewski, J. O., Beese, A. M., Wilson-Heid, A., De, A., & Zhang, W. (2018). Additive manufacturing of metallic components – Process, structure and properties. Progress in Materials Science, 92, 112–224. https://doi.org/10.1016/j.pmatsci.2017.10.001
Deng, F., Yang, G., Wu, B., Qin, L., Zheng, J., & Zhou, S. (2022). Microstructure and Mechanical Properties of Hybrid-Manufactured Maraging Steel Component Using 4% Nitrogen Shielding Gas Fabricated by Wrought-Wire Arc Additive Manufacturing. In Coatings (Vol. 12, Issue 3). https://doi.org/10.3390/coatings12030356
Di, L., Chandel, R. S., & Srikanthan, T. (1999). Static modeling of GMAW process using artificial neural networks. Materials and Manufacturing Processes, 14(1), 13–35. https://doi.org/10.1080/10426919908914802
Dias, M., Pragana, J. P. M., Ferreira, B., Ribeiro, I., & Silva, C. M. A. (2022). Economic and Environmental Potential of Wire-Arc Additive Manufacturing. Sustainability (Switzerland), 14(9). https://doi.org/10.3390/su14095197
Ding, D., Pan, Z., Cuiuri, D., & Li, H. (2014). A tool-path generation strategy for wire and arc additive manufacturing. International Journal of Advanced Manufacturing Technology, 73(1–4), 173–183. https://doi.org/10.1007/s00170-014-5808-5
Ding, D., Pan, Z., Cuiuri, D., & Li, H. (2015). Wire-feed additive manufacturing of metal components: technologies, developments and future interests. The International Journal of Advanced Manufacturing Technology, 81(1), 465–481. https://doi.org/10.1007/s00170-015-7077-3
Ding, J., Martina, F., & Williams, S. (2015). Production of large metallic components by additive manufacture – issues and achievements. 1st Metallic Materials and Processes: Industrial Challenges, November.
Dinovitzer, M., Chen, X., Laliberte, J., Huang, X., & Frei, H. (2019). Effect of wire and arc additive manufacturing (WAAM) process parameters on bead geometry and microstructure. Additive Manufacturing, 26, 138–146. https://doi.org/10.1016/J.ADDMA.2018.12.013
Diourté, A., Bugarin, F., Bordreuil, C., & Segonds, S. (2021). Continuous three-dimensional path planning (CTPP) for complex thin parts with wire arc additive manufacturing. Additive Manufacturing, 37, 101622. https://doi.org/10.1016/j.addma.2020.101622
Eimer, E., Williams, S., Ding, J., Ganguly, S., & Chehab, B. (2021). Effect of substrate alloy type on the microstructure of the substrate and deposited material interface in aluminium wire + arc additive manufacturing. Metals, 11(6). https://doi.org/10.3390/met11060916
Elgazzar, H., & Abdelghany, K. (2022). Recent Research Progress and Future Prospects in the Additive Manufacturing of Biomedical Magnesium and Titanium Implants. In Additive and Subtractive Manufacturing Processes. https://doi.org/10.1201/9781003327394-8
Elsheikh, A. H., Shanmugan, S., Muthuramalingam, T., Thakur, A. K., Essa, F. A., Ibrahim, A. M. M., & Mosleh, A. O. (2022). A comprehensive review on residual stresses in turning. Advances in Manufacturing, 10(2), 287–312. https://doi.org/10.1007/s40436-021-00371-0
Fairfax, E., & Steinzig, M. (2016). A Summary of Failures Caused by Residual Stresses (pp. 209–214). https://doi.org/10.1007/978-3-319-21765-9_26
Ford, S. (2016). Additive manufacturing and sustainability : an exploratory study of the advantages and challenges. 137. https://doi.org/10.1016/j.jclepro.2016.04.150
Foster, J., Cullen, C., Fitzpatrick, S., Payne, G., Hall, L., & Marashi, J. (2019). Remanufacture of hot forging tools and dies using laser metal deposition with powder and a hard-facing alloy Stellite 21®. Journal of Remanufacturing, 9(3), 189–203. https://doi.org/10.1007/s13243-018-0063-9
Frazier, W. E. (2014). Metal additive manufacturing: A review. In Journal of Materials Engineering and Performance (Vol. 23, Issue 6, pp. 1917–1928). https://doi.org/10.1007/s11665-014-0958-z
Friel, R. J. (2015). Power ultrasonics for additive manufacturing and consolidating of materials. Power Ultrasonics: Applications of High-Intensity Ultrasound, 313–335. https://doi.org/10.1016/B978-1-78242-028-6.00013-2
G.P., R., Kamaraj, M., & Bakshi, S. R. (2017). Hardfacing of AISI H13 tool steel with Stellite 21 alloy using cold metal transfer welding process. Surface and Coatings Technology, 326, 63–71. https://doi.org/10.1016/j.surfcoat.2017.07.050
Gary S. Schajer, C. O. R. (2013). Overview of Residual Stresses and Their Measurement. 8(10), 2565–2567.
Gasser, A., Backes, G., Kelbassa, I., Weisheit, A., & Wissenbach, K. (2010). Laser additive manufacturing: laser metal deposition (LMD) and selective laser melting (SLM) in turbo-engine applications. Laser Material Processing, 2, 58–63.
Ge, J., Lin, J., Chen, Y., Lei, Y., & Fu, H. (2018). Characterization of wire arc additive manufacturing 2Cr13 part: Process stability, microstructural evolution, and tensile properties. Journal of Alloys and Compounds, 748, 911–921. https://doi.org/10.1016/j.jallcom.2018.03.222
Geng, H., Li, J., Xiong, J., Lin, X., & Zhang, F. (2017). Optimization of wire feed for GTAW based additive manufacturing. Journal of Materials Processing Technology, 243, 40–47. https://doi.org/10.1016/j.jmatprotec.2016.11.027
Ghafoori, E., Dahaghin, H., Diao, C., Pichler, N., Li, L., Mohri, M., Ding, J., Ganguly, S., & Williams, S. (2023). Fatigue strengthening of damaged steel members using wire arc additive manufacturing. Engineering Structures, 284(March), 115911. https://doi.org/10.1016/j.engstruct.2023.115911
Gibson, I., Rosen, D., & Stucker, B. (2015a). 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing. In Additive Manufacturing Technologies.
Gibson, I., Rosen, D., & Stucker, B. (2015b). Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing, second edition. Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, Second Edition, Dmd, 1–498. https://doi.org/10.1007/978-1-4939-2113-3
Gierth, M., Henckell, P., Ali, Y., Scholl, J., & Bergmann, J. P. (2020). Wire Arc Additive Manufacturing (WAAM) of aluminum alloy AlMg5Mn with energy-reduced Gas Metal Arc Welding (GMAW). Materials, 13(12), 1–22. https://doi.org/10.3390/ma13122671
Gornet, T. (2017). History of Additive Manufacturing. 1–24. https://doi.org/10.4018/978-1-5225-2289-8.ch001
Gorsse, S., Hutchinson, C., Gouné, M., & Banerjee, R. (2017). Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys. Science and Technology of Advanced Materials, 18(1), 584–610. https://doi.org/10.1080/14686996.2017.1361305
Graf, B., Gumenyuk, A., & Rethmeier, M. (2012). Laser Metal Deposition as Repair Technology for Stainless Steel and Titanium Alloys. Physics Procedia, 39, 376–381. https://doi.org/10.1016/j.phpro.2012.10.051
GUO, J., FU, H., PAN, B., & KANG, R. (2021). Recent progress of residual stress measurement methods: A review. Chinese Journal of Aeronautics, 34(2), 54–78. https://doi.org/10.1016/j.cja.2019.10.010
Guo, N., & Leu, M. C. (2013). Additive manufacturing: Technology, applications and research needs. Frontiers of Mechanical Engineering, 8(3), 215–243. https://doi.org/10.1007/s11465-013-0248-8
Haden, C. V., Zeng, G., Carter, F. M., Ruhl, C., Krick, B. A., & Harlow, D. G. (2017). Wire and arc additive manufactured steel: Tensile and wear properties. Additive Manufacturing, 16, 115–123. https://doi.org/10.1016/j.addma.2017.05.010
Hassel, T., & Carstensen, T. (2020). Properties and anisotropy behaviour of a nickel base alloy material produced by robot-based wire and arc additive manufacturing. Welding in the World, 64(11), 1921–1931. https://doi.org/10.1007/s40194-020-00971-7
Hawaldar, N., & Zhang, J. (2018). A comparative study of fabrication of sand casting mold using additive manufacturing and conventional process. International Journal of Advanced Manufacturing Technology, 97(1–4), 1037–1045. https://doi.org/10.1007/s00170-018-2020-z
Hönnige, J. R., Colegrove, P. A., Ahmad, B., Fitzpatrick, M. E., Ganguly, S., Lee, T. L., & Williams, S. W. (2018). Residual stress and texture control in Ti-6Al-4V wire + arc additively manufactured intersections by stress relief and rolling. Materials and Design, 150(2017), 193–205. https://doi.org/10.1016/j.matdes.2018.03.065
Hu, Z., Qin, X., & Shao, T. (2017). Welding Thermal Simulation and Metallurgical Characteristics Analysis in WAAM for 5CrNiMo Hot Forging Die Remanufacturing. Procedia Engineering, 207, 2203–2208. https://doi.org/10.1016/j.proeng.2017.10.982
ISO/ASTM International. (2017). Designation: E384-17 Standard Test Method for Microindentation Hardness of Materials. The Biology of the Xenarthra, 281–293. https://doi.org/10.1520/E0384-17
Ivanova, O., Williams, C., & Campbell, T. (2013). Additive manufacturing (AM) and nanotechnology: Promises and challenges. Rapid Prototyping Journal, 19(5), 353–364. https://doi.org/10.1108/RPJ-12-2011-0127
Ivántabernero, Paskual, A., Álvarez, P., & Suárez, A. (2018). Study on Arc Welding Processes for High Deposition Rate Additive Manufacturing. Procedia CIRP, 68, 358–362. https://doi.org/10.1016/j.procir.2017.12.095
Javaid, M., & Haleem, A. (2019). Current status and applications of additive manufacturing in dentistry: A literature-based review. Journal of Oral Biology and Craniofacial Research, 9(3), 179–185. https://doi.org/10.1016/j.jobcr.2019.04.004
Kanishka, K., & Acherjee, B. (2023). A systematic review of additive manufacturing-based remanufacturing techniques for component repair and restoration. Journal of Manufacturing Processes, 89, 220–283. https://doi.org/https://doi.org/10.1016/j.jmapro.2023.01.034
Kapil, S., Joshi, P., Kulkarni, P. M., Negi, S., Kumar, R., & Karunakaran, K. P. (2018). Elimination of support mechanism in additive manufacturing through substrate tilting. Rapid Prototyping Journal, 24(7), 1155–1165. https://doi.org/10.1108/RPJ-07-2017-0139
Kapil, S., Kulkarni, P., Joshi, P., Negi, S., & Karunakaran, K. P. (2019). Retrofitment of a CNC machine for omni-directional tungsten inert gas cladding. Virtual and Physical Prototyping, 14(3), 293–306. https://doi.org/10.1080/17452759.2018.1552484
Kapil, S., Rajput, A. S., & Sarma, R. (2022). Hybridization in wire arc additive manufacturing. Frontiers in Mechanical Engineering, 8(September), 1–19. https://doi.org/10.3389/fmech.2022.981846
Karpagaraj, A., Baskaran, S., Arunnellaiappan, T., & Kumar, N. R. (2020). A review on the suitability of wire arc additive manufacturing (WAAM) for stainless steel 316. AIP Conference Proceedings, 2247(July). https://doi.org/10.1063/5.0004148
Karunakaran, K. P., Suryakumar, S., Pushpa, V., & Akula, S. (2009). Retrofitment of a CNC machine for hybrid layered manufacturing. International Journal of Advanced Manufacturing Technology, 45(7–8), 690–703. https://doi.org/10.1007/s00170-009-2002-2
Kim, I. S., Son, K. J., Yang, Y. S., & Yaragada, P. K. D. V. (2003). Sensitivity analysis for process parameters in GMA welding processes using a factorial design method. International Journal of Machine Tools and Manufacture, 43(8), 763–769. https://doi.org/10.1016/S0890-6955(03)00054-3
Kim, K. C., & Maev, R. G. (2004). Neural network analysis for evaluating welding process. Key Engineering Materials, 270–273(III), 2357–2364. https://doi.org/10.4028/www.scientific.net/kem.270-273.2357
Koehler, H., Partes, K., Seefeld, T., & Vollertsen, F. (2010). Laser reconditioning of crankshafts: From lab to application. Physics Procedia, 5(PART 1), 387–397. https://doi.org/10.1016/j.phpro.2010.08.160
Köhler, M., Fiebig, S., Hensel, J., & Dilger, K. (2019). Wire and arc additive manufacturing of aluminum components. Metals, 9(5), 1–9. https://doi.org/10.3390/met9050608
Koli, Y., Arora, S., Ahmad, S., Priya, Yuvaraj, N., & Khan, Z. A. (2023). Investigations and Multi-response Optimization of Wire Arc Additive Manufacturing Cold Metal Transfer Process Parameters for Fabrication of SS308L Samples. Journal of Materials Engineering and Performance, 32(5), 2463–2475. https://doi.org/10.1007/s11665-022-07282-6
Kozamernik, N., & Bra, D. (2020). WAAM system with interpass temperature control and forced cooling for near-net-shape printing of small metal components. 1955–1968.
Krishna, R., Manjaiah, M., & Mohan, C. B. (2021). Chapter 3 - Developments in additive manufacturing. In M. Manjaiah, K. Raghavendra, N. Balashanmugam, & J. P. B. T.-A. M. Davim (Eds.), Woodhead Publishing Reviews: Mechanical Engineering Series (pp. 37–62). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-12-822056-6.00002-3
Kulkarni, A., Dwivedi, D. K., & Vasudevan, M. (2020). Microstructure and mechanical properties of A-TIG welded AISI 316L SS-Alloy 800 dissimilar metal joint. Materials Science & Engineering A, 139685. https://doi.org/10.1016/j.msea.2020.139685
Lakshminarayanan, A. K., Balasubramanian, V., & Elangovan, K. (2009). Effect of welding processes on tensile properties of AA6061 aluminium alloy joints. International Journal of Advanced Manufacturing Technology, 40(3–4), 286–296. https://doi.org/10.1007/s00170-007-1325-0
Le, V. T., Si, D., Khoa, T., & Paris, H. (2021). Wire and arc additive manufacturing of 308L stainless steel components : Optimization of processing parameters and material properties. Engineering Science and Technology, an International Journal, 24(4), 1015–1026. https://doi.org/10.1016/j.jestch.2021.01.009
Lee, J. H., Lee, C. M., & Kim, D. H. (2022). Repair of damaged parts using wire arc additive manufacturing in machine tools. Journal of Materials Research and Technology, 16, 13–24. https://doi.org/10.1016/j.jmrt.2021.11.156
Leino, M., Pekkarinen, J., & Soukka, R. (2016). The role of laser additive manufacturing methods of metals in repair, refurbishment and remanufacturing - Enabling circular economy. Physics Procedia, 83, 752–760. https://doi.org/10.1016/j.phpro.2016.08.077
Lewis, S. R., Lewis, R., & Fletcher, D. I. (2015). Assessment of laser cladding as an option for repairing/enhancing rails. Wear, 330–331, 581–591. https://doi.org/10.1016/j.wear.2015.02.027
Li, F., Chen, S., Shi, J., Tian, H., & Zhao, Y. (2017). Evaluation and Optimization of a Hybrid Manufacturing Process Combining Wire Arc Additive Manufacturing with Milling for the Fabrication of Stiffened Panels. Applied Sciences, 7(12), 1233. https://doi.org/10.3390/app7121233
Li, Y., Dong, S., Yan, S., Liu, X., He, P., & Xu, B. (2018). Surface remanufacturing of ductile cast iron by laser cladding Ni-Cu alloy coatings. Surface and Coatings Technology, 347(March), 20–28. https://doi.org/10.1016/j.surfcoat.2018.04.065
Li, Y., Han, Q., Horváth, I., & Zhang, G. (2019a). Repairing surface defects of metal parts by groove machining and wire + arc based filling. Journal of Materials Processing Technology, 274, 116268. https://doi.org/10.1016/J.JMATPROTEC.2019.116268
Li, Y., Han, Q., Horváth, I., & Zhang, G. (2019b). Repairing surface defects of metal parts by groove machining and wire + arc based filling. Journal of Materials Processing Technology, 274(92), 116268. https://doi.org/10.1016/j.jmatprotec.2019.116268
Li, Y., Su, C., & Zhu, J. (2022). Comprehensive review of wire arc additive manufacturing: Hardware system, physical process, monitoring, property characterization, application and future prospects. Results in Engineering, 13(December 2021), 100330. https://doi.org/10.1016/j.rineng.2021.100330
Lin, Z., Song, K., & Yu, X. (2021). A review on wire and arc additive manufacturing of titanium alloy. Journal of Manufacturing Processes, 70(May), 24–45. https://doi.org/10.1016/j.jmapro.2021.08.018
Lipskas, J., Deep, K., & Yao, W. (2019). Robotic-Assisted 3D Bio-printing for Repairing Bone and Cartilage Defects through a Minimally Invasive Approach. Scientific Reports, 9(1), 0–31. https://doi.org/10.1038/s41598-019-38972-2
Liu, D., Lippold, J. C., Li, J., Rohklin, S. R., Vollbrecht, J., & Grylls, R. (2014). Laser engineered net shape (LENS) technology for the repair of Ni-base superalloy turbine components. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 45(10), 4454–4469. https://doi.org/10.1007/s11661-014-2397-8
Liu, L., Zhuang, Z., Liu, F., & Zhu, M. (2013). Additive manufacturing of steel-bronze bimetal by shaped metal deposition: Interface characteristics and tensile properties. International Journal of Advanced Manufacturing Technology, 69(9–12), 2131–2137. https://doi.org/10.1007/s00170-013-5191-7
Liu, Y., Wang, W., Xie, J., Sun, S., Wang, L., Qian, Y., Meng, Y., & Wei, Y. (2012). Microstructure and mechanical properties of aluminum 5083 weldments by gas tungsten arc and gas metal arc welding. Materials Science and Engineering A, 549, 7–13. https://doi.org/10.1016/j.msea.2012.03.108
Lorenz, K. A., Jones, J. B., Wimpenny, D. I., & Jackson, M. R. (2020). A review of hybrid manufacturing. Proceedings - 26th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2015, 96–108.
Lu, G., & Zangari, G. (2002). Corrosion resistance of ternary Ni-P based alloys in sulfuric acid solutions. Electrochimica Acta, 47(18), 2969–2979. https://doi.org/10.1016/S0013-4686(02)00198-6
Maranhão, C., & Davim, J. P. (2012). Residual stresses in machining using FEM analysis - A review. Reviews on Advanced Materials Science, 30(3), 267–272.
Marenych, O. O., Kostryzhev, A. G., Pan, Z., Li, H., & van Duin, S. (2021). Application of wire arc additive manufacturing for repair of Monel alloy components. Australian Journal of Mechanical Engineering, 19(5), 609–617. https://doi.org/10.1080/14484846.2021.1981528
Marinelli, G., Martina, F., Ganguly, S., Williams, S., Lewtas, H., Hancock, D., Mehraban, S., & Lavery, N. (2019). Microstructure and thermal properties of unalloyed tungsten deposited by Wire + Arc Additive Manufacture. Journal of Nuclear Materials, 522, 45–53. https://doi.org/10.1016/J.JNUCMAT.2019.04.049
Martina, F., Colegrove, P. A., Williams, S. W., & Meyer, J. (2015). Microstructure of Interpass Rolled Wire + Arc Additive Manufacturing Ti-6Al-4V Components. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 46(12), 6103–6118. https://doi.org/10.1007/s11661-015-3172-1
Martina, F., Roy, M., Colegrove, P., & Williams, S. W. (2014). Residual stress reduction in high pressure interpass rolled wire+arc additive manufacturing TI-6AL-4V components. 25th Annual International Solid Freeform Fabrication Symposium � An Additive Manufacturing Conference, SFF 2014, 89–94.
Meiners, F., Ihne, J., Jürgens, P., Hemes, S., Mathes, M., Sizova, I., Bambach, M., Hama-Saleh, R., & Weisheit, A. (2020). New hybrid manufacturing routes combining forging and additive manufacturing to efficiently produce high performance components from Ti-6Al-4V. Procedia Manufacturing, 47(2019), 261–267. https://doi.org/10.1016/j.promfg.2020.04.215
Mhapsekar, K., McConaha, M., & Anand, S. (2018). Additive Manufacturing Constraints in Topology Optimization for Improved Manufacturability. Journal of Manufacturing Science and Engineering, 140(5). https://doi.org/10.1115/1.4039198
Michel, F., Lockett, H., Ding, J., Martina, F., Marinelli, G., & Williams, S. (2019). A modular path planning solution for Wire + Arc Additive Manufacturing. Robotics and Computer-Integrated Manufacturing, 60(April), 1–11. https://doi.org/10.1016/j.rcim.2019.05.009
Montgomery, D. C. A. S. U. (2017). D esign and Analysis of Experiments Ninth Edition. In Arizona State University.
Motallebi, R., Savaedi, Z., & Mirzadeh, H. (2022). Additive manufacturing – A review of hot deformation behavior and constitutive modeling of flow stress. Current Opinion in Solid State and Materials Science, 26(3), 100992. https://doi.org/10.1016/j.cossms.2022.100992
Mudge, R. P., & Wald, N. R. (2007). Laser engineered net shaping advances additive manufacturing and repair. Welding Journal (Miami, Fla), 86(1), 44–48.
Murr, L. E., Gaytan, S. M., Ceylan, A., Martinez, E., & Martinez, J. L. (2010). Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting. Acta Materialia, 58(5), 1887–1894. https://doi.org/10.1016/j.actamat.2009.11.032
Najmon, J. C., Raeisi, S., & Tovar, A. (2019). Review of additive manufacturing technologies and applications in the aerospace industry. Additive Manufacturing for the Aerospace Industry, 7–31. https://doi.org/10.1016/B978-0-12-814062-8.00002-9
Negi, S., Kapil, S., Sharma, A., Choudhary, P., Bhargava, P., & Karunakaran, K. P. (2020). Retrofitment of Laser Cladding System with CNC Machine for Hybrid Layer Manufacturing. In M. S. Shunmugam & M. Kanthababu (Eds.), Advances in Additive Manufacturing and Joining (pp. 47–59). Springer Singapore.
Negi, S., Nambolan, A. A., Kapil, S., Joshi, P. S., R, M., Karunakaran, K. P., & Bhargava, P. (2020). Review on electron beam based additive manufacturing. Rapid Prototyping Journal, 26(3), 485–498. https://doi.org/10.1108/RPJ-07-2019-0182
Nowotny, S., Scharek, S., Beyer, E., & Richter, K. H. (2007). Laser beam build-up welding: Precision in repair, surface cladding, and direct 3D metal deposition. Journal of Thermal Spray Technology, 16(3), 344–348. https://doi.org/10.1007/s11666-007-9028-5
Oh, W. J., Lee, W. J., Kim, M. S., Jeon, J. B., & Shim, D. S. (2019). Repairing additive-manufactured 316L stainless steel using direct energy deposition. Optics and Laser Technology, 117, 6–17. https://doi.org/10.1016/j.optlastec.2019.04.012
Onuike, B., & Bandyopadhyay, A. (2019). Additive manufacturing in repair: Influence of processing parameters on properties of Inconel 718. Materials Letters, 252, 256–259. https://doi.org/10.1016/j.matlet.2019.05.114
Pant, P. (2020). Residual stress distributions in additively manufactured parts: effect of build orientation (Vol. 1869). Linköping University Electronic Press.
Patel, M., Mulgaonkar, S., Desai, H., & Borse, T. (2021). Development and Implementation of Wire Arc Additive Manufacturing (WAAM) Based on Pulse Spray GMAW for Aluminum Alloy (AlSi7Mg). Transactions of the Indian Institute of Metals, 74(5), 1129–1140. https://doi.org/10.1007/s12666-020-02154-w
Peng, X., Kong, L., Fuh, J. Y. H., & Wang, H. (2021). A review of post-processing technologies in additive manufacturing. In Journal of Manufacturing and Materials Processing (Vol. 5, Issue 2). https://doi.org/10.3390/jmmp5020038
Pinkerton, A. J. (2010). Laser direct metal deposition: Theory and applications in manufacturing and maintenance. Advances in Laser Materials Processing: Technology, Research and Application, 461–491. https://doi.org/10.1533/9781845699819.6.461
Piscopo, G., & Iuliano, L. (2022). Current research and industrial application of laser powder directed energy deposition. International Journal of Advanced Manufacturing Technology, 119(11–12), 6893–6917. https://doi.org/10.1007/s00170-021-08596-w
Poonnayom, P., & Kimapong, K. (2018). SMAW electrodes selection for producing hard-faced layer on FC25 cast iron surface. Key Engineering Materials, 777 KEM, 339–343. https://doi.org/10.4028/www.scientific.net/KEM.777.339
Prado-Cerqueira, J. L., Diéguez, J. L., & Camacho, A. M. (2017). Preliminary development of a Wire and Arc Additive Manufacturing system (WAAM). Procedia Manufacturing, 13, 895–902. https://doi.org/10.1016/j.promfg.2017.09.154
Radaj, D. (1990). Fracture mechanics approach for assessment of fatigue strength of seam welded joints. Design and Analysis of Fatigue Resistant Welded Structures, 277–298. https://doi.org/10.1533/9781845698751.277
Rahito, Wahab, D. A., & Azman, A. H. (2019). Additive manufacturing for repair and restoration in remanufacturing: An overview from object design and systems perspectives. In Processes (Vol. 7, Issue 11). https://doi.org/10.3390/pr7110802
Raut, L. P., & Taiwade, R. V. (2021). Wire Arc Additive Manufacturing: A Comprehensive Review and Research Directions. Journal of Materials Engineering and Performance, 30(7), 4768–4791. https://doi.org/10.1007/s11665-021-05871-5
Ravi, G., Murugan, N., & Arulmani, R. (2020). Microstructure and mechanical properties of Inconel-625 slab component fabricated by wire arc additive manufacturing. Materials Science and Technology (United Kingdom), 36(16), 1785–1795. https://doi.org/10.1080/02670836.2020.1836737
Reisch, R., Hauser, T., Kamps, T., & Knoll, A. (2020). Robot based wire arc additive manufacturing system with context-sensitive multivariate monitoring framework. Procedia Manufacturing, 51(2019), 732–739. https://doi.org/10.1016/j.promfg.2020.10.103
Reisgen, U., Sharma, R., Mann, S., & Oster, L. (2020). Increasing the manufacturing efficiency of WAAM by advanced cooling strategies. Welding in the World, 64(8), 1409–1416. https://doi.org/10.1007/s40194-020-00930-2
Ren, L., Gu, H., Wang, W., Wang, S., Li, C., Wang, Z., Zhai, Y., & Ma, P. (2020). The Microstructure and Properties of an Al-Mg-0.3Sc Alloy Deposited by Wire Arc Additive Manufacturing. Metals, 10(320).
Ren, L., Padathu, A. P., Ruan, J., Sparks, T., & Liou, F. W. (2006). Three dimensional die repair using a hybrid manufacturing system. 17th Solid Freeform Fabrication Symposium, SFF 2006, 51–59.
Ríos, S., Colegrove, P. A., & Williams, S. W. (2019). Metal transfer modes in plasma Wire + Arc additive manufacture. Journal of Materials Processing Technology, 264, 45–54. https://doi.org/10.1016/J.JMATPROTEC.2018.08.043
Rodrigues, T. A., Bairrão, N., Farias, F. W. C., Shamsolhodaei, A., Shen, J., Zhou, N., Maawad, E., Schell, N., Santos, T. G., & Oliveira, J. P. (2022). Steel-copper functionally graded material produced by twin-wire and arc additive manufacturing (T-WAAM). Materials and Design, 213, 110270. https://doi.org/10.1016/j.matdes.2021.110270
Rodrigues, T. A., Duarte, V., Miranda, R. M., Santos, T. G., & Oliveira, J. P. (2019). Current status and perspectives on wire and arc additive manufacturing (WAAM). Materials, 12(7). https://doi.org/10.3390/ma12071121
Rodrigues, T. A., Duarte, V. R., Miranda, R. M., Santos, T. G., & Oliveira, J. P. (2021). Ultracold-Wire and arc additive manufacturing (UC-WAAM). Journal of Materials Processing Technology, 296(April), 117196. https://doi.org/10.1016/j.jmatprotec.2021.117196
Rodriguez, N., Vázquez, L., Huarte, I., Arruti, E., Tabernero, I., & Alvarez, P. (2018). Wire and arc additive manufacturing: a comparison between CMT and TopTIG processes applied to stainless steel. Welding in the World, 62(5), 1083–1096. https://doi.org/10.1007/s40194-018-0606-6
Rosli, N. A., Alkahari, M. R., bin Abdollah, M. F., Maidin, S., Ramli, F. R., & Herawan, S. G. (2021). Review on effect of heat input for wire arc additive manufacturing process. Journal of Materials Research and Technology, 11, 2127–2145. https://doi.org/10.1016/J.JMRT.2021.02.002
Rossini, N. S., Dassisti, M., Benyounis, K. Y., & Olabi, A. G. (2012). Methods of measuring residual stresses in components. Materials and Design, 35, 572–588. https://doi.org/10.1016/j.matdes.2011.08.022
Rumman, R., Lewis, D. A., Hascoet, J. Y., & Quinton, J. S. (2019). Laser metal deposition and wire arc additive manufacturing of materials: An overview. Archives of Metallurgy and Materials, 64(2), 467–473. https://doi.org/10.24425/amm.2019.127561
Ryan, E. M. (2018). On Wire and Arc Additive Manufacture of Aluminium (Issue September).
Saboori, A., Aversa, A., Marchese, G., Biamino, S., Lombardi, M., & Fino, P. (2019). Application of directed energy deposition-based additive manufacturing in repair. Applied Sciences (Switzerland), 9(16). https://doi.org/10.3390/app9163316
Salmi, M. (2021). Additive Manufacturing Processes in Medical Applications. Materials, 14(1), 191. https://doi.org/10.3390/ma14010191
Sames, W. J., List, F. A., Pannala, S., Dehoff, R. R., & Babu, S. S. (2016). The metallurgy and processing science of metal additive manufacturing. International Materials Reviews, 61(5), 315–360. https://doi.org/10.1080/09506608.2015.1116649
Sarathchandra, D. T., Davidson, M. J., & Visvanathan, G. (2020). Parameters effect on SS304 beads deposited by wire arc additive manufacturing. Materials and Manufacturing Processes, 35(7), 852–858. https://doi.org/10.1080/10426914.2020.1743852
Schroepfer, D., Kromm, A., & Kannengiesser, T. (2017). Engineering approach to assess residual stresses in welded components. Welding in the World, 61(1), 91–106. https://doi.org/10.1007/s40194-016-0394-9
Selvi, S., Vishvaksenan, A., & Rajasekar, E. (2017). SC. Defence Technology. https://doi.org/10.1016/j.dt.2017.08.002
Senthil, T. S., Ramesh Babu, S., Puviyarasan, M., & Dhinakaran, V. (2021). Mechanical and microstructural characterization of functionally graded Inconel 825 - SS316L fabricated using wire arc additive manufacturing. Journal of Materials Research and Technology, 15, 661–669. https://doi.org/10.1016/j.jmrt.2021.08.060
Seow, C. E., Coules, H. E., Wu, G., Khan, R. H. U., Xu, X., & Williams, S. (2019). Wire + Arc Additively Manufactured Inconel 718: Effect of post-deposition heat treatments on microstructure and tensile properties. Materials and Design, 183, 108157. https://doi.org/10.1016/j.matdes.2019.108157
Shah, A., Aliyev, R., Zeidler, H., & Krinke, S. (2023). A Review of the Recent Developments and Challenges in Wire Arc Additive Manufacturing (WAAM) Process. Journal of Manufacturing and Materials Processing, 7(3), 1–30. https://doi.org/10.3390/jmmp7030097
Shim, D. S., Lee, H., Son, Y., & Oh, W. J. (2021). Effects of pre- and post-repair heat treatments on microstructure and tensile behaviors of 630 stainless steel repaired by metal additive manufacturing. Journal of Materials Research and Technology, 13, 980–999. https://doi.org/10.1016/j.jmrt.2021.05.039
Shojaati, M., Farshid, S., Bozorg, K., Vatanara, M., Yazdizadeh, M., Abbasi, M., & Ph, D. (2020). International Journal of Pressure Vessels and Piping The heat affected zone of X20Cr13 martensitic stainless steel after multiple repair welding : Microstructure and mechanical properties assessment. International Journal of Pressure Vessels and Piping, 188(September), 104205. https://doi.org/10.1016/j.ijpvp.2020.104205
Singh, A., Kapil, S., & Das, M. (2020). A comprehensive review of the methods and mechanisms for powder feedstock handling in directed energy deposition. Additive Manufacturing, 35, 101388. https://doi.org/10.1016/J.ADDMA.2020.101388
Singh, S. R., & Khanna, P. (2021). Wire arc additive manufacturing (WAAM): A new process to shape engineering materials. Materials Today: Proceedings, 44(xxxx), 118–128. https://doi.org/10.1016/j.matpr.2020.08.030
Somlo, K., & Sziebig, G. (2019). Aspects of multi-pass GTAW of low alloyed steels. IFAC-PapersOnLine, 52(22), 101–107. https://doi.org/10.1016/j.ifacol.2019.11.056
Squires, L., Roberts, E., & Bandyopadhyay, A. (2023). Radial bimetallic structures via wire arc directed energy deposition-based additive manufacturing. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-39230-w
Srivastava, M., & Rathee, S. (2022). Additive manufacturing: recent trends, applications and future outlooks. Progress in Additive Manufacturing, 7(2), 261–287. https://doi.org/10.1007/s40964-021-00229-8
Srivastava, S., & Garg, R. K. (2017). Process parameter optimization of gas metal arc welding on IS:2062 mild steel using response surface methodology. Journal of Manufacturing Processes, 25, 296–305. https://doi.org/10.1016/j.jmapro.2016.12.016
Srivastava, S., Garg, R. K., Sharma, V. S., & Sachdeva, A. (2021). Measurement and Mitigation of Residual Stress in Wire-Arc Additive Manufacturing: A Review of Macro-Scale Continuum Modelling Approach. Archives of Computational Methods in Engineering, 28(5), 3491–3515. https://doi.org/10.1007/s11831-020-09511-4
Sun, S. Da, Liu, Q., Brandt, M., Luzin, V., Cottam, R., Janardhana, M., & Clark, G. (2014). Effect of laser clad repair on the fatigue behaviour of ultra-high strength AISI 4340 steel. Materials Science and Engineering A, 606, 46–57. https://doi.org/10.1016/j.msea.2014.03.077
Svetlizky, D., Das, M., Zheng, B., Vyatskikh, A. L., Bose, S., Bandyopadhyay, A., Schoenung, J. M., Lavernia, E. J., & Eliaz, N. (2021). Directed energy deposition (DED) additive manufacturing: Physical characteristics, defects, challenges and applications. Materials Today, 49, 271–295. https://doi.org/10.1016/J.MATTOD.2021.03.020
Szost, B. A., Terzi, S., Martina, F., Boisselier, D., Prytuliak, A., Pirling, T., Hofmann, M., & Jarvis, D. J. (2016). A comparative study of additive manufacturing techniques: Residual stress and microstructural analysis of CLAD and WAAM printed Ti-6Al-4V components. Materials and Design, 89, 559–567. https://doi.org/10.1016/j.matdes.2015.09.115
Taek, A., Kim, B., Yue, S., Zhang, Z., Jones, E., Jones, J. R., & Lee, P. D. (2014). Ac ce p t. Journal of Materials Processing Tech. https://doi.org/10.1016/j.jmatprotec.2014.05.006
Tanvir, A. N. M., Ahsan, M. R. U., Seo, G., Kim, J. duk, Ji, C., Bates, B., Lee, Y., & Kim, D. B. (2020). Heat treatment effects on Inconel 625 components fabricated by wire + arc additively manufacturing (WAAM)—part 2: mechanical properties. International Journal of Advanced Manufacturing Technology, 110(7–8), 1709–1721. https://doi.org/10.1007/s00170-020-05980-w
Tarng, Y. S., Juang, S. C., & Chang, C. H. (2002). The use of grey-based Taguchi methods to determine submerged arc welding process parameters in hardfacing. Journal of Materials Processing Technology, 128(1–3), 1–6. https://doi.org/10.1016/S0924-0136(01)01261-4
Taşdemir, A., & Nohut, S. (2020). An overview of wire arc additive manufacturing (WAAM) in shipbuilding industry. Ships and Offshore Structures, 0(0), 1–18. https://doi.org/10.1080/17445302.2020.1786232
Thapliyal, S. (2019). Challenges associated with the wire arc additive manufacturing (WAAM) of aluminum alloys. In Materials Research Express (Vol. 6, Issue 11, p. 112006). https://doi.org/10.1088/2053-1591/ab4dd4
Tomar, B., Shiva, S., & Nath, T. (2022). A review on wire arc additive manufacturing: Processing parameters, defects, quality improvement and recent advances. Materials Today Communications, 31, 103739. https://doi.org/10.1016/J.MTCOMM.2022.103739
Ünsal, I., Hirtler, M., Sviridov, A., & Bambach, M. (2020). Material properties of features produced from EN AW 6016 by wire-arc additive manufacturing. Procedia Manufacturing, 47(2019), 1129–1133. https://doi.org/10.1016/j.promfg.2020.04.131
Uriondo, A., Esperon-Miguez, M., & Perinpanayagam, S. (2015). The present and future of additive manufacturing in the aerospace sector: A review of important aspects. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 229(11), 2132–2147. https://doi.org/10.1177/0954410014568797
Varghese, O. K. (2003). Crystallization and high-temperature structural stability of titanium oxide nanotube arrays.
Veiga, F., Del Val, A. G., Suárez, A., & Alonso, U. (2020). Analysis of the machining process of titanium Ti6Al-4V parts manufactured by wire arc additive manufacturing (WAAM). Materials, 13(3). https://doi.org/10.3390/ma13030766
Veiga, F., Suárez, A., Aldalur, E., Goenaga, I., & Amondarain, J. (2023). Wire Arc Additive Manufacturing Process for Topologically Optimized Aeronautical Fixtures. 3D Printing and Additive Manufacturing, 10(1), 23–33. https://doi.org/10.1089/3dp.2021.0008
Vishnukumar, M., Pramod, R., & Rajesh Kannan, A. (2021). Wire arc additive manufacturing for repairing aluminium structures in marine applications. Materials Letters, 299, 130112. https://doi.org/10.1016/j.matlet.2021.130112
Wandtke, K., Schroepfer, D., Scharf-Wildenhain, R., Haelsig, A., Kannengiesser, T., Kromm, A., & Hensel, J. (2023). Influence of the WAAM process and design aspects on residual stresses in high-strength structural steels. Welding in the World, 0123456789, 1–10. https://doi.org/10.1007/s40194-023-01503-9
Wang, J. F., Sun, Q. J., Wang, H., Liu, J. P., & Feng, J. C. (2016). Effect of location on microstructure and mechanical properties of additive layer manufactured Inconel 625 using gas tungsten arc welding. Materials Science and Engineering A, 676, 395–405. https://doi.org/10.1016/j.msea.2016.09.015
Wang, J., Lin, X., Li, J., Xue, A., Liu, F., Huang, W., & Liang, E. (2020). A study on obtaining equiaxed prior-β grains of wire and arc additive manufactured Ti–6Al–4V. Materials Science and Engineering A, 772, 138703. https://doi.org/10.1016/j.msea.2019.138703
Wang, J., Zhu, K., Zhang, W., Zhu, X., & Lu, X. (2023). Microstructural and defect evolution during WAAM resulting in mechanical property differences for AA5356 component. Journal of Materials Research and Technology, 22, 982–996. https://doi.org/10.1016/j.jmrt.2022.11.116
Wang, X., Wang, A., & Li, Y. (2020). Study on the deposition accuracy of omni-directional GTAW-based additive manufacturing. Journal of Materials Processing Technology, 282(February), 116649. https://doi.org/10.1016/j.jmatprotec.2020.116649
Warsi, R., Kazmi, K. H., & Chandra, M. (2022). Mechanical properties of wire and arc additive manufactured component deposited by a CNC controlled GMAW. Materials Today: Proceedings, 56, 2818–2825. https://doi.org/10.1016/J.MATPR.2021.10.114
Williams, S. W., Martina, F., Addison, A. C., Ding, J., Pardal, G., & Colegrove, P. (2016). Wire + Arc additive manufacturing. Materials Science and Technology, 32(7), 641–647. https://doi.org/10.1179/1743284715Y.0000000073
Williams, S. W., Martina, F., Addison, A. C., Ding, J., Pardal, G., Colegrove, P., Number, D., Waammat, S. W. W., Oct, A., Williams, S. W., Martina, F., & Williams, S. W. (2015). Wire+arc additive manufacturing vs. traditional machining from solid: a cost comparison. Materials Science and Technology (United Kingdom), 32(October), 27.
Wilson, J. M., Piya, C., Shin, Y. C., Zhao, F., & Ramani, K. (2014). Remanufacturing of turbine blades by laser direct deposition with its energy and environmental impact analysis. Journal of Cleaner Production, 80, 170–178. https://doi.org/10.1016/j.jclepro.2014.05.084
Withers, P. J., & Bhadeshia, H. K. D. H. (2001). Residual stress part 2 - Nature and origins. Materials Science and Technology, 17(4), 366–375. https://doi.org/10.1179/026708301101510087
Wu, B., Pan, Z., Ding, D., Cuiuri, D., Li, H., Xu, J., & Norrish, J. (2018). A review of the wire arc additive manufacturing of metals: properties, defects and quality improvement. Journal of Manufacturing Processes, 35, 127–139. https://doi.org/10.1016/J.JMAPRO.2018.08.001
Wu, B., Qiu, Z., Pan, Z., Carpenter, K., Wang, T., Ding, D., Duin, S. Van, & Li, H. (2020). Enhanced interface strength in steel-nickel bimetallic component fabricated using wire arc additive manufacturing with interweaving deposition strategy. Journal of Materials Science and Technology, 52, 226–234. https://doi.org/10.1016/j.jmst.2020.04.019
Xia, Y., Peng, M., Teng, H., Chen, Y., & Zhang, X. (2021). Multi-properties optimization of welding parameters of wire arc additive manufacture in dissimilar joint of iron-based alloy and nickel-based superalloy using grey-based Taguchi method. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 235(23), 6984–6995. https://doi.org/10.1177/09544062211008928
Xin, H., Tarus, I., Cheng, L., Veljkovic, M., Persem, N., & Lorich, L. (2021). Experiments and numerical simulation of wire and arc additive manufactured steel materials. Structures, 34, 1393–1402. https://doi.org/10.1016/J.ISTRUC.2021.08.055
Xiong, J., Liu, G., & Pi, Y. (2019). Increasing stability in robotic GTA-based additive manufacturing through optical measurement and feedback control. Robotics and Computer-Integrated Manufacturing, 59(May 2018), 385–393. https://doi.org/10.1016/j.rcim.2019.05.012
Xu, F. J., Lv, Y. H., Xu, B. S., Liu, Y. X., Shu, F. Y., & He, P. (2013). Effect of deposition strategy on the microstructure and mechanical properties of Inconel 625 superalloy fabricated by pulsed plasma arc deposition. Materials and Design, 45, 446–455. https://doi.org/10.1016/j.matdes.2012.07.013
Yan, L. (2013). Wire and Arc Additive Manufacture (WAAM) reusable tooling investigation. SCHOOL OF APPLIED SCIENCE MRes Welding Engineering, October, 1–34.
Yang, H., & Luo, D. (2019). A Study of Additive Manufacturing Technology’s Development and Impact - Through the Multi-Level Perspective Framework and the Case of Adidas.
Yehorov, Y., da Silva, L. J., & Scotti, A. (2019). Balancing WAAM production costs and wall surface quality through parameter selection: A case study of an Al-Mg5 alloy multilayer-non-oscillated single pass wall. Journal of Manufacturing and Materials Processing, 3(2). https://doi.org/10.3390/jmmp3020032
Yilmaz, O., Gindy, N., & Gao, J. (2010). A repair and overhaul methodology for aeroengine components. Robotics and Computer-Integrated Manufacturing, 26(2), 190–201. https://doi.org/10.1016/j.rcim.2009.07.001
Yoo, S. W., Lee, C. M., & Kim, D. H. (2023). Effect of Functionally Graded Material (FGM) Interlayer in Metal Additive Manufacturing of Inconel-Stainless Bimetallic Structure by Laser Melting Deposition (LMD) and Wire Arc Additive Manufacturing (WAAM). Materials, 16(2). https://doi.org/10.3390/ma16020535
Yuan, L., Ding, D., Pan, Z., Yu, Z., Wu, B., Van Duin, S., Li, H., & Li, W. (2020). Application of multidirectional robotic wire arc additive manufacturing process for the fabrication of complex metallic parts. IEEE Transactions on Industrial Informatics, 16(1), 454–464. https://doi.org/10.1109/TII.2019.2935233
Yuan, L., Pan, Z., Ding, D., He, F., van Duin, S., Li, H., & Li, W. (2020). Investigation of humping phenomenon for the multi-directional robotic wire and arc additive manufacturing. Robotics and Computer-Integrated Manufacturing, 63(July 2019), 101916. https://doi.org/10.1016/j.rcim.2019.101916
Yusuf, S. M., Cutler, S., & Gao, N. (2019). Review : The Impact of Metal Additive. Metals, 9, 1286.
Zeng, Z., Cong, B. Q., Oliveira, J. P., Ke, W. C., Schell, N., Peng, B., Qi, Z. W., Ge, F. G., Zhang, W., & Ao, S. S. (2020). Wire and arc additive manufacturing of a Ni-rich NiTi shape memory alloy: Microstructure and mechanical properties. Additive Manufacturing, 32, 101051. https://doi.org/10.1016/j.addma.2020.101051
Zhai, Y., & Ma, P. (2016). Materials Science & Engineering A The strengthening effect of inter-layer cold working and post-deposition heat treatment on the additively manufactured Al – 6 . 3Cu alloy. Materials Science & Engineering A, 651, 18–26. https://doi.org/10.1016/j.msea.2015.10.101
Zhang, W., Ding, C., Wang, H., Meng, W., Xu, Z., & Wang, J. (2021). The Forming Profile Model for Cold Metal Transfer and Plasma Wire-Arc Deposition of Nickel-Based Alloy. Journal of Materials Engineering and Performance, 30(7), 4872–4881. https://doi.org/10.1007/s11665-021-05485-x
Zhang, X., Cui, W., Li, W., & Liou, F. (2019). A hybrid process integrating reverse engineering, pre-repair processing, additive manufacturing, and material testing for component remanufacturing. Materials, 12(12). https://doi.org/10.3390/ma12121961
Zhang, X., & Liou, F. (2021). Introduction to additive manufacturing. Additive Manufacturing, 1–31. https://doi.org/10.1016/B978-0-12-818411-0.00009-4
Zhang, X., Wang, K., Zhou, Q., Ding, J., Ganguly, S., Grasso, M., Yang, D., Xu, X., Dirisu, P., & Williams, S. W. (2019). Microstructure and mechanical properties of TOP-TIG-wire and arc additive manufactured super duplex stainless steel (ER2594). Materials Science and Engineering A, 762(August 2018), 138097. https://doi.org/10.1016/j.msea.2019.138097
Zhou, Y., Lin, X., Kang, N., Huang, W., & Wang, Z. (2021). Mechanical properties and precipitation behavior of the heat-treated wire + arc additively manufactured 2219 aluminum alloy. Materials Characterization, 171, 110735. https://doi.org/10.1016/j.matchar.2020.110735
Zhuo, Y., Yang, C., Fan, C., Lin, S., Chen, C., & Cai, X. (2020). Microstructure and mechanical properties of wire arc additive repairing Ti–6.5Al–2Sn–2Zr–4Mo–4Cr titanium alloy. Materials Science and Technology (United Kingdom), 36(15), 1712–1719. https://doi.org/10.1080/02670836.2020.1822061
Ziółkowski, M., & Dyl, T. (2020). Possible applications of additive manufacturing technologies in shipbuilding: A review. Machines, 8(4), 1–34. https://doi.org/10.3390/machines8040084