How to cite this paper
Dairi, W & Hamidouch, M. (2024). Analysis of the effects of vickers indentation-induced defects on the strength and probability of failure of float glass during biaxial flexure testing.Engineering Solid Mechanics, 12(4), 353-362.
Refrences
Barbosa, J. F., Correia, J. A. F. O., Freire Júnior, R. C. S., Zhu, S. P., & De Jesus, A. M. P. (2019). Probabilistic S-N fields based on statistical distributions applied to metallic and composite materials: State of the art. Advances in Mechanical Engineering, 11(8), 1–22. https://doi.org/10.1177/1687814019870395
Bauchy, M. (2019). Topological Constraint Theory and Rigidity of Glasses. 21st Century Nanoscience – A Handbook, May, 13-1-13–20. https://doi.org/10.1201/9780367333003-13
Ciarella, S., Khomenko, D., Berthier, L., Mocanu, F. C., Reichman, D. R., Scalliet, C., & Zamponi, F. (2023). Finding defects in glasses through machine learning. Nature Communications, 14(1), 4229. https://doi.org/10.1038/s41467-023-39948-7
Faci, A. (2018). No TitleInfluence des paramètres d’érosion sur la résistance mécanique d’un verre sablé : analyse statistique. ’Université Ferhat ABBAS - Sétif 1.
Januchta, K., & Smedskjaer, M. M. (2019). Indentation deformation in oxide glasses: Quantification, structural changes, and relation to cracking. Journal of Non-Crystalline Solids: X, 1(December 2018), 100007. https://doi.org/10.1016/j.nocx.2018.100007
Lawn, B. R., Dabbs, T. P., & Fairbanks, C. J. (1983). Kinetics of shear-activated indentation crack initiation in soda-lime glass. Journal of Materials Science, 18(9), 2785–2797. https://doi.org/10.1007/BF00547596
Lewandowski, J. J., Wang, W. H., & Greer, A. L. (2005). Intrinsic plasticity or brittleness of metallic glasses. Philosophical Magazine Letters, 85(2), 77–87. https://doi.org/10.1080/09500830500080474
Li, T., Griffiths, W. D., & Chen, J. (2017). Weibull Modulus Estimated by the Non-linear Least Squares Method: A Solution to Deviation Occurring in Traditional Weibull Estimation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 48(11), 5516–5528. https://doi.org/10.1007/s11661-017-4294-4
Li, X. Y., Jiang, L. B., Zhang, X. W., Zhang, X., & Yan, Y. (2013). The influence of different surface compressive stress on the wettability of ion-exchanged float aluminosilicate glass. Advanced Materials Research, 704, 105–109. https://doi.org/10.4028/www.scientific.net/AMR.704.105
Madjoubi, M. A., Bousbaa, C., Hamidouche, M., & Bouaouadja, N. (1999). Weibull statistical analysis of the mechanical strength of a glass eroded by sand blasting. Journal of the European Ceramic Society, 19(16), 2957–2962. https://doi.org/https://doi.org/10.1016/S0955-2219(99)00087-4
Marcos, C. (2022). Crystallography Introduction to the Study of Minerals (pp. 193–233). springer.
Matusova, M., & Hruskova, E. (2022). Analysis of defects of glass products. IOP Conference Series: Materials Science and Engineering, 1256(1), 012016. https://doi.org/10.1088/1757-899x/1256/1/012016
Pardini, L. C., & Manhani, L. G. B. (2002). Influence of the Testing Gage Length on the Strength, Young’s Modulus and Weibull Modulus of Carbon Fibres and Glass Fibres. Materials Research, 5(4), 411–420. https://doi.org/10.1590/s1516-14392002000400004
Pisano, G. (2017). The statistical characterization of glass strength: From the micro- to the macro-mechanical response. 205.
Rodichev, Y., & Veer, F. (2010). Fracture resistance, surface defects and structural strength of glass. Challenging Glass 2 - Conference on Architectural and Structural Applications of Glass, CGC 2010, May, 363–373.
Rodrigues, B. P., To, T., Smedskjaer, M. M., & Wondraczek, L. (2022). Mechanical Properties of Oxide Glasses. Reviews in Mineralogy and Geochemistry, 87(1), 229–281. https://doi.org/10.2138/rmg.2022.87.06
Surdyka, N. D., Pantano, C. G., & Kim, S. H. (2014). Environmental effects on initiation and propagation of surface defects on silicate glasses: Scratch and fracture toughness study. Applied Physics A: Materials Science and Processing, 116(2), 519–528. https://doi.org/10.1007/s00339-014-8552-7
Symoens, E., Van Coile, R., Jovanović, B., & Belis, J. (2023). Probability Density Function Models for Float Glass under Mechanical Loading with Varying Parameters. In Materials (Vol. 16, Issue 5). https://doi.org/10.3390/ma16052067
Tao, Y., & Wang, X. (2021). Revealing the atomic-scale origin of simultaneously enhanced hardness and crack resistance in a single phase material. Journal of Applied Physics, 129(15). https://doi.org/10.1063/5.0046733
Tiryakioğlu, M. (2015). Weibull Analysis of Mechanical Data for Castings II: Weibull Mixtures and Their Interpretation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 46(1), 270–280. https://doi.org/10.1007/s11661-014-2610-9
Tiryakioğlu, M., & Campbell, J. (2010). Weibull analysis of mechanical data for castings: A guide to the interpretation of probability plots. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 41(12), 3121–3129. https://doi.org/10.1007/s11661-010-0364-6
Townsend, P. D., Can, N., Chandler, P. J., Farmery, B. W., Lopez-Heredero, R., Peto, A., Salvin, L., Underdown, D., & Yang, B. (1998). Comparisons of tin depth profile analyses in float glass. Journal of Non-Crystalline Solids, 223(1–2), 73–85. https://doi.org/10.1016/S0022-3093(97)00348-7
Trustrum, K., & Jayatilaka, A. D. S. (1979). On estimating the Weibull modulus for a brittle material. Journal of Materials Science, 14(5), 1080–1084. https://doi.org/10.1007/BF00561290
Wakabayashi, C., Yasuda, K., & Shiota, T. (2009). Estimation of Weibull parameters from parameters of initial distribution of flaw size. Journal of Physics: Conference Series, 191, 2–7. https://doi.org/10.1088/1742-6596/191/1/012006
Zarzycki, J. (1977). Propriétés mécaniques des verres. Revue de Physique Appliquée, 12(5), 789–796. https://doi.org/10.1051/rphysap:01977001205078900
Zerbo, L., Seynou, M., Sorgho, B., Lecomte-Nana, G., Gomina, M., & Blanchart, P. (2019). Microstructure and Weibull distribution of rupture strength of clay-talc ceramics. Ceramica, 65(374), 240–245. https://doi.org/10.1590/0366-69132019653742518
Bauchy, M. (2019). Topological Constraint Theory and Rigidity of Glasses. 21st Century Nanoscience – A Handbook, May, 13-1-13–20. https://doi.org/10.1201/9780367333003-13
Ciarella, S., Khomenko, D., Berthier, L., Mocanu, F. C., Reichman, D. R., Scalliet, C., & Zamponi, F. (2023). Finding defects in glasses through machine learning. Nature Communications, 14(1), 4229. https://doi.org/10.1038/s41467-023-39948-7
Faci, A. (2018). No TitleInfluence des paramètres d’érosion sur la résistance mécanique d’un verre sablé : analyse statistique. ’Université Ferhat ABBAS - Sétif 1.
Januchta, K., & Smedskjaer, M. M. (2019). Indentation deformation in oxide glasses: Quantification, structural changes, and relation to cracking. Journal of Non-Crystalline Solids: X, 1(December 2018), 100007. https://doi.org/10.1016/j.nocx.2018.100007
Lawn, B. R., Dabbs, T. P., & Fairbanks, C. J. (1983). Kinetics of shear-activated indentation crack initiation in soda-lime glass. Journal of Materials Science, 18(9), 2785–2797. https://doi.org/10.1007/BF00547596
Lewandowski, J. J., Wang, W. H., & Greer, A. L. (2005). Intrinsic plasticity or brittleness of metallic glasses. Philosophical Magazine Letters, 85(2), 77–87. https://doi.org/10.1080/09500830500080474
Li, T., Griffiths, W. D., & Chen, J. (2017). Weibull Modulus Estimated by the Non-linear Least Squares Method: A Solution to Deviation Occurring in Traditional Weibull Estimation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 48(11), 5516–5528. https://doi.org/10.1007/s11661-017-4294-4
Li, X. Y., Jiang, L. B., Zhang, X. W., Zhang, X., & Yan, Y. (2013). The influence of different surface compressive stress on the wettability of ion-exchanged float aluminosilicate glass. Advanced Materials Research, 704, 105–109. https://doi.org/10.4028/www.scientific.net/AMR.704.105
Madjoubi, M. A., Bousbaa, C., Hamidouche, M., & Bouaouadja, N. (1999). Weibull statistical analysis of the mechanical strength of a glass eroded by sand blasting. Journal of the European Ceramic Society, 19(16), 2957–2962. https://doi.org/https://doi.org/10.1016/S0955-2219(99)00087-4
Marcos, C. (2022). Crystallography Introduction to the Study of Minerals (pp. 193–233). springer.
Matusova, M., & Hruskova, E. (2022). Analysis of defects of glass products. IOP Conference Series: Materials Science and Engineering, 1256(1), 012016. https://doi.org/10.1088/1757-899x/1256/1/012016
Pardini, L. C., & Manhani, L. G. B. (2002). Influence of the Testing Gage Length on the Strength, Young’s Modulus and Weibull Modulus of Carbon Fibres and Glass Fibres. Materials Research, 5(4), 411–420. https://doi.org/10.1590/s1516-14392002000400004
Pisano, G. (2017). The statistical characterization of glass strength: From the micro- to the macro-mechanical response. 205.
Rodichev, Y., & Veer, F. (2010). Fracture resistance, surface defects and structural strength of glass. Challenging Glass 2 - Conference on Architectural and Structural Applications of Glass, CGC 2010, May, 363–373.
Rodrigues, B. P., To, T., Smedskjaer, M. M., & Wondraczek, L. (2022). Mechanical Properties of Oxide Glasses. Reviews in Mineralogy and Geochemistry, 87(1), 229–281. https://doi.org/10.2138/rmg.2022.87.06
Surdyka, N. D., Pantano, C. G., & Kim, S. H. (2014). Environmental effects on initiation and propagation of surface defects on silicate glasses: Scratch and fracture toughness study. Applied Physics A: Materials Science and Processing, 116(2), 519–528. https://doi.org/10.1007/s00339-014-8552-7
Symoens, E., Van Coile, R., Jovanović, B., & Belis, J. (2023). Probability Density Function Models for Float Glass under Mechanical Loading with Varying Parameters. In Materials (Vol. 16, Issue 5). https://doi.org/10.3390/ma16052067
Tao, Y., & Wang, X. (2021). Revealing the atomic-scale origin of simultaneously enhanced hardness and crack resistance in a single phase material. Journal of Applied Physics, 129(15). https://doi.org/10.1063/5.0046733
Tiryakioğlu, M. (2015). Weibull Analysis of Mechanical Data for Castings II: Weibull Mixtures and Their Interpretation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 46(1), 270–280. https://doi.org/10.1007/s11661-014-2610-9
Tiryakioğlu, M., & Campbell, J. (2010). Weibull analysis of mechanical data for castings: A guide to the interpretation of probability plots. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 41(12), 3121–3129. https://doi.org/10.1007/s11661-010-0364-6
Townsend, P. D., Can, N., Chandler, P. J., Farmery, B. W., Lopez-Heredero, R., Peto, A., Salvin, L., Underdown, D., & Yang, B. (1998). Comparisons of tin depth profile analyses in float glass. Journal of Non-Crystalline Solids, 223(1–2), 73–85. https://doi.org/10.1016/S0022-3093(97)00348-7
Trustrum, K., & Jayatilaka, A. D. S. (1979). On estimating the Weibull modulus for a brittle material. Journal of Materials Science, 14(5), 1080–1084. https://doi.org/10.1007/BF00561290
Wakabayashi, C., Yasuda, K., & Shiota, T. (2009). Estimation of Weibull parameters from parameters of initial distribution of flaw size. Journal of Physics: Conference Series, 191, 2–7. https://doi.org/10.1088/1742-6596/191/1/012006
Zarzycki, J. (1977). Propriétés mécaniques des verres. Revue de Physique Appliquée, 12(5), 789–796. https://doi.org/10.1051/rphysap:01977001205078900
Zerbo, L., Seynou, M., Sorgho, B., Lecomte-Nana, G., Gomina, M., & Blanchart, P. (2019). Microstructure and Weibull distribution of rupture strength of clay-talc ceramics. Ceramica, 65(374), 240–245. https://doi.org/10.1590/0366-69132019653742518