How to cite this paper
Asri, N., Somawiharja, Y., Mirzayanti, Y., Puspitasari, D., Yogaswara, R & Chern, J. (2024). Fly ash utilization as support of nano zinc oxide composite catalyst for methanolysis of kapok (Ceiba Pentandra) seed oil.Engineering Solid Mechanics, 12(4), 343-352.
Refrences
AlSharifi, M., & Znad, H. (2019). Development of a lithium-based chicken bone (Li-Cb) composite as an efficient catalyst for biodiesel production. Renewable Energy, 136, 856–864. doi: 10.1016/j.renene.2019.01.052.
Asri, N. P., Machmudah, S., Wahyudiono, W., Suprapto, S., Budikarjono, K., Roesyadi, A., & Goto, M. (2013). Non-Catalytic Transesterification of Vegetables Oil to Biodiesel in Sub-and Supercritical Methanol: A Kinetic’s Study. Bulletin of Chemical Reaction Engineering & Catalysis 7(3), 215–223. doi: 10.9767/bcrec.7.3.4060.215-223.
Asri, N. P., Machmudah, S., Wahyudiono, W., Suprapto, S., Budikarjono, K., & Roesyadi, A., Goto, M. (2013). Palm oil transesterification in sub- and supercritical methanol with heterogeneous base catalyst. Chemical Engineering and Processing: Process Intensification 72, 63–67. doi: 10.1016/j.cep.2013.07.003.
Asri, N. P., Prasetiyo, W. D., Kafidhu, A., Atiqoh, A., Puspitasari, E.A., Hindarso, H., & Suprapto, S. (2020). Transesterification of kapok seed oil (Ceiba pentandra) using heterogeneous catalyst bimetallic oxide of zinc and copper supported by γ-alumina. Materials Science Forum, 988, 87–94. doi: 10.4028/www.scientific.net/msf.988.87.
Asri, N. P., Saraswati, S., Yogaswara, R. R., Puspitasari, D. A, Mirzayanti, Y. W., & Udyani, K. (2021). Functionalization of Multiwall Carbon Nano-Tube Supported Zinc Oxide Solid Acid Catalyst Using Sulfonate Compound for Transesterification of Schleichera Oleosa L Oil. Journal of Physics: Conference Series, 2117(1). doi: 10.1088/1742-6596/2117/1/012038.
Asri, N. P., Saraswati, S., Hindarso, H., Mirzayanti, Y. W., & Yogaswara, R. R. (2021). Study of catalyst support utilization on ZnO-based solid catalyst to its activity at transesterification of Kesambi (Schleichera oleosa) oil. IOP Conference Series: Materials Science and Engineering, 1034(1). doi: 10.1088/1757-899x/1034/1/012059.
Asri, N. P., Yunati, Y., Hindarso, H., & Yogaswara, R. R. (2020). Preparation of Multi-Walled Carbon Nanotubes Supported Zinc Oxide Catalyst for Transesterification of Kesambi (Schleichera oleosa) Oil. IOP Conference Series: Materials Science and Engineering, 742(1). doi: 10.1088/1757-899X/742/1/012034.
Asri, N. P., Saraswati, R., Hindarso, H., Puspitasari, D. A., & Suprapto. 2021. Synthesis of biodiesel from kesambi (Schleichera oleosa L.) oil using carbon nanotube-supported zinc oxide heterogeneous catalyst. IOP Conference Series: Earth and Environmental Science, 749(1). doi: 10.1088/1755-1315/749/1/012048.
Asri, N. P., Soe’eib, S., Poedjojono, B., & Suprapto. 2018. Alumina supported zinc oxide catalyst for production of biodiesel from kesambi oil and optimization to achieve highest yields of biodiesel. Euro-Mediterranean Journal for Environmental Integration, 3(1), 3. doi: 10.1007/s41207-017-0043-8.
Asri, N. P., Yuniati, Y., Hindarso, H., Suprapto, & Yogaswara, R. R. 2020. Biodiesel production from Kesambi (Schleichera oleosa) oil using multi-walled carbon nanotubes supported zinc oxide as a solid acid catalyst. IOP Conference Series: Earth and Environmental Science, 456(1), 012003. doi: 10.1088/1755-1315/456/1/012003.
Asri, N. P., Budikarjono, K., & Roesyadi, A. 2015. Kinetics of Palm Oil Transesterification Using Double Promoted Catalyst CaO/KI/γ-Al2O3. Journal of Engineering and Technological Sciences, 47(4), 353–363. doi: 10.5614/j.eng.technol.sci.2015.47.4.1.
Asri, N. P., Yuniati, Y., Hindarso, H., Suprapto, & Yogaswara, R. R. 2020. Transesterification of kapok seed oil (Ceiba pentandra) using heterogeneous catalyst bimetallic oxide of zinc and copper supported by γ-alumina. Materials Science Forum, 988, 87–94. doi: 10.4028/www.scientific.net/msf.988.87.
Babajide, O., Musyoka, N., Petrik, L., & Ameer, F. (2012). Novel zeolite Na-X synthesized from fly ash as a heterogeneous catalyst in biodiesel production. Catalysis Today, 190(1), 54–60. doi: 10.1016/j.cattod.2012.04.044.
Babajide, O., Petrik, L., Musyoka, N., Amigun, B., & Ameer, F. (2010). Application of coal fly ash as a solid basic catalyst in producing biodiesel. AIChE Annual Meeting Conference Proceedings.
Gurunathan, B., & Ravi, A. (2015). Biodiesel production from waste cooking oil using copper doped zinc oxide nanocomposite as heterogeneous catalyst. Bioresource Technology, 188, 124–127. doi: 10.1016/j.biortech.2015.01.012.
He, P. Y., Zhang, Y. J., Chen, H., Han, Z. C., & Liu, L. C. (2019). Low-energy synthesis of kaliophilite catalyst from circulating fluidized bed fly ash for biodiesel production. Fuel, 257, 116041. doi: 10.1016/j.fuel.2019.116041.
Helwani, Z., Ramli, M., Saputra, E., Putra, Y. L., Simbolon, D. F., Othman, M. R., & Idroes, R. (2020). Composite catalyst of palm mill fly ash-supported calcium oxide obtained from eggshells for transesterification of off-grade palm oil. Catalysts, 10(7). doi: 10.3390/catal10070724.
Istadi, I., Anggoro, D. D., Buchori, L., Rahmawati, D. A., & Intaningrum, D. (2015). Active Acid Catalyst of Sulphated Zinc Oxide for Transesterification of Soybean Oil with Methanol to Biodiesel. Procedia Environmental Science, 23, 385–393. doi: 10.1016/j.proenv.2015.01.055.
Katara, S., Kabra, S., Goyal, D., Hada, R., Sharma, A., & Rani, A. (2020). Fly ash to solid base catalyst: Synthesis, characterization and catalytic application. Materials Today: Proceedings, 42, 1409–1416. doi: 10.1016/j.matpr.2021.01.148.
Khan, T. M. Y. (2020). A Review of Performance-Enhancing Innovative Modifications in Biodiesel Engines. Energies, 13(17), 4395. doi: 10.3390/en13174395.
Kusumaningtyas, R. D., Utomo, M. Y. A., Nurjanah, P. R., & Widjanarko, D. 2020. Synthesis of biodiesel from kapok (Ceiba pentandra L.) seed oil through ultrasound-enhanced transesterification reaction. AIP Conference Proceedings 2217(1), 2–11. doi: 10.1063/5.0000609.
Malpani, S. K., & Rani, A. (2019). A Greener Route for Synthesis of Fly Ash Supported Heterogeneous Acid Catalyst. Materials Today: Proceedings, 9, 551–559. doi: 10.1016/j.matpr.2018.10.375.
Mandolesi de Araújo, C. D., de Andrade, C. C., de Souza e Silva, E., & Dupas, F. A. (2013). Biodiesel production from used cooking oil: A review. Renewable and Sustainable Energy Reviews, 27, 445–452. doi: 10.1016/j.rser.2013.06.014.
Mukenga, M. (2012). Biodiesel production over supported Zinc Oxide nanoparticles. University of Johannesburg.
Muñoz, R., Gonzales, A., Valdebenito, F., Ciudad, G., Navia, R., Pecchi, G., & Azocar, L. (2020). Fly ash as a new versatile acid-base catalyst for biodiesel production. Renewable Energy, 162, 1931–1939. doi: 10.1016/j.renene.2020.09.099.
Nair, P., Singh, B., Upadhyay, S., & Sharma, Y. C. (2012). Synthesis of biodiesel from low FFA waste frying oil using calcium oxide derived from mereterix as a heterogeneous catalyst. Journal of Cleaner Production, 29–30, 82–90. doi: 10.1016/j.jclepro.2012.01.039.
Olutoye, M. A., & Hameed, B. H. (2011). Synthesis of fatty acid methyl ester from used vegetable cooking oil by solid reusable Mg1-xZn1+xO2 catalyst. Bioresource Technology, 102(4), 3819–3826. doi: 10.1016/j.biortech.2010.11.100.
Perhutani. (2022). Optimalkan Pemanfaatan Hutan Dengan Budidaya Kapuk Randu, Perhutani Tandatangani Mou Bersama RWH. Retrieved from https://www.perhutani.co.id/optimalkan-pemanfaatan-hutan-dengan-budidaya-kapuk-randu-perhutani-tandatangani-mou-bersama-rwh/. Access April 8, 2022.
Ponappa, K., Velmurugan, V., Franco, P. A., Kannan, T. R., & Ragurajan, R. (2016). Optimization of Biodiesel Production from Ceiba Pentandra (Kapok Seed Oil) Using Response Surface Methodology Assisted by Ultrasonic Energy Method. International Journal of Chemical Technology Research, 9(5), 794–803.
Putri, E. M. M., Rachimoellah, M., Santoso, N., & Pradana, F. (2012). Biodiesel production from kapok seed oil (Ceiba pentandra) through the transesterification process by using CaO as catalyst. Global Journal of Research in Engineering and Chemical Engineering, 12(2), 6–11.
Risdanareni, P., Puspitasari, P., & Januarti Jaya, E. (2017). Chemical and Physical Characterization of Fly Ash as Geopolymer Material. MATEC Web of Conferences, 97. doi: 10.1051/matecconf/20179701031.
Roy, T., Sahani, S., & Sharma, Y. C. (2020). Green synthesis of biodiesel from Ricinus communis oil (castor seed oil) using potassium promoted lanthanum oxide catalyst: kinetic, thermodynamic and environmental studies. Fuel, 274, 117644. doi: 10.1016/j.fuel.2020.117644.
Sharma, Y. C., & Singh, B. (2010). A hybrid feedstock for a very efficient preparation of biodiesel. Fuel Processing Technology, 91, 1267–1273. doi: 10.1016/j.fuproc.2010.04.008.
Sharma, Y. C., Singh, B., & Korstad, J. (2010). High Yield and Conversion of Biodiesel from a Nonedible Feedstock (Pongamia pinnata). Journal of Agricultural and Food Chemistry, 58(1), 242–247. doi: 10.1021/jf903227e.
Widjanarko, D., Kusumaningtyas, R. D., & Fathoni, A. A. (2020). Alteration of Biodiesel Properties and Automotive Diesel Engine Performance due to Temperature Variation of the Transesterification Process. Jurnal Rekayasa Kimia dan Lingkungan, 15(2) 90–98. doi: 10.23955/rkl.v15i2.16007.
Yusuff, A. S., Yusuff., A. S., Bhonsle, A. K., Trivedi, J., Bangwal, D. P., Singh, L. P., & Atray, N. (2021). Synthesis and characterization of coal fly ash supported zinc oxide catalyst for biodiesel production using used cooking oil as feed. Renewable Energy, 170, 302–314. doi: 10.1016/j.renene.2021.01.101.
Yusuff, A. S., & Bello, K. A. (2019). Synthesis of fatty acid methyl ester via transesterification of waste frying oil by a zinc-modified pumice catalyst: Taguchi approach to parametric optimization. Reaction Kinetics, Mechanisms and Catalysis 128(2), 739–761. doi: 10.1007/s111
Asri, N. P., Machmudah, S., Wahyudiono, W., Suprapto, S., Budikarjono, K., Roesyadi, A., & Goto, M. (2013). Non-Catalytic Transesterification of Vegetables Oil to Biodiesel in Sub-and Supercritical Methanol: A Kinetic’s Study. Bulletin of Chemical Reaction Engineering & Catalysis 7(3), 215–223. doi: 10.9767/bcrec.7.3.4060.215-223.
Asri, N. P., Machmudah, S., Wahyudiono, W., Suprapto, S., Budikarjono, K., & Roesyadi, A., Goto, M. (2013). Palm oil transesterification in sub- and supercritical methanol with heterogeneous base catalyst. Chemical Engineering and Processing: Process Intensification 72, 63–67. doi: 10.1016/j.cep.2013.07.003.
Asri, N. P., Prasetiyo, W. D., Kafidhu, A., Atiqoh, A., Puspitasari, E.A., Hindarso, H., & Suprapto, S. (2020). Transesterification of kapok seed oil (Ceiba pentandra) using heterogeneous catalyst bimetallic oxide of zinc and copper supported by γ-alumina. Materials Science Forum, 988, 87–94. doi: 10.4028/www.scientific.net/msf.988.87.
Asri, N. P., Saraswati, S., Yogaswara, R. R., Puspitasari, D. A, Mirzayanti, Y. W., & Udyani, K. (2021). Functionalization of Multiwall Carbon Nano-Tube Supported Zinc Oxide Solid Acid Catalyst Using Sulfonate Compound for Transesterification of Schleichera Oleosa L Oil. Journal of Physics: Conference Series, 2117(1). doi: 10.1088/1742-6596/2117/1/012038.
Asri, N. P., Saraswati, S., Hindarso, H., Mirzayanti, Y. W., & Yogaswara, R. R. (2021). Study of catalyst support utilization on ZnO-based solid catalyst to its activity at transesterification of Kesambi (Schleichera oleosa) oil. IOP Conference Series: Materials Science and Engineering, 1034(1). doi: 10.1088/1757-899x/1034/1/012059.
Asri, N. P., Yunati, Y., Hindarso, H., & Yogaswara, R. R. (2020). Preparation of Multi-Walled Carbon Nanotubes Supported Zinc Oxide Catalyst for Transesterification of Kesambi (Schleichera oleosa) Oil. IOP Conference Series: Materials Science and Engineering, 742(1). doi: 10.1088/1757-899X/742/1/012034.
Asri, N. P., Saraswati, R., Hindarso, H., Puspitasari, D. A., & Suprapto. 2021. Synthesis of biodiesel from kesambi (Schleichera oleosa L.) oil using carbon nanotube-supported zinc oxide heterogeneous catalyst. IOP Conference Series: Earth and Environmental Science, 749(1). doi: 10.1088/1755-1315/749/1/012048.
Asri, N. P., Soe’eib, S., Poedjojono, B., & Suprapto. 2018. Alumina supported zinc oxide catalyst for production of biodiesel from kesambi oil and optimization to achieve highest yields of biodiesel. Euro-Mediterranean Journal for Environmental Integration, 3(1), 3. doi: 10.1007/s41207-017-0043-8.
Asri, N. P., Yuniati, Y., Hindarso, H., Suprapto, & Yogaswara, R. R. 2020. Biodiesel production from Kesambi (Schleichera oleosa) oil using multi-walled carbon nanotubes supported zinc oxide as a solid acid catalyst. IOP Conference Series: Earth and Environmental Science, 456(1), 012003. doi: 10.1088/1755-1315/456/1/012003.
Asri, N. P., Budikarjono, K., & Roesyadi, A. 2015. Kinetics of Palm Oil Transesterification Using Double Promoted Catalyst CaO/KI/γ-Al2O3. Journal of Engineering and Technological Sciences, 47(4), 353–363. doi: 10.5614/j.eng.technol.sci.2015.47.4.1.
Asri, N. P., Yuniati, Y., Hindarso, H., Suprapto, & Yogaswara, R. R. 2020. Transesterification of kapok seed oil (Ceiba pentandra) using heterogeneous catalyst bimetallic oxide of zinc and copper supported by γ-alumina. Materials Science Forum, 988, 87–94. doi: 10.4028/www.scientific.net/msf.988.87.
Babajide, O., Musyoka, N., Petrik, L., & Ameer, F. (2012). Novel zeolite Na-X synthesized from fly ash as a heterogeneous catalyst in biodiesel production. Catalysis Today, 190(1), 54–60. doi: 10.1016/j.cattod.2012.04.044.
Babajide, O., Petrik, L., Musyoka, N., Amigun, B., & Ameer, F. (2010). Application of coal fly ash as a solid basic catalyst in producing biodiesel. AIChE Annual Meeting Conference Proceedings.
Gurunathan, B., & Ravi, A. (2015). Biodiesel production from waste cooking oil using copper doped zinc oxide nanocomposite as heterogeneous catalyst. Bioresource Technology, 188, 124–127. doi: 10.1016/j.biortech.2015.01.012.
He, P. Y., Zhang, Y. J., Chen, H., Han, Z. C., & Liu, L. C. (2019). Low-energy synthesis of kaliophilite catalyst from circulating fluidized bed fly ash for biodiesel production. Fuel, 257, 116041. doi: 10.1016/j.fuel.2019.116041.
Helwani, Z., Ramli, M., Saputra, E., Putra, Y. L., Simbolon, D. F., Othman, M. R., & Idroes, R. (2020). Composite catalyst of palm mill fly ash-supported calcium oxide obtained from eggshells for transesterification of off-grade palm oil. Catalysts, 10(7). doi: 10.3390/catal10070724.
Istadi, I., Anggoro, D. D., Buchori, L., Rahmawati, D. A., & Intaningrum, D. (2015). Active Acid Catalyst of Sulphated Zinc Oxide for Transesterification of Soybean Oil with Methanol to Biodiesel. Procedia Environmental Science, 23, 385–393. doi: 10.1016/j.proenv.2015.01.055.
Katara, S., Kabra, S., Goyal, D., Hada, R., Sharma, A., & Rani, A. (2020). Fly ash to solid base catalyst: Synthesis, characterization and catalytic application. Materials Today: Proceedings, 42, 1409–1416. doi: 10.1016/j.matpr.2021.01.148.
Khan, T. M. Y. (2020). A Review of Performance-Enhancing Innovative Modifications in Biodiesel Engines. Energies, 13(17), 4395. doi: 10.3390/en13174395.
Kusumaningtyas, R. D., Utomo, M. Y. A., Nurjanah, P. R., & Widjanarko, D. 2020. Synthesis of biodiesel from kapok (Ceiba pentandra L.) seed oil through ultrasound-enhanced transesterification reaction. AIP Conference Proceedings 2217(1), 2–11. doi: 10.1063/5.0000609.
Malpani, S. K., & Rani, A. (2019). A Greener Route for Synthesis of Fly Ash Supported Heterogeneous Acid Catalyst. Materials Today: Proceedings, 9, 551–559. doi: 10.1016/j.matpr.2018.10.375.
Mandolesi de Araújo, C. D., de Andrade, C. C., de Souza e Silva, E., & Dupas, F. A. (2013). Biodiesel production from used cooking oil: A review. Renewable and Sustainable Energy Reviews, 27, 445–452. doi: 10.1016/j.rser.2013.06.014.
Mukenga, M. (2012). Biodiesel production over supported Zinc Oxide nanoparticles. University of Johannesburg.
Muñoz, R., Gonzales, A., Valdebenito, F., Ciudad, G., Navia, R., Pecchi, G., & Azocar, L. (2020). Fly ash as a new versatile acid-base catalyst for biodiesel production. Renewable Energy, 162, 1931–1939. doi: 10.1016/j.renene.2020.09.099.
Nair, P., Singh, B., Upadhyay, S., & Sharma, Y. C. (2012). Synthesis of biodiesel from low FFA waste frying oil using calcium oxide derived from mereterix as a heterogeneous catalyst. Journal of Cleaner Production, 29–30, 82–90. doi: 10.1016/j.jclepro.2012.01.039.
Olutoye, M. A., & Hameed, B. H. (2011). Synthesis of fatty acid methyl ester from used vegetable cooking oil by solid reusable Mg1-xZn1+xO2 catalyst. Bioresource Technology, 102(4), 3819–3826. doi: 10.1016/j.biortech.2010.11.100.
Perhutani. (2022). Optimalkan Pemanfaatan Hutan Dengan Budidaya Kapuk Randu, Perhutani Tandatangani Mou Bersama RWH. Retrieved from https://www.perhutani.co.id/optimalkan-pemanfaatan-hutan-dengan-budidaya-kapuk-randu-perhutani-tandatangani-mou-bersama-rwh/. Access April 8, 2022.
Ponappa, K., Velmurugan, V., Franco, P. A., Kannan, T. R., & Ragurajan, R. (2016). Optimization of Biodiesel Production from Ceiba Pentandra (Kapok Seed Oil) Using Response Surface Methodology Assisted by Ultrasonic Energy Method. International Journal of Chemical Technology Research, 9(5), 794–803.
Putri, E. M. M., Rachimoellah, M., Santoso, N., & Pradana, F. (2012). Biodiesel production from kapok seed oil (Ceiba pentandra) through the transesterification process by using CaO as catalyst. Global Journal of Research in Engineering and Chemical Engineering, 12(2), 6–11.
Risdanareni, P., Puspitasari, P., & Januarti Jaya, E. (2017). Chemical and Physical Characterization of Fly Ash as Geopolymer Material. MATEC Web of Conferences, 97. doi: 10.1051/matecconf/20179701031.
Roy, T., Sahani, S., & Sharma, Y. C. (2020). Green synthesis of biodiesel from Ricinus communis oil (castor seed oil) using potassium promoted lanthanum oxide catalyst: kinetic, thermodynamic and environmental studies. Fuel, 274, 117644. doi: 10.1016/j.fuel.2020.117644.
Sharma, Y. C., & Singh, B. (2010). A hybrid feedstock for a very efficient preparation of biodiesel. Fuel Processing Technology, 91, 1267–1273. doi: 10.1016/j.fuproc.2010.04.008.
Sharma, Y. C., Singh, B., & Korstad, J. (2010). High Yield and Conversion of Biodiesel from a Nonedible Feedstock (Pongamia pinnata). Journal of Agricultural and Food Chemistry, 58(1), 242–247. doi: 10.1021/jf903227e.
Widjanarko, D., Kusumaningtyas, R. D., & Fathoni, A. A. (2020). Alteration of Biodiesel Properties and Automotive Diesel Engine Performance due to Temperature Variation of the Transesterification Process. Jurnal Rekayasa Kimia dan Lingkungan, 15(2) 90–98. doi: 10.23955/rkl.v15i2.16007.
Yusuff, A. S., Yusuff., A. S., Bhonsle, A. K., Trivedi, J., Bangwal, D. P., Singh, L. P., & Atray, N. (2021). Synthesis and characterization of coal fly ash supported zinc oxide catalyst for biodiesel production using used cooking oil as feed. Renewable Energy, 170, 302–314. doi: 10.1016/j.renene.2021.01.101.
Yusuff, A. S., & Bello, K. A. (2019). Synthesis of fatty acid methyl ester via transesterification of waste frying oil by a zinc-modified pumice catalyst: Taguchi approach to parametric optimization. Reaction Kinetics, Mechanisms and Catalysis 128(2), 739–761. doi: 10.1007/s111