How to cite this paper
Ouamer, S., Bensalem, K., Iltaf, A., Bark, N & Dehghan, S. (2024). Optimization of laser welded ASTM A36 mild steel with different laser beam oscillation patterns utilizing experimental and simulation data.Engineering Solid Mechanics, 12(3), 333-342.
Refrences
Ancona, A., Lugarà, P. M., Sorgente, D., & Tricarico, L. (2007). Mechanical characterization of CO2 laser beam butt welds of AA5083. Journal of Materials Processing Technology, 191(1–3), 381–384. doi: 10.1016/J.JMATPROTEC.2007.03.048
Benyounis, K. Y., Olabi, A. G., & Hashmi, M. S. J. (2008). Multi-response optimization of CO2 laser-welding process of austenitic stainless steel. Optics & Laser Technology, 40(1), 76–87. doi: 10.1016/J.OPTLASTEC.2007.03.009
Bhadra, R., Pankaj, P., Biswas, P., & Dixit, U. S. (2019). Thermo-Mechanical Analysis of CO 2 Laser Butt Welding on AISI 304 Steel Thin Plates. International Journal of Steel Structures, 19(1), 14–27. doi: 10.1007/s13296-018-0085-z
Çam, G., Yeni, Ç., Erim, S., Ventzke, V., & Koçak, M. (2013). Investigation into properties of laser welded similar and dissimilar steel joints, 3(4), 177–189. doi: 10.1179/STW.1998.3.4.177
Cao, R., Han, C., Guo, X., Jiang, Y., Liao, F., Yang, F., Dou, G., Yan, Y., & Chen, J. (2022). Effects of boron on the microstructure and impact toughness of weathering steel weld metals and existing form of boron. Materials Science and Engineering: A, 833, 142560. doi: 10.1016/J.MSEA.2021.142560
Cheng, H., Zhou, L., Li, Q., Du, D., & Chang, B. (2021). Effect of welding parameters on spatter formation in full-penetration laser welding of titanium alloys. Journal of Materials Research and Technology, 15, 5516–5525.
Derevyagina, L. S., Gordienko, A. I., Orishich, Malikov, A. G., Surikova, N. S., & Volochaev, M. N. (2020). Microstructure of intercritical heat affected zone and toughness of microalloyed steel laser welds. Materials Science and Engineering: A, 770, 138522. doi: 10.1016/J.MSEA.2019.138522
El-Batahgy, A.-M., Khourshid, A.-F., & Sharef, T. (2011). Effect of Laser Beam Welding Parameters on Microstructure and Properties of Duplex Stainless Steel. Materials Sciences and Applications, 02(10), 1443–1451. doi: 10.4236/MSA.2011.210195
Gao, M., Zeng, X., Yan, J., & Hu, Q. (2008). Microstructure characteristics of laser–MIG hybrid welded mild steel. Applied Surface Science, 254(18), 5715–5721. doi: 10.1016/J.APSUSC.2008.03.070
Geng, Y., Akbari, M., Karimipour, A., Karimi, A., Soleimani, A., & Afrand, M. (2019). Effects of the laser parameters on the mechanical properties and microstructure of weld joint in dissimilar pulsed laser welding of AISI 304 and AISI 420. Infrared Physics & Technology, 103, 103081.
Karakizis, P. N., Pantelis, D. I., Dragatogiannis, D. A., Bougiouri, V. D., & Charitidis, C. A. (2019). Study of friction stir butt welding between thin plates of AA5754 and mild steel for automotive applications. The International Journal of Advanced Manufacturing Technology, 102, 3065–3076.
Kumar, P., & Sinha, A. N. (2018). Microstructure and mechanical properties of pulsed Nd:YAG laser welding of st37 carbon steel. Procedia Computer Science, 133, 733–739. doi: 10.1016/J.PROCS.2018.07.125
Pankaj, P., Tiwari, A., Bhadra, R., & Biswas, P. (2019). Experimental investigation on CO2 laser butt welding of AISI 304 stainless steel and mild steel thin sheets. Optics and Laser Technology, 119(November 2018), 105633. doi: 10.1016/j.optlastec.2019.105633
Prabakaran, M. P., & Kannan, G. R. (2019). Optimization of laser welding process parameters in dissimilar joint of stainless steel AISI316/AISI1018 low carbon steel to attain the maximum level of mechanical properties through PWHT. Optics & Laser Technology, 112, 314–322.
Satpal, S., Bhopale, A., Deshpande, P., & Athawale, A. (2020). Fabrication of ZnO‐functionalized polypyrrole microcomposite as a protective coating to enhance anticorrosion performance of low carbon mild steel. Journal of Applied Polymer Science, 137(4), 48319.
Wang, J. (2019). Determination of dimensional profile and heat input of welded joints with average temperature. International Journal of Precision Engineering and Manufacturing, 20, 651–662.
Wang, P., Chen, X., Pan, Q., Madigan, B., & Long, J. (2016). Laser welding dissimilar materials of aluminum to steel: an overview. The International Journal of Advanced Manufacturing Technology, 87, 3081–3090.
Xia, M., Tian, Z., Zhao, L., & Zhou, Y. N. (2008). Metallurgical and Mechanical Properties of Fusion Zones of TRIP Steels in Laser Welding. ISIJ International, 48(4), 483–488. doi: 10.2355/ISIJINTERNATIONAL.48.483
Yang, J., Oliveira, J. P., Li, Y., Tan, C., Gao, C., Zhao, Y., & Yu, Z. (2022). Laser techniques for dissimilar joining of aluminum alloys to steels: A critical review. Journal of Materials Processing Technology, 301, 117443.
Zhang, M., Chen, G., Zhou, Y., & Liao, S. (2014). Optimization of deep penetration laser welding of thick stainless steel with a 10 kW fiber laser. Materials & Design, 53, 568–576. doi: 10.1016/J.MATDES.2013.06.066
Benyounis, K. Y., Olabi, A. G., & Hashmi, M. S. J. (2008). Multi-response optimization of CO2 laser-welding process of austenitic stainless steel. Optics & Laser Technology, 40(1), 76–87. doi: 10.1016/J.OPTLASTEC.2007.03.009
Bhadra, R., Pankaj, P., Biswas, P., & Dixit, U. S. (2019). Thermo-Mechanical Analysis of CO 2 Laser Butt Welding on AISI 304 Steel Thin Plates. International Journal of Steel Structures, 19(1), 14–27. doi: 10.1007/s13296-018-0085-z
Çam, G., Yeni, Ç., Erim, S., Ventzke, V., & Koçak, M. (2013). Investigation into properties of laser welded similar and dissimilar steel joints, 3(4), 177–189. doi: 10.1179/STW.1998.3.4.177
Cao, R., Han, C., Guo, X., Jiang, Y., Liao, F., Yang, F., Dou, G., Yan, Y., & Chen, J. (2022). Effects of boron on the microstructure and impact toughness of weathering steel weld metals and existing form of boron. Materials Science and Engineering: A, 833, 142560. doi: 10.1016/J.MSEA.2021.142560
Cheng, H., Zhou, L., Li, Q., Du, D., & Chang, B. (2021). Effect of welding parameters on spatter formation in full-penetration laser welding of titanium alloys. Journal of Materials Research and Technology, 15, 5516–5525.
Derevyagina, L. S., Gordienko, A. I., Orishich, Malikov, A. G., Surikova, N. S., & Volochaev, M. N. (2020). Microstructure of intercritical heat affected zone and toughness of microalloyed steel laser welds. Materials Science and Engineering: A, 770, 138522. doi: 10.1016/J.MSEA.2019.138522
El-Batahgy, A.-M., Khourshid, A.-F., & Sharef, T. (2011). Effect of Laser Beam Welding Parameters on Microstructure and Properties of Duplex Stainless Steel. Materials Sciences and Applications, 02(10), 1443–1451. doi: 10.4236/MSA.2011.210195
Gao, M., Zeng, X., Yan, J., & Hu, Q. (2008). Microstructure characteristics of laser–MIG hybrid welded mild steel. Applied Surface Science, 254(18), 5715–5721. doi: 10.1016/J.APSUSC.2008.03.070
Geng, Y., Akbari, M., Karimipour, A., Karimi, A., Soleimani, A., & Afrand, M. (2019). Effects of the laser parameters on the mechanical properties and microstructure of weld joint in dissimilar pulsed laser welding of AISI 304 and AISI 420. Infrared Physics & Technology, 103, 103081.
Karakizis, P. N., Pantelis, D. I., Dragatogiannis, D. A., Bougiouri, V. D., & Charitidis, C. A. (2019). Study of friction stir butt welding between thin plates of AA5754 and mild steel for automotive applications. The International Journal of Advanced Manufacturing Technology, 102, 3065–3076.
Kumar, P., & Sinha, A. N. (2018). Microstructure and mechanical properties of pulsed Nd:YAG laser welding of st37 carbon steel. Procedia Computer Science, 133, 733–739. doi: 10.1016/J.PROCS.2018.07.125
Pankaj, P., Tiwari, A., Bhadra, R., & Biswas, P. (2019). Experimental investigation on CO2 laser butt welding of AISI 304 stainless steel and mild steel thin sheets. Optics and Laser Technology, 119(November 2018), 105633. doi: 10.1016/j.optlastec.2019.105633
Prabakaran, M. P., & Kannan, G. R. (2019). Optimization of laser welding process parameters in dissimilar joint of stainless steel AISI316/AISI1018 low carbon steel to attain the maximum level of mechanical properties through PWHT. Optics & Laser Technology, 112, 314–322.
Satpal, S., Bhopale, A., Deshpande, P., & Athawale, A. (2020). Fabrication of ZnO‐functionalized polypyrrole microcomposite as a protective coating to enhance anticorrosion performance of low carbon mild steel. Journal of Applied Polymer Science, 137(4), 48319.
Wang, J. (2019). Determination of dimensional profile and heat input of welded joints with average temperature. International Journal of Precision Engineering and Manufacturing, 20, 651–662.
Wang, P., Chen, X., Pan, Q., Madigan, B., & Long, J. (2016). Laser welding dissimilar materials of aluminum to steel: an overview. The International Journal of Advanced Manufacturing Technology, 87, 3081–3090.
Xia, M., Tian, Z., Zhao, L., & Zhou, Y. N. (2008). Metallurgical and Mechanical Properties of Fusion Zones of TRIP Steels in Laser Welding. ISIJ International, 48(4), 483–488. doi: 10.2355/ISIJINTERNATIONAL.48.483
Yang, J., Oliveira, J. P., Li, Y., Tan, C., Gao, C., Zhao, Y., & Yu, Z. (2022). Laser techniques for dissimilar joining of aluminum alloys to steels: A critical review. Journal of Materials Processing Technology, 301, 117443.
Zhang, M., Chen, G., Zhou, Y., & Liao, S. (2014). Optimization of deep penetration laser welding of thick stainless steel with a 10 kW fiber laser. Materials & Design, 53, 568–576. doi: 10.1016/J.MATDES.2013.06.066