How to cite this paper
Cruz, D., Barreto, M., Zangalli, L., Júnior, A., Melito, I., Clain, F & Guilherme, C. (2024). Mechanical characterization procedure of HMPE fiber for offshore mooring in deep waters.Engineering Solid Mechanics, 12(3), 311-322.
Refrences
American Petroleum Institute. (2005). API Recommended Practice 2SK, Design and Analysis of Stationkeeping Systems for Floating Structures. API: Washington.
American Society for Testing and Materials. (2014). D885/D885M Standard Test Methods for Tire Cords, Tire Cord Fabrics, and Industrial Filament Yarns Made from Manufactured Organic-Base Fibers. ASTM: West Conshohocken.
American Society for Testing and Materials. (2016). D6611-16 Standard Test Method for Wet and Dry Yarn-on-Yarn Abrasion Resistance. ASTM: West Conshohocken.
American Society for Testing and Materials. (2018). D1577-07 Standard Test Methods for Linear Density of Textile Fibers. ASTM: West Conshohocken.
Bastos, M. B., Haach, L., & Fernandes, E. B. (2015). Development of ultra-deep water FPSO mooring ropes using high modulus/high tenacity polyester yarn. In Offshore Technology Conference Brasil (p. D021S017R005). OTC. https://doi.org/10.4043/26224-MS
Belloni, E. da S., Clain, F. M., & Guilherme, C. E. M. . (2021). Post-impact mechanical characterization of HMPE yarns. Acta Polytechnica, 61(3), 406–414. https://doi.org/10.14311/AP.2021.61.0406
Bhat, S. S., Cermelli, C. A., & Lo, K. H. (2002). Polyester mooring for ultra-deepwater applications. In International Conference on Offshore Mechanics and Arctic Engineering (Vol. 36118, pp. 513-518). https://doi.org/10.1115/OMAE2002-28267
Cheng, A., & Chen, N. Z. (2022). Structural integrity assessment for deep-water subsea pipelines. International Journal of Pressure Vessels and Piping, 199, 104711. https://doi.org/10.1016/j.ijpvp.2022.104711
Cordage Institute. (2009). 1503 Test Method for Yarn-on-Yarn Abrasion. CI: Wayne.
Cruz, D., Silva, A., Clain, F., & Guilherme, C. (2023). Experimental study on the behavior of polyamide multifilament subject to impact loads under different soaking conditions. Engineering Solid Mechanics, 11(1), 23-34. https://doi.org/10.5267/j.esm.2022.11.001
da Costa Mattos, H. S., & Chimisso, F. E. G. (2011). Modelling creep tests in HMPE fibres used in ultra-deep-sea mooring ropes. International Journal of Solids and Structures, 48(1), 144-152. https://doi.org/10.1016/j.ijsolstr.2010.09.015
da Cruz, D. M., Barreto, M. A., Zangalli, L. B., Júnior, T. P., & Guilherme, C. E. M. (2023a). Experimental Study of Creep Behavior at High Temperature in Different HMPE Fibers Used for Offshore Mooring. In Offshore Technology Conference Brasil (p. D021S026R002). OTC. https://doi.org/10.4043/32760-MS
da Cruz, D. M., Clain, F. M., & Guilherme, C. E. M. (2022). Experimental study of the torsional effect for yarn break load test of polymeric multifilaments. Acta Polytechnica, 62(5), 538–548. https://doi.org/10.14311/AP.2022.62.0538
da Cruz, D. M., da Silva Belloni, E., Clain, F. M., & Guilherme, C. E. M. (2020). Analysis of impact cycles applied to dry polyamide multifilaments and immersed in water. In Rio Oil And Gas Expo And Conference. https://doi.org/10.48072/2525-7579.rog.2020.199
da Cruz, D. M., Fondaik, F. P., Bastos, M. B., & Guilherme, C. E. M. (2022). Creep analysis of high modulus polyethylene (HMPE) multifilaments. In Rio Oil And Gas Expo And Conference. https://doi.org/10.48072/2525-7579.rog.2022.072
da Cruz, D. M., Júnior, T. L. P., de Ávila Barreto, M., Guilherme, C. E. M., & Stumpf, F. T. (2023b). Avaliação de modelos de energia para simulação numérica do comportamento mecânico de multifilamentos de poliéster. The Journal of Engineering and Exact Sciences, 9(1), 15321-01e. https://doi.org/10.18540/jcecvl9iss1pp15321-01e
Davies, P., Chailleux, E., Bunsell, A., Grosjean, F., & Francois, M. (2003). Prediction of the long term behavior of synthetic mooring lines. In Offshore Technology Conference (pp. OTC-15379). OTC. https://doi.org/10.4043/15379-MS
Davies, P., François, M., Grosjean, F., Baron, P., Salomon, K., & Trassoudaine, D. (2002). Synthetic mooring lines for depths to 3000 meters. In Offshore technology conference (pp. OTC-14246). OTC. https://doi.org/10.4043/14246-MS
Del Vecchio, C. J. M. (1992). Light weight materials for deep water moorings (Doctoral dissertation, University of Reading).
Duarte, J. P., Guilherme, C. E. M., da Silva, A. H. M. F. T., Mendonça, A. C., & Tempel Stumpf, F. (2019). Lifetime prediction of aramid yarns applied to offshore mooring due to purely hydrolytic degradation. Polymers and Polymer Composites, 27(8), 518-524. https://doi.org/10.1177/0967391119851386
Garza-Rios, L. O., Bernitsas, M. M., Nishimoto, K., & Matsuura, J. O. P. J. (2000). Dynamics of spread mooring systems with hybrid mooring lines. Journal of Offshore Mechanics and Arctic Engineering, 122(4), 274-281. https://doi.org/10.1115/1.1315591
Grujicic, M., Arakere, G., He, T., Bell, W. C., Cheeseman, B. A., Yen, C. F., & Scott, B. (2008). A ballistic material model for cross-plied unidirectional ultra-high molecular-weight polyethylene fiber-reinforced armor-grade composites. Materials Science and Engineering: A, 498(1-2), 231-241. https://doi.org/10.1016/j.msea.2008.07.056
Grujicic, M., Glomski, P. S., He, T., Arakere, G., Bell, W. C., & Cheeseman, B. A. (2009). Material modeling and ballistic-resistance analysis of armor-grade composites reinforced with high-performance fibers. Journal of Materials Engineering and Performance, 18, 1169-1182. https://doi.org/10.1007/s11665-009-9370-5
Haach, L. F., Poitevin, D. T., & Bastos, M. B. (2010). Prospects of synthetic fibers for deepwater mooring. In Proceedings of the Rio Oil and Gas Expo and Conference, Rio De Janeiro, Brazil (pp. 13-16).
Hahn, G., Monteiro da Fonseca Thomé da Silva, A. H., Tempel Stumpf, F., & Marcos Guilherme, C. E. (2022). Evaluation of residual strength of polymeric yarns subjected to previous impact loads. Acta Polytechnica, 62(4), 473–478. https://doi.org/10.14311/AP.2022.62.0473
Huang, W., Liu, H., Lian, Y., & Li, L. (2013). Modeling nonlinear creep and recovery behaviors of synthetic fiber ropes for deepwater moorings. Applied Ocean Research, 39, 113-120. https://doi.org/10.1016/j.apor.2012.10.004
Humeau, C., Davies, P., Smeets, P., Engels, T. A. P., Govaert, L. E., Vlasblom, M., & Jacquemin, F. (2018). Tension fatigue failure prediction for HMPE fibre ropes. Polymer Testing, 65, 497-504. https://doi.org/10.1016/j.polymertesting.2017.12.014
Huntley, E. W., & Whitehill, A. S. (1999). Creep-rupture models and experimental results for polyester rope. In Oceans' 99. MTS/IEEE. Riding the Crest into the 21st Century. Conference and Exhibition. Conference Proceedings (IEEE Cat. No. 99CH37008) (Vol. 2, pp. 681-689). IEEE. https://doi.org/10.1109/OCEANS.1999.804781
Inn, Y. W., & Rohlfing, D. C. (2012). Application of creep test to obtain the linear viscoelastic properties at low frequency range for polyethylene melts. Applied Rheology, 22(1), 15260. https://doi.org/10.3933/applrheol-22-15260
International Organization for Standardization. (2005). 139 Textiles — Standard atmospheres for conditioning and testing. ISO: Geneva.
International Organization for Standardization. (2009). 2062 Textiles — Yarns from packages — Determination of single-end breaking force and elongation at break using constant rate of extension (CRE) tester. ISO: Geneva.
International Organization for Standardization. (2020). 18692-3 Fibre ropes for offshore stationkeeping — Part 3: High modulus polyethylene (HMPE). ISO: Geneva.
Iskakbayev, A., Teltayev, B., & Alexandrov, S. (2016). Determination of the creep parameters of linear viscoelastic materials. Journal of Applied Mathematics, 2016. https://doi.org/10.1155/2016/6568347
Ju, X., Fang, W., Yin, H., & Jiang, Y. (2014). Stress analysis of the subsea dynamic riser baseprocess piping. Journal of Marine Science and Application, 13(3), 327-332. https://doi.org/10.1007/s11804-014-1264-8
Langston, T. (2017). An analytical model for the ballistic performance of ultra-high molecular weight polyethylene composites. Composite Structures, 179, 245-257. https://doi.org/10.1016/j.compstruct.2017.07.074
Lian, Y., Liu, H., Huang, W., & Li, L. (2015). A creep–rupture model of synthetic fiber ropes for deepwater moorings based on thermodynamics. Applied Ocean Research, 52, 234-244. https://doi.org/10.1016/j.apor.2015.06.009
Lian, Y., Zhang, B., Ji, J., Pan, Z., Jiang, T., Zheng, J., Ma, G., Zhu, Z., Zhu, Z., & Chen, W. (2023). Experimental investigation on service safety and reliability of full-scale HMPE fiber slings for offshore lifting operations. Ocean Engineering, 285, 115447. https://doi.org/10.1016/j.oceaneng.2023.115447
Lian, Y., Zheng, J., Liu, H., Xu, P., & Gan, L. (2018). A study of the creep-rupture behavior of HMPE ropes using viscoelastic-viscoplastic-viscodamage modeling. Ocean Engineering, 162, 43-54. https://doi.org/10.1016/j.oceaneng.2018.05.003
Louzada, E. L. V., Guilherme, C. E. M., & Stumpf, F. T. (2016). Evaluation of the fatigue response of polyester yarns after the application of abrupt tension loads. Acta Polytechnica CTU Proceedings, 7, 76–78. https://doi.org/10.14311/APP.2017.7.0076
McKenna, H. A., Hearle, J. W., & O'Hear, N. (2004). Handbook of fibre rope technology (Vol. 34). Woodhead publishing.
Melito, I., Belloni, E. S., & Bastos, M. B. (2020). Effects of mechanical degradation on the stiffness of polyester yarns. In Rio Oil and Gas Expo and Conference (Vol. 20, pp. 176-177). https://doi.org/10.48072/2525-7579.rog.2020.176
Ning, F., He, G., Sheng, C., He, H., Wang, J., Zhou, R., & Ning, X. (2021). Yarn on yarn abrasion performance of high modulus polyethylene fiber improved by graphene/polyurethane composites coating. Journal of engineered fibers and fabrics, 16, 1558925020983563. https://doi.org/10.1177/1558925020983563
Reda, A., Sultan, I. A., Howard, I. M., Forbes, G. L., & McKee, K. K. (2018). Pipeline walking and anchoring considerations in the presence of riser motion and inclined seabed. International Journal of Pressure Vessels and Piping, 162, 71-85. https://doi.org/10.1016/j.ijpvp.2018.01.003
Seo, M., Wu, H. C., Chen, J., Toomey, C. S., & Backer, S. (1997). Wear and fatigue of nylon and polyester mooring lines. Textile research journal, 67(7), 467-480. https://doi.org/10.1177/004051759706700701
Soares, S. S., Fortuna, V., & Chimisso, F. E. G. (2010). Yarn-on-yarn abrasion behavior for polyester, with and without marine finish, used in offshore mooring ropes. In Proceedings of “9th YSESM” Youth Symposium on Experimental Solid Mechanics (p. 60). Gruppo Italiano Frattura.
Tempel Stumpf, F., Marcos Guilherme, C. E., Magalhães da Cruz, D., Monteiro da Fonseca Thomé da Silva, A. H., & Briguet Bastos, M. (2022). A general constitutive model for the numerical simulation of different synthetic fibres used in offshore mooring. Ships and Offshore Structures, 1-7. https://doi.org/10.1080/17445302.2022.2116766
Vlasblom, M., Boesten, J., Leite, S., & Davies, P. (2012). Creep and stiffness of HMPE fiber for permanent deepwater offshore mooring. In 2012 Oceans-Yeosu (pp. 1-7). IEEE. https://doi.org/10.1109/OCEANS-Yeosu.2012.6263399
Wang, Y., Chen, H., Li, N., An, W., Lim, F., Wang, C., & Estefen, S. F. (2021). The motion response and hydrodynamic performance comparisons of the new subsea suspended manifold with two mooring scenarios. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43, 1-16. https://doi.org/10.1007/s40430-021-02851-7
Weller, S. D., Johanning, L., Davies, P., & Banfield, S. J. (2015). Synthetic mooring ropes for marine renewable energy applications. Renewable energy, 83, 1268-1278. https://doi.org/10.1016/j.renene.2015.03.058
American Society for Testing and Materials. (2014). D885/D885M Standard Test Methods for Tire Cords, Tire Cord Fabrics, and Industrial Filament Yarns Made from Manufactured Organic-Base Fibers. ASTM: West Conshohocken.
American Society for Testing and Materials. (2016). D6611-16 Standard Test Method for Wet and Dry Yarn-on-Yarn Abrasion Resistance. ASTM: West Conshohocken.
American Society for Testing and Materials. (2018). D1577-07 Standard Test Methods for Linear Density of Textile Fibers. ASTM: West Conshohocken.
Bastos, M. B., Haach, L., & Fernandes, E. B. (2015). Development of ultra-deep water FPSO mooring ropes using high modulus/high tenacity polyester yarn. In Offshore Technology Conference Brasil (p. D021S017R005). OTC. https://doi.org/10.4043/26224-MS
Belloni, E. da S., Clain, F. M., & Guilherme, C. E. M. . (2021). Post-impact mechanical characterization of HMPE yarns. Acta Polytechnica, 61(3), 406–414. https://doi.org/10.14311/AP.2021.61.0406
Bhat, S. S., Cermelli, C. A., & Lo, K. H. (2002). Polyester mooring for ultra-deepwater applications. In International Conference on Offshore Mechanics and Arctic Engineering (Vol. 36118, pp. 513-518). https://doi.org/10.1115/OMAE2002-28267
Cheng, A., & Chen, N. Z. (2022). Structural integrity assessment for deep-water subsea pipelines. International Journal of Pressure Vessels and Piping, 199, 104711. https://doi.org/10.1016/j.ijpvp.2022.104711
Cordage Institute. (2009). 1503 Test Method for Yarn-on-Yarn Abrasion. CI: Wayne.
Cruz, D., Silva, A., Clain, F., & Guilherme, C. (2023). Experimental study on the behavior of polyamide multifilament subject to impact loads under different soaking conditions. Engineering Solid Mechanics, 11(1), 23-34. https://doi.org/10.5267/j.esm.2022.11.001
da Costa Mattos, H. S., & Chimisso, F. E. G. (2011). Modelling creep tests in HMPE fibres used in ultra-deep-sea mooring ropes. International Journal of Solids and Structures, 48(1), 144-152. https://doi.org/10.1016/j.ijsolstr.2010.09.015
da Cruz, D. M., Barreto, M. A., Zangalli, L. B., Júnior, T. P., & Guilherme, C. E. M. (2023a). Experimental Study of Creep Behavior at High Temperature in Different HMPE Fibers Used for Offshore Mooring. In Offshore Technology Conference Brasil (p. D021S026R002). OTC. https://doi.org/10.4043/32760-MS
da Cruz, D. M., Clain, F. M., & Guilherme, C. E. M. (2022). Experimental study of the torsional effect for yarn break load test of polymeric multifilaments. Acta Polytechnica, 62(5), 538–548. https://doi.org/10.14311/AP.2022.62.0538
da Cruz, D. M., da Silva Belloni, E., Clain, F. M., & Guilherme, C. E. M. (2020). Analysis of impact cycles applied to dry polyamide multifilaments and immersed in water. In Rio Oil And Gas Expo And Conference. https://doi.org/10.48072/2525-7579.rog.2020.199
da Cruz, D. M., Fondaik, F. P., Bastos, M. B., & Guilherme, C. E. M. (2022). Creep analysis of high modulus polyethylene (HMPE) multifilaments. In Rio Oil And Gas Expo And Conference. https://doi.org/10.48072/2525-7579.rog.2022.072
da Cruz, D. M., Júnior, T. L. P., de Ávila Barreto, M., Guilherme, C. E. M., & Stumpf, F. T. (2023b). Avaliação de modelos de energia para simulação numérica do comportamento mecânico de multifilamentos de poliéster. The Journal of Engineering and Exact Sciences, 9(1), 15321-01e. https://doi.org/10.18540/jcecvl9iss1pp15321-01e
Davies, P., Chailleux, E., Bunsell, A., Grosjean, F., & Francois, M. (2003). Prediction of the long term behavior of synthetic mooring lines. In Offshore Technology Conference (pp. OTC-15379). OTC. https://doi.org/10.4043/15379-MS
Davies, P., François, M., Grosjean, F., Baron, P., Salomon, K., & Trassoudaine, D. (2002). Synthetic mooring lines for depths to 3000 meters. In Offshore technology conference (pp. OTC-14246). OTC. https://doi.org/10.4043/14246-MS
Del Vecchio, C. J. M. (1992). Light weight materials for deep water moorings (Doctoral dissertation, University of Reading).
Duarte, J. P., Guilherme, C. E. M., da Silva, A. H. M. F. T., Mendonça, A. C., & Tempel Stumpf, F. (2019). Lifetime prediction of aramid yarns applied to offshore mooring due to purely hydrolytic degradation. Polymers and Polymer Composites, 27(8), 518-524. https://doi.org/10.1177/0967391119851386
Garza-Rios, L. O., Bernitsas, M. M., Nishimoto, K., & Matsuura, J. O. P. J. (2000). Dynamics of spread mooring systems with hybrid mooring lines. Journal of Offshore Mechanics and Arctic Engineering, 122(4), 274-281. https://doi.org/10.1115/1.1315591
Grujicic, M., Arakere, G., He, T., Bell, W. C., Cheeseman, B. A., Yen, C. F., & Scott, B. (2008). A ballistic material model for cross-plied unidirectional ultra-high molecular-weight polyethylene fiber-reinforced armor-grade composites. Materials Science and Engineering: A, 498(1-2), 231-241. https://doi.org/10.1016/j.msea.2008.07.056
Grujicic, M., Glomski, P. S., He, T., Arakere, G., Bell, W. C., & Cheeseman, B. A. (2009). Material modeling and ballistic-resistance analysis of armor-grade composites reinforced with high-performance fibers. Journal of Materials Engineering and Performance, 18, 1169-1182. https://doi.org/10.1007/s11665-009-9370-5
Haach, L. F., Poitevin, D. T., & Bastos, M. B. (2010). Prospects of synthetic fibers for deepwater mooring. In Proceedings of the Rio Oil and Gas Expo and Conference, Rio De Janeiro, Brazil (pp. 13-16).
Hahn, G., Monteiro da Fonseca Thomé da Silva, A. H., Tempel Stumpf, F., & Marcos Guilherme, C. E. (2022). Evaluation of residual strength of polymeric yarns subjected to previous impact loads. Acta Polytechnica, 62(4), 473–478. https://doi.org/10.14311/AP.2022.62.0473
Huang, W., Liu, H., Lian, Y., & Li, L. (2013). Modeling nonlinear creep and recovery behaviors of synthetic fiber ropes for deepwater moorings. Applied Ocean Research, 39, 113-120. https://doi.org/10.1016/j.apor.2012.10.004
Humeau, C., Davies, P., Smeets, P., Engels, T. A. P., Govaert, L. E., Vlasblom, M., & Jacquemin, F. (2018). Tension fatigue failure prediction for HMPE fibre ropes. Polymer Testing, 65, 497-504. https://doi.org/10.1016/j.polymertesting.2017.12.014
Huntley, E. W., & Whitehill, A. S. (1999). Creep-rupture models and experimental results for polyester rope. In Oceans' 99. MTS/IEEE. Riding the Crest into the 21st Century. Conference and Exhibition. Conference Proceedings (IEEE Cat. No. 99CH37008) (Vol. 2, pp. 681-689). IEEE. https://doi.org/10.1109/OCEANS.1999.804781
Inn, Y. W., & Rohlfing, D. C. (2012). Application of creep test to obtain the linear viscoelastic properties at low frequency range for polyethylene melts. Applied Rheology, 22(1), 15260. https://doi.org/10.3933/applrheol-22-15260
International Organization for Standardization. (2005). 139 Textiles — Standard atmospheres for conditioning and testing. ISO: Geneva.
International Organization for Standardization. (2009). 2062 Textiles — Yarns from packages — Determination of single-end breaking force and elongation at break using constant rate of extension (CRE) tester. ISO: Geneva.
International Organization for Standardization. (2020). 18692-3 Fibre ropes for offshore stationkeeping — Part 3: High modulus polyethylene (HMPE). ISO: Geneva.
Iskakbayev, A., Teltayev, B., & Alexandrov, S. (2016). Determination of the creep parameters of linear viscoelastic materials. Journal of Applied Mathematics, 2016. https://doi.org/10.1155/2016/6568347
Ju, X., Fang, W., Yin, H., & Jiang, Y. (2014). Stress analysis of the subsea dynamic riser baseprocess piping. Journal of Marine Science and Application, 13(3), 327-332. https://doi.org/10.1007/s11804-014-1264-8
Langston, T. (2017). An analytical model for the ballistic performance of ultra-high molecular weight polyethylene composites. Composite Structures, 179, 245-257. https://doi.org/10.1016/j.compstruct.2017.07.074
Lian, Y., Liu, H., Huang, W., & Li, L. (2015). A creep–rupture model of synthetic fiber ropes for deepwater moorings based on thermodynamics. Applied Ocean Research, 52, 234-244. https://doi.org/10.1016/j.apor.2015.06.009
Lian, Y., Zhang, B., Ji, J., Pan, Z., Jiang, T., Zheng, J., Ma, G., Zhu, Z., Zhu, Z., & Chen, W. (2023). Experimental investigation on service safety and reliability of full-scale HMPE fiber slings for offshore lifting operations. Ocean Engineering, 285, 115447. https://doi.org/10.1016/j.oceaneng.2023.115447
Lian, Y., Zheng, J., Liu, H., Xu, P., & Gan, L. (2018). A study of the creep-rupture behavior of HMPE ropes using viscoelastic-viscoplastic-viscodamage modeling. Ocean Engineering, 162, 43-54. https://doi.org/10.1016/j.oceaneng.2018.05.003
Louzada, E. L. V., Guilherme, C. E. M., & Stumpf, F. T. (2016). Evaluation of the fatigue response of polyester yarns after the application of abrupt tension loads. Acta Polytechnica CTU Proceedings, 7, 76–78. https://doi.org/10.14311/APP.2017.7.0076
McKenna, H. A., Hearle, J. W., & O'Hear, N. (2004). Handbook of fibre rope technology (Vol. 34). Woodhead publishing.
Melito, I., Belloni, E. S., & Bastos, M. B. (2020). Effects of mechanical degradation on the stiffness of polyester yarns. In Rio Oil and Gas Expo and Conference (Vol. 20, pp. 176-177). https://doi.org/10.48072/2525-7579.rog.2020.176
Ning, F., He, G., Sheng, C., He, H., Wang, J., Zhou, R., & Ning, X. (2021). Yarn on yarn abrasion performance of high modulus polyethylene fiber improved by graphene/polyurethane composites coating. Journal of engineered fibers and fabrics, 16, 1558925020983563. https://doi.org/10.1177/1558925020983563
Reda, A., Sultan, I. A., Howard, I. M., Forbes, G. L., & McKee, K. K. (2018). Pipeline walking and anchoring considerations in the presence of riser motion and inclined seabed. International Journal of Pressure Vessels and Piping, 162, 71-85. https://doi.org/10.1016/j.ijpvp.2018.01.003
Seo, M., Wu, H. C., Chen, J., Toomey, C. S., & Backer, S. (1997). Wear and fatigue of nylon and polyester mooring lines. Textile research journal, 67(7), 467-480. https://doi.org/10.1177/004051759706700701
Soares, S. S., Fortuna, V., & Chimisso, F. E. G. (2010). Yarn-on-yarn abrasion behavior for polyester, with and without marine finish, used in offshore mooring ropes. In Proceedings of “9th YSESM” Youth Symposium on Experimental Solid Mechanics (p. 60). Gruppo Italiano Frattura.
Tempel Stumpf, F., Marcos Guilherme, C. E., Magalhães da Cruz, D., Monteiro da Fonseca Thomé da Silva, A. H., & Briguet Bastos, M. (2022). A general constitutive model for the numerical simulation of different synthetic fibres used in offshore mooring. Ships and Offshore Structures, 1-7. https://doi.org/10.1080/17445302.2022.2116766
Vlasblom, M., Boesten, J., Leite, S., & Davies, P. (2012). Creep and stiffness of HMPE fiber for permanent deepwater offshore mooring. In 2012 Oceans-Yeosu (pp. 1-7). IEEE. https://doi.org/10.1109/OCEANS-Yeosu.2012.6263399
Wang, Y., Chen, H., Li, N., An, W., Lim, F., Wang, C., & Estefen, S. F. (2021). The motion response and hydrodynamic performance comparisons of the new subsea suspended manifold with two mooring scenarios. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43, 1-16. https://doi.org/10.1007/s40430-021-02851-7
Weller, S. D., Johanning, L., Davies, P., & Banfield, S. J. (2015). Synthetic mooring ropes for marine renewable energy applications. Renewable energy, 83, 1268-1278. https://doi.org/10.1016/j.renene.2015.03.058