How to cite this paper
Elkori, R., Lamarti, A., Salmi, H., Had, K & Hachim, A. (2024). Experimental study of the degradation of HDPE packaging under accelerated thermal aging.Engineering Solid Mechanics, 12(2), 195-206.
Refrences
Abbès, B., Zaki, O., & Safa, L. (2010). Experimental and numerical study of the aging effects of sorption conditions on the mechanical behaviour of polypropylene bottles under columnar crush conditions. Polymer testing, 29(7), 902-909.
Al-Bayaty, S. A., Al-Uqaily, R. A., & Hameed, S. (2020, December). Study of thermal degradation kinetics of high density polyethlyene (HDPE) by using TGA technique. In AIP Conference Proceedings (Vol. 2290, No. 1). AIP Publishing.
Alothman, O. Y., Almajhdi, F. N., & Fouad, H. (2013). Effect of gamma radiation and accelerated aging on the mechanical and thermal behavior of HDPE/HA nano-composites for bone tissue regeneration. Biomedical engineering online, 12, 1-15.
Arhant, M., Le Gall, M., & Le Gac, P. Y. (2022). Fracture test to accelerate the prediction of polymer embrittlement during aging–Case of PET hydrolysis. Polymer Degradation and Stability, 196, 109848.
Audouin, L., Colin, X., Fayolle, B., & Verdu, J. (2007). Sur l'utilisation de la loi d'Arrhenius dans le domaine du vieillissement des polymères. Matériaux & Techniques, 95(3), 167-177.
Ayad, R., Safa, L., & Marull, S. (2002). Product-package system: thermal aging and its influence on the mechanical performances of blown bottles. Relationship with design and process conditions. Materials & design, 23(4), 441-447.
Ayadi, W., Laiarinandrasana, L., & Saï, K. (2018). Anisotropic (continuum damage mechanics)-based multi-mechanism model for semi-crystalline polymer. International Journal of Damage Mechanics, 27(3), 357-386.
Budrugeac, P., & Segal, E. (1998). Changes in the mechanical properties and thermal behaviour of LDPE in response to accelerated thermal aging. Journal of thermal analysis and calorimetry, 53(3), 801-808.
Bystritskaya, E. V., Monakhova, T. V., & Ivanov, V. B. (2013). TGA application for optimising the accelerated aging conditions and predictions of thermal aging of rubber. Polymer testing, 32(2), 197-201.
Celina, M., Gillen, K. T., & Assink, R. A. (2005). Accelerated aging and lifetime prediction: Review of non-Arrhenius behaviour due to two competing processes. Polymer Degradation and stability, 90(3), 395-404.
Chamas, A., Moon, H., Zheng, J., Qiu, Y., Tabassum, T., Jang, J. H., ... & Suh, S. (2020). Degradation rates of plastics in the environment. ACS Sustainable Chemistry & Engineering, 8(9), 3494-3511.
Choi, E. Y., Shin, J. C., Lee, J. Y., Kim, M. H., & Kim, C. K. (2020). Accelerated life testing of thermoplastic polyurethane encapsulants used in underwater acoustic sensor. Macromolecular Research, 28, 510-516.
Ciardiello, R., Belingardi, G., Martorana, B., & Brunella, V. (2020). Effect of accelerated ageing cycles on the physical and mechanical properties of a reversible thermoplastic adhesive. The Journal of Adhesion, 96(11), 1003-1026.
D Ramteke, D., C Swart, H., & S Gedam, R. (2016). Electrical characterization of Pr3+ containing lithium borate glasses by impedance spectroscopy. Advanced Materials Letters, 7(6), 436-440.
Dorleans, V., Delille, R., Notta-Cuvier, D., Lauro, F., & Michau, É. (2021). Time-temperature superposition in viscoelasticity and viscoplasticity for thermoplastics. Polymer Testing, 101, 107287.
Edidin, A. A., Jewett, C. W., Kalinowski, A., Kwarteng, K., & Kurtz, S. M. (2000). Degradation of mechanical behavior in UHMWPE after natural and accelerated aging. Biomaterials, 21(14), 1451-1460.
Eftekhari, M., Fatemi, A., & Khosrovaneh, A. (2016). Fatigue behavior of neat and short glass fiber reinforced polymers under two-step loadings and periodic overloads. SAE International Journal of Materials and Manufacturing, 9(3), 585-593.
El-Bagory, T. M., Sallam, H. E., & Younan, M. Y. (2015). Evaluation of fracture toughness behavior of polyethylene pipe materials. Journal of Pressure Vessel Technology, 137(6), 061402.
En-naji, A., Mouhib, N., Farid, H., & El Ghorba, M. (2019). Prediction of thermomechanical behavior of acrylonitrile butadiene styrene using a newly developed nonlinear damage-reliability model. Frattura ed Integrità Strutturale, 13(49), 748-762.
Fouad, H. (2010). Effect of long‐term natural aging on the thermal, mechanical, and viscoelastic behavior of biomedical grade of ultra high molecular weight polyethylene. Journal of applied polymer science, 118(1), 17-24.
Gates, T., & Grayson, M. (1999). On the use of accelerated aging methods for screening high temperature polymeric composite materials. In 40th Structures, Structural Dynamics, and Materials Conference and Exhibit (p. 1296).
Giannuzzi, L., Pinotti, A., & Zaritzky, N. (1998). Mathematical modelling of microbial growth in packaged refrigerated beef stored at different temperatures. International Journal of Food Microbiology, 39(1-2), 101-110.
Gillen, K. T., & Celina, M. (2018). Predicting polymer degradation and mechanical property changes for combined radiation-thermal aging environments. Rubber Chemistry and Technology, 91(1), 27-63.
Hedir, A., Moudoud, M., Lamrous, O., Rondot, S., Jbara, O., & Dony, P. (2020). Ultraviolet radiation aging impact on physicochemical properties of crosslinked polyethylene cable insulation. Journal of applied polymer science, 137(16), 48575.
Jakubowska, P., Borkowski, G., Brząkalski, D., Sztorch, B., Kloziński, A., & Przekop, R. E. (2022). The accelerated aging impact on mechanical and thermal properties of polypropylene composites with sedimentary rock opoka-hybrid natural filler. Materials, 15(1), 338.
Jemii, H., Boubakri, A., Bahri, A., Hammiche, D., Elleuch, K., & Guermazi, N. (2021). Tribological behavior of virgin and aged polymeric pipes under dry sliding conditions against steel. Tribology International, 154, 106727.
Khelidj, N., Colin, X., Audouin, L., Verdu, J., Monchy-Leroy, C., & Prunier, V. (2006). Oxidation of polyethylene under irradiation at low temperature and low dose rate. Part II. Low temperature thermal oxidation. Polymer degradation and stability, 91(7), 1598-1605.
Komesu, A., Martins Martinez, P. F., Lunelli, B. H., Oliveira, J., Wolf Maciel, M. R., & Maciel Filho, R. (2017). Study of lactic acid thermal behavior using thermoanalytical techniques. Journal of Chemistry, 2017.
Krishnaswamy, R. K. (2005). Analysis of ductile and brittle failures from creep rupture testing of high-density polyethylene (HDPE) pipes. Polymer, 46(25), 11664-11672.
Kufel, A., & Kuciel, S. (2019). Hybrid composites based on polypropylene with basalt/hazelnut shell fillers: The influence of temperature, thermal aging, and water absorption on mechanical properties. Polymers, 12(1), 18.
Kurtz, S. M., Villarraga, M. L., Herr, M. P., Bergström, J. S., Rimnac, C. M., & Edidin, A. A. (2002). Thermomechanical behavior of virgin and highly crosslinked ultra-high molecular weight polyethylene used in total joint replacements. Biomaterials, 23(17), 3681-3697.
Lee, K. H., Khan, I. A., Lee, Y. S., & Kim, J. O. (2022). Gravimetric analysis of stability of polymeric materials during exposure to chemical disinfectants at different temperatures. Chemosphere, 302, 134813.
Lemaitre, J., & Desmorat, R. (2005). Background on continuum damage mechanics. Engineering damage mechanics: Ductile, creep, fatigue and brittle failures, 1-76.
Li, H., Mašek, O., Harper, A., & Ocone, R. (2021). Kinetic study of pyrolysis of high‐density polyethylene (HDPE) waste at different bed thicknesses in a fixed bed reactor. The Canadian Journal of Chemical Engineering, 99(8), 1733-1744.
Liu, J., Li, X., Xu, L., & Zhang, P. (2016). Investigation of aging behavior and mechanism of nitrile-butadiene rubber (NBR) in the accelerated thermal aging environment. Polymer testing, 54, 59-66.
Loos, A. C., & Dara, P. H. (1987). Processing of thermoplastic matrix composites. In Review of progress in quantitative nondestructive evaluation (pp. 1257-1265). Springer, Boston, MA.
Majid, F., & Elghorba, M. (2018). Continuum damage modeling through theoretical and experimental pressure limit formulas. Frattura ed Integrità Strutturale, 12(43), 79-89.
Majid, F., Ezzahi, M., & Elghorba, M. (2018). Energy damage approaches of artificially notched and aged thermoplastic pipes. Procedia Structural Integrity, 9, 229-234.
Majid, F., Ouardi, A., Barakat, M., & Elghorba, M. (2017). Mechanical behavior prediction of PPR and HDPE polymers through newly developed nonlinear damage-reliability models. Procedia Structural Integrity, 3, 387-394.
Montanari, G. C., & Cacciari, M. (1985). A probabilistic insulation life model for combined thermal-electrical srresses. IEEE transactions on electrical insulation, 3, 519-522.
Mourad, A. H., Akkad, R. O., Soliman, A. A., & Madkour, T. M. (2009). Characterisation of thermally treated and untreated polyethylene–polypropylene blends using DSC, TGA and IR techniques. Plastics, rubber and composites, 38(7), 265-278.
Nassim, B. A., Khaled, A., & Abderrahim, B. (2018). Influence of an absorbers GEMPEHD thermal properties on the propagation of heat in a solar sensor. In MATEC Web of Conferences (Vol. 149, p. 02046). EDP Sciences.
Niang, B., Diop, A. B., Farota, A. K., Schiavone, N., Askanian, H., Verney, V., ... & Diop, B. (2022). Thermomechanical and Structural Analysis of Biocomposites and Gamma Irradiation and Photoaging on Mechanical and Viscoelastic Properties. Advances in Materials, 11(3), 50.
Ramteke, P. K., Ahirwar, A. K., Shrestha, N. B., Rao, V. S., Vaze, K. K., & Ghosh, A. K. (2010, December). Thermal ageing predictions of polymeric insulation cables from Arrhenius plot using short-term test values. In 2010 2nd International Conference on Reliability, Safety and Hazard-Risk-Based Technologies and Physics-of-Failure Methods (ICRESH) (pp. 325-328). IEEE.
Rühl, A., Kolling, S., & Schneider, J. (2017). Characterization and modeling of poly (methyl methacrylate) and thermoplastic polyurethane for the application in laminated setups. Mechanics of Materials, 113, 102-111.
Sanada, K., Mizuno, Y., & Shindo, Y. (2015). Damage progression and notched strength recovery of fiber-reinforced polymers encompassing self-healing of interfacial debonding. Journal of Composite Materials, 49(14), 1765-1776.
Shah, C. S., Patni, M. J., & Pandya, M. V. (1994). Accelerated aging and lifetime prediction analysis of polymer composites: a new approach for a realistic prediction using cumulative damage theory. Polymer testing, 13(4), 295-322.
Shahryari, N., Keymanesh, M. R., & Aliha, M. R. M. (2021). Specimen type effect on measured low‐temperature fracture toughness of asphalt concrete. Fatigue & Fracture of Engineering Materials & Structures, 44(2), 551-567.
Shi, X., Fernando, B. D., & Croll, S. G. (2008). Concurrent physical aging and degradation of crosslinked coating systems in accelerated weathering. Journal of Coatings Technology and Research, 5, 299-309.
Simar, A. (2014). Impact du vieillissement humide sur le comportement d'un composite à matrice organique tissé fabriqué par injection RTM: Mise en évidence d'un couplage entre absorption d'eau et thermo-oxydation de la matrice (Doctoral dissertation, ISAE-ENSMA Ecole Nationale Supérieure de Mécanique et d'Aérotechique-Poitiers).
Song, Y., Deng, J., Xu, Z., Nie, Y., & Lan, Z. (2021). Effect of Thermal Aging on Mechanical Properties and Color Difference of Glass Fiber/Polyetherimide (GF/PEI) Composites. Polymers, 14(1), 67.
Suraci, S. V., Fabiani, D., Mazzocchetti, L., & Giorgini, L. (2020). Degradation assessment of polyethylene-based material through electrical and chemical-physical analyses. Energies, 13(3), 650.
Tcharkhtchi, A., Farzaneh, S., Abdallah-Elhirtsi, S., Esmaeillou, B., Nony, F., & Baron, A. (2014). Thermal aging effect on mechanical properties of polyurethane. International Journal of Polymer Analysis and Characterization, 19(7), 571-584.
Tippaha, K., Jittangkoon, N., & Cherntongchai, P. (2016). Model-free kinetic analysis of thermal degradation of polystyrene and high-density polyethylene blends. Chiang Mai Journal of Science, 43(2), 296-305.
Tries, V., Paul, W., Baschnagel, J., & Binder, K. (1997). Modeling polyethylene with the bond fluctuation model. The Journal of chemical physics, 106(2), 738-748.
Varley, R. J., Hodgkin, J. H., Hawthorne, D. G., Simon, G. P., & McCulloch, D. (2000). Toughening of a trifunctional epoxy system Part III. Kinetic and morphological study of the thermoplastic modified cure process. Polymer, 41(9), 3425-3436.
Verho, T., & Vaari, J. (2022). Analytical and Numerical Modeling of Degradation and Pyrolysis of Polyethylene: Measuring Aging with Thermogravimetry. Polymers, 14(13), 2709.
Wee, J. W., & Choi, B. H. (2020). Stochastic study on effects of material and physical parameters on slow crack growth behaviors of HDPE using the crack layer theory. International Journal of Solids and Structures, 195, 13-27.
Whelton, A. J., & Dietrich, A. M. (2009). Critical considerations for the accelerated aging of high-density polyethylene potable water materials. Polymer Degradation and Stability, 94(7), 1163-1175.
Widiastuti, I., Sbarski, I., & Masood, S. H. (2014). Mechanical response of poly (lactic acid)‐based packaging under liquid exposure. Journal of Applied Polymer Science, 131(16).
Al-Bayaty, S. A., Al-Uqaily, R. A., & Hameed, S. (2020, December). Study of thermal degradation kinetics of high density polyethlyene (HDPE) by using TGA technique. In AIP Conference Proceedings (Vol. 2290, No. 1). AIP Publishing.
Alothman, O. Y., Almajhdi, F. N., & Fouad, H. (2013). Effect of gamma radiation and accelerated aging on the mechanical and thermal behavior of HDPE/HA nano-composites for bone tissue regeneration. Biomedical engineering online, 12, 1-15.
Arhant, M., Le Gall, M., & Le Gac, P. Y. (2022). Fracture test to accelerate the prediction of polymer embrittlement during aging–Case of PET hydrolysis. Polymer Degradation and Stability, 196, 109848.
Audouin, L., Colin, X., Fayolle, B., & Verdu, J. (2007). Sur l'utilisation de la loi d'Arrhenius dans le domaine du vieillissement des polymères. Matériaux & Techniques, 95(3), 167-177.
Ayad, R., Safa, L., & Marull, S. (2002). Product-package system: thermal aging and its influence on the mechanical performances of blown bottles. Relationship with design and process conditions. Materials & design, 23(4), 441-447.
Ayadi, W., Laiarinandrasana, L., & Saï, K. (2018). Anisotropic (continuum damage mechanics)-based multi-mechanism model for semi-crystalline polymer. International Journal of Damage Mechanics, 27(3), 357-386.
Budrugeac, P., & Segal, E. (1998). Changes in the mechanical properties and thermal behaviour of LDPE in response to accelerated thermal aging. Journal of thermal analysis and calorimetry, 53(3), 801-808.
Bystritskaya, E. V., Monakhova, T. V., & Ivanov, V. B. (2013). TGA application for optimising the accelerated aging conditions and predictions of thermal aging of rubber. Polymer testing, 32(2), 197-201.
Celina, M., Gillen, K. T., & Assink, R. A. (2005). Accelerated aging and lifetime prediction: Review of non-Arrhenius behaviour due to two competing processes. Polymer Degradation and stability, 90(3), 395-404.
Chamas, A., Moon, H., Zheng, J., Qiu, Y., Tabassum, T., Jang, J. H., ... & Suh, S. (2020). Degradation rates of plastics in the environment. ACS Sustainable Chemistry & Engineering, 8(9), 3494-3511.
Choi, E. Y., Shin, J. C., Lee, J. Y., Kim, M. H., & Kim, C. K. (2020). Accelerated life testing of thermoplastic polyurethane encapsulants used in underwater acoustic sensor. Macromolecular Research, 28, 510-516.
Ciardiello, R., Belingardi, G., Martorana, B., & Brunella, V. (2020). Effect of accelerated ageing cycles on the physical and mechanical properties of a reversible thermoplastic adhesive. The Journal of Adhesion, 96(11), 1003-1026.
D Ramteke, D., C Swart, H., & S Gedam, R. (2016). Electrical characterization of Pr3+ containing lithium borate glasses by impedance spectroscopy. Advanced Materials Letters, 7(6), 436-440.
Dorleans, V., Delille, R., Notta-Cuvier, D., Lauro, F., & Michau, É. (2021). Time-temperature superposition in viscoelasticity and viscoplasticity for thermoplastics. Polymer Testing, 101, 107287.
Edidin, A. A., Jewett, C. W., Kalinowski, A., Kwarteng, K., & Kurtz, S. M. (2000). Degradation of mechanical behavior in UHMWPE after natural and accelerated aging. Biomaterials, 21(14), 1451-1460.
Eftekhari, M., Fatemi, A., & Khosrovaneh, A. (2016). Fatigue behavior of neat and short glass fiber reinforced polymers under two-step loadings and periodic overloads. SAE International Journal of Materials and Manufacturing, 9(3), 585-593.
El-Bagory, T. M., Sallam, H. E., & Younan, M. Y. (2015). Evaluation of fracture toughness behavior of polyethylene pipe materials. Journal of Pressure Vessel Technology, 137(6), 061402.
En-naji, A., Mouhib, N., Farid, H., & El Ghorba, M. (2019). Prediction of thermomechanical behavior of acrylonitrile butadiene styrene using a newly developed nonlinear damage-reliability model. Frattura ed Integrità Strutturale, 13(49), 748-762.
Fouad, H. (2010). Effect of long‐term natural aging on the thermal, mechanical, and viscoelastic behavior of biomedical grade of ultra high molecular weight polyethylene. Journal of applied polymer science, 118(1), 17-24.
Gates, T., & Grayson, M. (1999). On the use of accelerated aging methods for screening high temperature polymeric composite materials. In 40th Structures, Structural Dynamics, and Materials Conference and Exhibit (p. 1296).
Giannuzzi, L., Pinotti, A., & Zaritzky, N. (1998). Mathematical modelling of microbial growth in packaged refrigerated beef stored at different temperatures. International Journal of Food Microbiology, 39(1-2), 101-110.
Gillen, K. T., & Celina, M. (2018). Predicting polymer degradation and mechanical property changes for combined radiation-thermal aging environments. Rubber Chemistry and Technology, 91(1), 27-63.
Hedir, A., Moudoud, M., Lamrous, O., Rondot, S., Jbara, O., & Dony, P. (2020). Ultraviolet radiation aging impact on physicochemical properties of crosslinked polyethylene cable insulation. Journal of applied polymer science, 137(16), 48575.
Jakubowska, P., Borkowski, G., Brząkalski, D., Sztorch, B., Kloziński, A., & Przekop, R. E. (2022). The accelerated aging impact on mechanical and thermal properties of polypropylene composites with sedimentary rock opoka-hybrid natural filler. Materials, 15(1), 338.
Jemii, H., Boubakri, A., Bahri, A., Hammiche, D., Elleuch, K., & Guermazi, N. (2021). Tribological behavior of virgin and aged polymeric pipes under dry sliding conditions against steel. Tribology International, 154, 106727.
Khelidj, N., Colin, X., Audouin, L., Verdu, J., Monchy-Leroy, C., & Prunier, V. (2006). Oxidation of polyethylene under irradiation at low temperature and low dose rate. Part II. Low temperature thermal oxidation. Polymer degradation and stability, 91(7), 1598-1605.
Komesu, A., Martins Martinez, P. F., Lunelli, B. H., Oliveira, J., Wolf Maciel, M. R., & Maciel Filho, R. (2017). Study of lactic acid thermal behavior using thermoanalytical techniques. Journal of Chemistry, 2017.
Krishnaswamy, R. K. (2005). Analysis of ductile and brittle failures from creep rupture testing of high-density polyethylene (HDPE) pipes. Polymer, 46(25), 11664-11672.
Kufel, A., & Kuciel, S. (2019). Hybrid composites based on polypropylene with basalt/hazelnut shell fillers: The influence of temperature, thermal aging, and water absorption on mechanical properties. Polymers, 12(1), 18.
Kurtz, S. M., Villarraga, M. L., Herr, M. P., Bergström, J. S., Rimnac, C. M., & Edidin, A. A. (2002). Thermomechanical behavior of virgin and highly crosslinked ultra-high molecular weight polyethylene used in total joint replacements. Biomaterials, 23(17), 3681-3697.
Lee, K. H., Khan, I. A., Lee, Y. S., & Kim, J. O. (2022). Gravimetric analysis of stability of polymeric materials during exposure to chemical disinfectants at different temperatures. Chemosphere, 302, 134813.
Lemaitre, J., & Desmorat, R. (2005). Background on continuum damage mechanics. Engineering damage mechanics: Ductile, creep, fatigue and brittle failures, 1-76.
Li, H., Mašek, O., Harper, A., & Ocone, R. (2021). Kinetic study of pyrolysis of high‐density polyethylene (HDPE) waste at different bed thicknesses in a fixed bed reactor. The Canadian Journal of Chemical Engineering, 99(8), 1733-1744.
Liu, J., Li, X., Xu, L., & Zhang, P. (2016). Investigation of aging behavior and mechanism of nitrile-butadiene rubber (NBR) in the accelerated thermal aging environment. Polymer testing, 54, 59-66.
Loos, A. C., & Dara, P. H. (1987). Processing of thermoplastic matrix composites. In Review of progress in quantitative nondestructive evaluation (pp. 1257-1265). Springer, Boston, MA.
Majid, F., & Elghorba, M. (2018). Continuum damage modeling through theoretical and experimental pressure limit formulas. Frattura ed Integrità Strutturale, 12(43), 79-89.
Majid, F., Ezzahi, M., & Elghorba, M. (2018). Energy damage approaches of artificially notched and aged thermoplastic pipes. Procedia Structural Integrity, 9, 229-234.
Majid, F., Ouardi, A., Barakat, M., & Elghorba, M. (2017). Mechanical behavior prediction of PPR and HDPE polymers through newly developed nonlinear damage-reliability models. Procedia Structural Integrity, 3, 387-394.
Montanari, G. C., & Cacciari, M. (1985). A probabilistic insulation life model for combined thermal-electrical srresses. IEEE transactions on electrical insulation, 3, 519-522.
Mourad, A. H., Akkad, R. O., Soliman, A. A., & Madkour, T. M. (2009). Characterisation of thermally treated and untreated polyethylene–polypropylene blends using DSC, TGA and IR techniques. Plastics, rubber and composites, 38(7), 265-278.
Nassim, B. A., Khaled, A., & Abderrahim, B. (2018). Influence of an absorbers GEMPEHD thermal properties on the propagation of heat in a solar sensor. In MATEC Web of Conferences (Vol. 149, p. 02046). EDP Sciences.
Niang, B., Diop, A. B., Farota, A. K., Schiavone, N., Askanian, H., Verney, V., ... & Diop, B. (2022). Thermomechanical and Structural Analysis of Biocomposites and Gamma Irradiation and Photoaging on Mechanical and Viscoelastic Properties. Advances in Materials, 11(3), 50.
Ramteke, P. K., Ahirwar, A. K., Shrestha, N. B., Rao, V. S., Vaze, K. K., & Ghosh, A. K. (2010, December). Thermal ageing predictions of polymeric insulation cables from Arrhenius plot using short-term test values. In 2010 2nd International Conference on Reliability, Safety and Hazard-Risk-Based Technologies and Physics-of-Failure Methods (ICRESH) (pp. 325-328). IEEE.
Rühl, A., Kolling, S., & Schneider, J. (2017). Characterization and modeling of poly (methyl methacrylate) and thermoplastic polyurethane for the application in laminated setups. Mechanics of Materials, 113, 102-111.
Sanada, K., Mizuno, Y., & Shindo, Y. (2015). Damage progression and notched strength recovery of fiber-reinforced polymers encompassing self-healing of interfacial debonding. Journal of Composite Materials, 49(14), 1765-1776.
Shah, C. S., Patni, M. J., & Pandya, M. V. (1994). Accelerated aging and lifetime prediction analysis of polymer composites: a new approach for a realistic prediction using cumulative damage theory. Polymer testing, 13(4), 295-322.
Shahryari, N., Keymanesh, M. R., & Aliha, M. R. M. (2021). Specimen type effect on measured low‐temperature fracture toughness of asphalt concrete. Fatigue & Fracture of Engineering Materials & Structures, 44(2), 551-567.
Shi, X., Fernando, B. D., & Croll, S. G. (2008). Concurrent physical aging and degradation of crosslinked coating systems in accelerated weathering. Journal of Coatings Technology and Research, 5, 299-309.
Simar, A. (2014). Impact du vieillissement humide sur le comportement d'un composite à matrice organique tissé fabriqué par injection RTM: Mise en évidence d'un couplage entre absorption d'eau et thermo-oxydation de la matrice (Doctoral dissertation, ISAE-ENSMA Ecole Nationale Supérieure de Mécanique et d'Aérotechique-Poitiers).
Song, Y., Deng, J., Xu, Z., Nie, Y., & Lan, Z. (2021). Effect of Thermal Aging on Mechanical Properties and Color Difference of Glass Fiber/Polyetherimide (GF/PEI) Composites. Polymers, 14(1), 67.
Suraci, S. V., Fabiani, D., Mazzocchetti, L., & Giorgini, L. (2020). Degradation assessment of polyethylene-based material through electrical and chemical-physical analyses. Energies, 13(3), 650.
Tcharkhtchi, A., Farzaneh, S., Abdallah-Elhirtsi, S., Esmaeillou, B., Nony, F., & Baron, A. (2014). Thermal aging effect on mechanical properties of polyurethane. International Journal of Polymer Analysis and Characterization, 19(7), 571-584.
Tippaha, K., Jittangkoon, N., & Cherntongchai, P. (2016). Model-free kinetic analysis of thermal degradation of polystyrene and high-density polyethylene blends. Chiang Mai Journal of Science, 43(2), 296-305.
Tries, V., Paul, W., Baschnagel, J., & Binder, K. (1997). Modeling polyethylene with the bond fluctuation model. The Journal of chemical physics, 106(2), 738-748.
Varley, R. J., Hodgkin, J. H., Hawthorne, D. G., Simon, G. P., & McCulloch, D. (2000). Toughening of a trifunctional epoxy system Part III. Kinetic and morphological study of the thermoplastic modified cure process. Polymer, 41(9), 3425-3436.
Verho, T., & Vaari, J. (2022). Analytical and Numerical Modeling of Degradation and Pyrolysis of Polyethylene: Measuring Aging with Thermogravimetry. Polymers, 14(13), 2709.
Wee, J. W., & Choi, B. H. (2020). Stochastic study on effects of material and physical parameters on slow crack growth behaviors of HDPE using the crack layer theory. International Journal of Solids and Structures, 195, 13-27.
Whelton, A. J., & Dietrich, A. M. (2009). Critical considerations for the accelerated aging of high-density polyethylene potable water materials. Polymer Degradation and Stability, 94(7), 1163-1175.
Widiastuti, I., Sbarski, I., & Masood, S. H. (2014). Mechanical response of poly (lactic acid)‐based packaging under liquid exposure. Journal of Applied Polymer Science, 131(16).