How to cite this paper
Oladijo, S., Akinlabi, E., Mwema, F., Jen, T & Oladijo, O. (2024). Sputtering of high entropy alloys thin films: An overview.Engineering Solid Mechanics, 12(2), 177-194.
Refrences
Abegunde, O., Akinlabi, E. T., & Oladijo, P. (2019). Substrate effect on the morphology, structural and tribology properties of Titanium carbide thin film grown by RF Magnetron Sputtering. Journal of Physics: Conference Series, 1378(2).
Aksoy, C. B., Canadinc, D., & Yagci, M. B. (2019). Assessment of Ni ion release from TiTaHfNbZr high entropy alloy coated NiTi shape memory substrates in artificial saliva and gastric fluid. Materials Chemistry and Physics, 236(June), 121802.
Aliyu, A., & Srivastava, C. (2019). Microstructure and corrosion properties of MnCrFeCoNi high entropy alloy-graphene oxide composite coatings. Materialia, 5(November 2018), 100249.
Alvi, S., Jarzabek, D. M., Kohan, M. G., Hedman, D., Jenczyk, P., Natile, M. M., Vomiero, A., & Akhtar, F. (2020a). Synthesis and Mechanical Characterization of a CuMoTaWV High-Entropy Film by Magnetron Sputtering. ACS Applied Materials and Interfaces, 12(18), 21070–21079.
Alvi, S., Jarzabek, D. M., Kohan, M. G., Hedman, D., Jenczyk, P., Natile, M. M., Vomiero, A., & Akhtar, F. (2020b). Synthesis and Mechanical Characterization of a CuMoTaWV High-Entropy Film by Magnetron Sputtering. ACS Applied Materials & Interfaces, 12(18), 21070–21079.
Arif, Z. U., Khalid, M. Y., Al Rashid, A., ur Rehman, E., & Atif, M. (2022). Laser deposition of high-entropy alloys: A comprehensive review. Optics & Laser Technology, 145(August 2021), 107447.
Ayyagari, A., Barthelemy, C., Gwalani, B., Banerjee, R., Scharf, T. W., & Mukherjee, S. (2018). Reciprocating sliding wear behavior of high entropy alloys in dry and marine environments. Materials Chemistry and Physics, 210, 162–169.
Ayyagari, A. V, Gwalani, B., Muskeri, S., Mukherjee, S., & Banerjee, R. (2018). Surface degradation mechanisms in precipitation-hardened high-entropy alloys. Npj Materials Degradation, September.
Bachani, S. K., Wang, C.-J., Lou, B.-S., Chang, L.-C., & Lee, J.-W. (2020). Microstructural characterization, mechanical property and corrosion behavior of VNbMoTaWAl refractory high entropy alloy coatings: Effect of Al content. Surface and Coatings Technology, 403(August), 126351.
Behravan, N., Farhadizadeh, A., Ghasemi, S., Khademi, A., Shojaei, H., & Ghomi, H. (2021). The pressure dependence of structure and composition of sputtered AlCrSiTiMoO high entropy thin film. Journal of Alloys and Compounds, 852, 156421.
Braeckman, B. R., Boydens, F., Hidalgo, H., Dutheil, P., Jullien, M., Thomann, A.-L., & Depla, D. (2015a). High entropy alloy thin films deposited by magnetron sputtering of powder targets. Thin Solid Films, 580, 71–76.
Braeckman, B. R., Boydens, F., Hidalgo, H., Dutheil, P., Jullien, M., Thomann, A. L., & Depla, D. (2015b). High entropy alloy thin films deposited by magnetron sputtering of powder targets. Thin Solid Films, 580, 71–76.
Braic, M., Balaceanu, M., Vladescu, A., Zoita, C. N., & Braic, V. (2013). Deposition and characterization of multi-principal-element (CuSiTiYZr)C coatings. Applied Surface Science, 284, 671–678.
Braic, V., Balaceanu, M., Braic, M., Vladescu, A., Panseri, S., & Russo, A. (2012). Characterization of multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 10, 197–205.
Cai, Z., Wang, Z., Hong, Y., Lu, B., Liu, J., Li, Y., & Pu, J. (2021). Improved tribological behavior of plasma-nitrided AlCrTiV and AlCrTiVSi high-entropy alloy films. Tribology International, 163(June), 107195.
Cantor, B., Chang, I. T. H., Knight, P., & Vincent, A. J. B. (2004). Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A, 375–377(1-2 SPEC. ISS.), 213–218.
Cemin, F., Luís Artico, L., Piroli, V., Andrés Yunes, J., Alejandro Figueroa, C., & Alvarez, F. (2022). Superior in vitro biocompatibility in NbTaTiVZr(O) high-entropy metallic glass coatings for biomedical applications. Applied Surface Science, 596(May).
Chang, C. H., Li, P. W., Wu, Q. Q., Wang, M. H., Sung, C. C., & Hsu, C.-Y. (2019). Nanostructured and mechanical properties of high-entropy alloy nitride films prepared by magnetron sputtering at different substrate temperatures. Materials Technology, 34(6), 343–349. https://doi.org/10.1080/10667857.2018.1557411
Chang, Z.-C., Tsai, D.-C., & Chen, E.-C. (2015). Structure and characteristics of reactive magnetron sputtered (CrTaTiVZr)N coatings. Materials Science in Semiconductor Processing, 39, 30–39.
Chen, L., Li, W., Liu, P., Zhang, K., Ma, F., Chen, X., Zhou, H., & Liu, X. (2020). Microstructure and mechanical properties of (AlCrTiZrV)Nx high-entropy alloy nitride films by reactive magnetron sputtering. Vacuum, 181(August), 109706. h
Chen, S., Cai, Z., Lu, Z., Pu, J., Chen, R., Zheng, S., Mao, C., & Chen, S. (2019). Tribo-corrosion behavior of VAlTiCrCu high-entropy alloy film. Materials Characterization, 157(August), 109887.
Chen, T., Wu, W., Li, W., & Liu, D. (2019). Laser cladding of nanoparticle TiC ceramic powder: Effects of process parameters on the quality characteristics of the coatings and its prediction model. Optics & Laser Technology, 116(March), 345–355.
Chen, Y. H., Chuang, W. S., Huang, J. C., Wang, X., Chou, H. S., Lai, Y. J., & Lin, P. H. (2020). On the bio-corrosion and biocompatibility of TiTaNb medium entropy alloy films. Applied Surface Science, 508, 145307.
Chen, Y. Y., Duval, T., Hung, U. D., Yeh, J. W., & Shih, H. C. (2005). Microstructure and electrochemical properties of high entropy alloys—a comparison with type-304 stainless steel. Corrosion Science, 47(9), 2257–2279.
Chen, Z., Wen, J., Wang, C., & Kang, X. (2022). Convex Cube-Shaped Pt34Fe5Ni20Cu31Mo9Ru High Entropy Alloy Catalysts toward High-Performance Multifunctional Electrocatalysis. Small, 18(45), 1–9. https://doi.org/10.1002/smll.202204255
Cheng, K.-H., Lai, C.-H., Lin, S.-J., & Yeh, J.-W. (2011). Structural and mechanical properties of multi-element (AlCrMoTaTiZr)Nx coatings by reactive magnetron sputtering. Thin Solid Films, 519(10), 3185–3190.
Chu, J. P., Liu, T. Y., Li, C. L., Wang, C. H., Jang, J. S. C., Chen, M. J., Chang, S. H., & Huang, W. C. (2014). Fabrication and characterizations of thin film metallic glasses: Antibacterial property and durability study for medical application. Thin Solid Films, 561, 102–107.
Dada, M., Popoola, P., Adeosun, S., & Mathe, N. (2021). High Entropy Alloys for Aerospace Applications. In Aerodynamics. IntechOpen.
Dai, C., Fu, Y., Guo, J., & Du, C. (2020). Effects of substrate temperature and deposition time on the morphology and corrosion resistance of FeCoCrNiMo0.3 high-entropy alloy coating fabricated by magnetron sputtering. International Journal of Minerals, Metallurgy and Materials, 27(10), 1388–1397.
Dang, C., Surjadi, J. U., Gao, L., & Lu, Y. (2018). Mechanical properties of nanostructured CoCrFeNiMn high-entropy alloy (HEA) coating. Frontiers in Materials, 5(August), 1–6.
Deng, L., Bai, C., Jiang, Z., Luo, J., Tu, J., Xu, H., Huang, H., Tan, L., & Ding, L. (2021). Effect of B4C particles addition on microstructure and mechanical properties of Fe50Mn30Co10Cr10 high-entropy alloy. Materials Science and Engineering: A, 822(June), 141642.
Depla, D. (2021). Sputter deposition with powder targets: An overview. Vacuum, 184(September), 109892.
Diao, H. Y., Feng, R., Dahmen, K. A., & Liaw, P. K. (2017). Fundamental deformation behavior in high-entropy alloys : An overview. Current Opinion in Solid State & Materials Science, 21(5), 252–266.
Dolique, V., Thomann, A.-L., Brault, P., Tessier, Y., & Gillon, P. (2009). Complex structure/composition relationship in thin films of AlCoCrCuFeNi high entropy alloy. Materials Chemistry and Physics, 117(1), 142–147.
Ejaz, H., Hussain, S., Zahra, M., Saharan, Q. M., & Ashiq, S. (2022). Several sputtering parameters affecting thin film deposition. Journal of Applied Chemical Science International, April, 41–49.
El Garah, M., Touaibia, D. E., Achache, S., Michau, A., Sviridova, E., Postnikov, P. S., Chehimi, M. M., Schuster, F., & Sanchette, F. (2022). Effect of nitrogen content on structural and mechanical properties of AlTiZrTaHf(-N) high entropy films deposited by reactive magnetron sputtering. Surface and Coatings Technology, 432(December 2021), 128051.
Fan, J., Liu, X., Pu, J., & Shi, Y. (2022). Anti-friction mechanism of VAlTiCrMo high-entropy alloy coatings through tribo-oxidation inducing layered oxidic surface. Tribology International, 171(December 2021), 107523.
Feng, X., Tang, G., Sun, M., Ma, X., Wang, L., & Yukimura, K. (2013). Structure and properties of multi-targets magnetron sputtered ZrNbTaTiW multi-elements alloy thin films. Surface and Coatings Technology, 228(SUPPL.1), S424–S427.
Feng, X., Zhang, K., Zheng, Y., Zhou, H., & Wan, Z. (2020). Chemical state, structure and mechanical properties of multi-element (CrTaNbMoV)Nx films by reactive magnetron sputtering. Materials Chemistry and Physics, 239(July 2019), 121991.
George, E. P., Raabe, D., & Ritchie, R. O. (2019). High-entropy alloys. Nature Reviews Materials, 4(8), 515–534.
Ghazal, H., & Sohail, N. (2023). Sputtering Deposition. In Thin Films - Deposition Methods and Applications (Vol. 25, Issue 4, pp. e275–e281). IntechOpen. https://doi.org/10.5772/intechopen.107353
Gökmenoǧlu, C., Özmeric, N., Cakal, G., DökmetaŞ, N., Ergene, C., & Kaftanoǧlu, B. (2016). Coating of titanium implants with boron nitride by RF-magnetron sputtering. Bulletin of Materials Science, 39(5), 1363–1370.
Huang, K., Wang, G., Qing, H., Chen, Y., & Guo, H. (2022). Effect of Cu content on electrical resistivity, mechanical properties and corrosion resistance of AlCu NiTiZr0.75 high entropy alloy films. Vacuum, 195(August), 110695.
Iriarte, G. F., Rodriguez, J. G., & Calle, F. (2011). Effect of substrate–target distance and sputtering pressure in the synthesis of AlN thin films. Microsystem Technologies, 17(3), 381–386.
Jhong, Y. S., Huang, C. W., & Lin, S. J. (2018). Effects of CH4 flow ratio on the structure and properties of reactively sputtered (CrNbSiTiZr)Cx coatings. Materials Chemistry and Physics, 210, 348–352.
Kao, W. H., Su, Y. L., Horng, J. H., & Wu, H. M. (2021a). Effects of carbon doping on mechanical, tribological, structural, anti-corrosion and anti-glass-sticking properties of CrNbSiTaZr high entropy alloy coatings. Thin Solid Films, 717(July 2020), 138448.
Kao, W. H., Su, Y. L., Horng, J. H., & Wu, W. C. (2021b). Mechanical, tribological, anti-corrosion and anti-glass sticking properties of high-entropy TaNbSiZrCr carbide coatings prepared using radio-frequency magnetron sputtering. Materials Chemistry and Physics, 268(May), 124741.
Kawagishi, K., Sato, A., Harada, H., Yeh, A.-C., Koizumi, Y., & Kobayashi, T. (2009). Oxidation resistant Ru containing Ni base single crystal superalloys. Materials Science and Technology, 25(2), 271–275.
Kemény, D. M., Miskolcziné Pálfi, N., & Fazakas, É. (2021). Examination of microstructure and corrosion properties of novel AlCoCrFeNi multicomponent alloy. Materials Today: Proceedings, 45, 4250–4253.
Khan, N. A., Akhavan, B., Zheng, Z., Liu, H., Zhou, C., Zhou, H., Chang, L., Wang, Y., Liu, Y., Sun, L., Bilek, M. M., & Liu, Z. (2021). Nanostructured AlCoCrCu0.5FeNi high entropy oxide (HEO) thin films fabricated using reactive magnetron sputtering. Applied Surface Science, 553(August 2020), 149491.
Khan, N. A., Akhavan, B., Zhou, C., Zhou, H., Chang, L., Wang, Y., Liu, Y., Fu, L., Bilek, M. M., & Liu, Z. (2020). RF magnetron sputtered AlCoCrCu0.5FeNi high entropy alloy (HEA) thin films with tuned microstructure and chemical composition. Journal of Alloys and Compounds, 836, 155348.
Khan, N. A., Akhavan, B., Zhou, H., Chang, L., Wang, Y., Sun, L., Bilek, M. M., & Liu, Z. (2019a). High entropy alloy thin films of AlCoCrCu0.5FeNi with controlled microstructure. Applied Surface Science, 495(July).
Khan, N. A., Akhavan, B., Zhou, H., Chang, L., Wang, Y., Sun, L., Bilek, M. M., & Liu, Z. (2019b). High entropy alloy thin films of AlCoCrCu0.5FeNi with controlled microstructure. Applied Surface Science, 495(July), 143560.
Kim, Y. S., Park, H. J., Lim, K. S., Hong, S. H., & Kim, K. B. (2019). Structural and Mechanical Properties of AlCoCrNi High Entropy Nitride Films: Influence of Process Pressure. Coatings, 10(1), 10. https://doi.org/10.3390/coatings10010010
Kim, Y. S., Park, H. J., Mun, S. C., Jumaev, E., Hong, S. H., Song, G., Kim, J. T., Park, Y. K., Kim, K. S., Jeong, S. Il, Kwon, Y. H., & Kim, K. B. (2019). Investigation of structure and mechanical properties of TiZrHfNiCuCo high entropy alloy thin films synthesized by magnetron sputtering. Journal of Alloys and Compounds, 797, 834–841. https://doi.org/10.1016/j.jallcom.2019.05.043
Kishore Reddy, C., Gopi Krishna, M., & Srikant, P. (2019). Brief Evolution Story and some Basic Limitations of High Entropy Alloys (HEAs) – A Review. Materials Today: Proceedings, 18, 436–439.
Kretschmer, A., Kirnbauer, A., Moraes, V., Primetzhofer, D., Yalamanchili, K., Rudigier, H., & Mayrhofer, P. H. (2021). Improving phase stability, hardness, and oxidation resistance of reactively magnetron sputtered (Al,Cr,Nb,Ta,Ti)N thin films by Si-alloying. Surface and Coatings Technology, 416(April), 127162.
Lei, Z., Liu, X., Wu, Y., Wang, H., Jiang, S., Wang, S., Hui, X., Wu, Y., Gault, B., Kontis, P., Raabe, D., Gu, L., Zhang, Q., Chen, H., Wang, H., Liu, J., An, K., Zeng, Q., Nieh, T., & Lu, Z. (2018). Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes.
Li, J., Huang, Y., Meng, X., & Xie, Y. (2019). A Review on High Entropy Alloys Coatings: Fabrication Processes and Property Assessment. Advanced Engineering Materials, 21(8), 1900343.
Li, W., Liu, P., & Liaw, P. K. (2018). Microstructures and properties of high-entropy alloy films and coatings: a review. Materials Research Letters, 6(4), 199–229.
Liang, J.-T., Cheng, K.-C., Chen, Y.-C., Chiu, S.-M., Chiu, C., Lee, J.-W., & Chen, S.-H. (2020). Comparisons of plasma-sprayed and sputtering Al0.5CoCrFeNi2 high-entropy alloy coatings. Surface and Coatings Technology, 403(September), 126411.
Liang, J., Liu, Q., Li, T., Luo, Y., Lu, S., Shi, X., Zhang, F., Asiri, A. M., & Sun, X. (2021). Magnetron sputtering enabled sustainable synthesis of nanomaterials for energy electrocatalysis. Green Chemistry, 23(8), 2834–2867.
Liao, W.-B., Zhang, H., Liu, Z.-Y., Li, P.-F., Huang, J.-J., Yu, C.-Y., & Lu, Y. (2019). High Strength and Deformation Mechanisms of Al0.3CoCrFeNi High-Entropy Alloy Thin Films Fabricated by Magnetron Sputtering. Entropy, 21(2), 146.
Liao, W., Lan, S., Gao, L., Zhang, H., Xu, S., Song, J., Wang, X., & Lu, Y. (2017a). Nanocrystalline high-entropy alloy (CoCrFeNiAl0.3) thin-film coating by magnetron sputtering. Thin Solid Films, 638, 383–388.
Liao, W., Lan, S., Gao, L., Zhang, H., Xu, S., Song, J., Wang, X., & Lu, Y. (2017b). Nanocrystalline high-entropy alloy (CoCrFeNiAl0.3) thin-film coating by magnetron sputtering. Thin Solid Films, 638, 383–388.
Lin, S.-Y., Chang, S.-Y., Huang, Y.-C., Shieu, F.-S., & Yeh, J.-W. (2012). Mechanical performance and nanoindenting deformation of (AlCrTaTiZr)NCy multi-component coatings co-sputtered with bias. Surface and Coatings Technology, 206(24), 5096–5102.
Lin, Y. C., Hsu, S. Y., Song, R. W., Lo, W. L., Lai, Y. T., Tsai, S. Y., & Duh, J. G. (2020). Improving the hardness of high entropy nitride (Cr0.35Al0.25Nb0.12Si0.08V0.20)N coatings via tuning substrate temperature and bias for anti-wear applications. Surface and Coatings Technology, 403(101), 126417.
Lv, C. F., Zhang, G. F., Cao, B. S., He, Y. Y., Hou, X. D., & Song, Z. X. (2016). Structure and mechanical properties of a-C/(AlCrWTaTiNb)C x N y composite films. Surface Engineering, 32(7), 541–546.
Market, T., & Electronics, M. (2010). Deposition Technologies: An Overview. In Handbook of Deposition Technologies for Films and Coatings (Third Edit, pp. 1–31). Elsevier. https://doi.org/10.1016/B978-0-8155-2031-3.00001-6
Mehmood, K., Umer, M. A., Munawar, A. U., Imran, M., Shahid, M., Ilyas, M., Firdous, R., Kousar, H., & Usman, M. (2022). Microstructure and Corrosion Behavior of Atmospheric Plasma Sprayed NiCoCrAlFe High Entropy Alloy Coating. Materials, 15(4), 1486.
Miracle, D. B. (2019). High entropy alloys as a bold step forward in alloy development. Nature Communications, 1–3. https://doi.org/10.1038/s41467-019-09700-1
Muftah, W., Allport, J., & Vishnyakov, V. (2021a). Corrosion performance and mechanical properties of FeCrSiNb amorphous equiatomic HEA thin film. Surface and Coatings Technology, 422(May), 127486.
Muftah, W., Allport, J., & Vishnyakov, V. (2021b). Corrosion performance and mechanical properties of FeCrSiNb amorphous equiatomic HEA thin film. Surface and Coatings Technology, 422(June), 127486.
Muftah, W., Patmore, N., & Vishnyakov, V. (2020). Demanding applications in harsh environment – FeCrMnNiC amorphous equiatomic alloy thin film. Materials Science and Technology, 36(12), 1301–1307.
Mwema, F. M., Akinlabi, E. T., Oladijo, O. P., & Baruwa, A. D. (2020). Advances in Powder-based Technologies for Production of High-Performance Sputtering Targets. Materials Performance and Characterization, 9(4), 20190160.
Mwema, F. M., Akinlabi, E. T., Oladijo, O. P., & Majumdar, J. D. (2019). Effect of varying low substrate temperature on sputtered aluminium films. Materials Research Express, 6(5), 056404.
Oladijo, S., Akinlabi, E., Mwema, F., & Stamboulis, A. (2021). An Overview of Sputtering Hydroxyapatite for BiomedicalApplication. IOP Conference Series: Materials Science and Engineering, 1107(1), 012068.
Oluwatosin Abegunde, O., Titilayo Akinlabi, E., Philip Oladijo, O., Akinlabi, S., & Uchenna Ude, A. (2019). Overview of thin film deposition techniques. AIMS Materials Science, 6(2), 174–199.
Oses, C., Toher, C., & Curtarolo, S. (2020). High-entropy ceramics. Nature Reviews Materials, 5(4), 295–309.
Öztürk, S., Alptekin, F., Önal, S., Sünbül, S. E., Şahin, Ö., & İçin, K. (2022). Effect of titanium addition on the corrosion behavior of CoCuFeNiMn high entropy alloy. Journal of Alloys and Compounds, 903, 163867.
Parau, A. C., Cotrut, C. M., Guglielmi, P., Cusanno, A., Palumbo, G., Dinu, M., Serratore, G., Ambrogio, G., Vranceanu, D. M., & Vladescu, A. (2022). Deposition temperature effect on sputtered hydroxyapatite coatings prepared on AZ31B alloy substrate. Ceramics International, 48(8), 10486–10497.
Patil, V., Balivada, S., & Appagana, S. (2022). Biomedical Applications of Titanium and Aluminium-based High Entropy Alloys. International Journal of Health Technology, 1(1), 40–48.
Peighambardoust, N. S., Alamdari, A. A., Unal, U., & Motallebzadeh, A. (2021). In vitro biocompatibility evaluation of Ti1.5ZrTa0.5Nb0.5Hf0.5 refractory high-entropy alloy film for orthopedic implants: Microstructural, mechanical properties and corrosion behavior. Journal of Alloys and Compounds, 883, 160786.
Praveen, S., & Kim, H. S. (2018). High-Entropy Alloys: Potential Candidates for High-Temperature Applications – An Overview. Advanced Engineering Materials, 20(1), 1–22. https://doi.org/10.1002/adem.201700645
Qiu, Y., Thomas, S., Gibson, M. A., Fraser, H. L., & Birbilis, N. (2017). Corrosion of high entropy alloys. Npj Materials Degradation, January, 1–17.
Ren, B., Liu, Z. X., Shi, L., Cai, B., & Wang, M. X. (2011). Structure and properties of (AlCrMnMoNiZrB0.1)Nx coatings prepared by reactive DC sputtering. Applied Surface Science, 257(16), 7172–7178.
Ren, B., Lv, S.-J., Zhao, R.-F., Liu, Z.-X., & Guan, S.-K. (2014). Effect of sputtering parameters on (AlCrMnMoNiZr)N films. Surface Engineering, 30(2), 152–158.
Samaei, A., Mirsayar, M., & Aliha, M. (2015). The microstructure and mechanical behavior of modern high temperature alloys. Engineering Solid Mechanics, 3(1), 1-20.
Schwarz, H., Uhlig, T., Rösch, N., Lindner, T., Ganss, F., Hellwig, O., Lampke, T., Wagner, G., & Seyller, T. (2021). CoCrFeNi High-Entropy Alloy Thin Films Synthesised by Magnetron Sputter Deposition from Spark Plasma Sintered Targets. Coatings, 11(4), 468.
Senkov, O. N., Wilks, G. B., Miracle, D. B., Chuang, C. P., & Liaw, P. K. (2010). Refractory high-entropy alloys. Intermetallics, 18(9), 1758–1765.
Sha, C., Zhou, Z., Xie, Z., & Munroe, P. (2020a). High entropy alloy FeMnNiCoCr coatings: Enhanced hardness and damage-tolerance through a dual-phase structure and nanotwins. Surface and Coatings Technology, 385(February), 125435.
Sha, C., Zhou, Z., Xie, Z., & Munroe, P. (2020b). High entropy alloy FeMnNiCoCr coatings: Enhanced hardness and damage-tolerance through a dual-phase structure and nanotwins. Surface and Coatings Technology, 385(December 2020), 125435.
Shang, C., Axinte, E., Sun, J., Li, X., Li, P., Du, J., Qiao, P., & Wang, Y. (2017). CoCrFeNi(W1−xMox) high-entropy alloy coatings with excellent mechanical properties and corrosion resistance prepared by mechanical alloying and hot pressing sintering. Materials & Design, 117, 193–202.
Sharma, A. (2021). High Entropy Alloy Coatings and Technology. Coatings, 11(4), 372. https://doi.org/10.3390/coatings11040372
Shi, Y., Yang, B., Rack, P. D., Guo, S., Liaw, P. K., & Zhao, Y. (2020a). High-throughput synthesis and corrosion behavior of sputter-deposited nanocrystalline Alx(CoCrFeNi)100-x combinatorial high-entropy alloys. Materials and Design, 195, 109018.
Shi, Y., Yang, B., Rack, P. D., Guo, S., Liaw, P. K., & Zhao, Y. (2020b). High-throughput synthesis and corrosion behavior of sputter-deposited nanocrystalline Al (CoCrFeNi)100- combinatorial high-entropy alloys. Materials & Design, 195, 109018.
Simon, A. H. (2018). Sputter Processing. In Handbook of Thin Film Deposition (Second Edi, pp. 195–230). Elsevier.
Sun, X., Cheng, X., Cai, H., Ma, S., Xu, Z., & Ali, T. (2020). Microstructure, mechanical and physical properties of FeCoNiAlMnW high-entropy films deposited by magnetron sputtering. Applied Surface Science, 507(November 2019), 145131.
Surmenev, R. A., Surmeneva, M. A., Grubova, I. Y., Chernozem, R. V., Krause, B., Baumbach, T., Loza, K., & Epple, M. (2017). RF magnetron sputtering of a hydroxyapatite target: A comparison study on polytetrafluorethylene and titanium substrates. Applied Surface Science, 414, 335–344.
Surmenev, R., Vladescu, A., Surmeneva, M., Ivanova, A., Braic, M., Grubova, I., & Cotrut, C. M. (2017). Radio Frequency Magnetron Sputter Deposition as a Tool for Surface Modification of Medical Implants. In Modern Technologies for Creating the Thin-film Systems and Coatings (pp. 214–248). InTech.
Tan, S., Liu, X., & Wang, Z. (2021). Nanoindentation mechanical properties of CoCrFeNi high entropy alloy films. Materials Technology, 00(00), 1–12.
Tüten, N., Canadinc, D., Motallebzadeh, A., & Bal, B. (2019a). Intermetallics Microstructure and tribological properties of TiTaHfNbZr high entropy alloy coatings deposited on Ti e 6Al e 4V substrates. Intermetallics, 105(November 2018), 99–106.
Tüten, N., Canadinc, D., Motallebzadeh, A., & Bal, B. (2019b). Microstructure and tribological properties of TiTaHfNbZr high entropy alloy coatings deposited on Ti 6Al 4V substrates. Intermetallics, 105(August 2018), 99–106.
Vladescu, A., Braic, M., Azem, F. A., Titorencu, I., Braic, V., Pruna, V., Kiss, A., Parau, A. C., & Birlik, I. (2015). Effect of the deposition temperature on corrosion resistance and biocompatibility of the hydroxyapatite coatings. Applied Surface Science, 354, 373–379.
Wang, C., Li, X., Li, Z., Wang, Q., Zheng, Y., Ma, Y., Bi, L., Zhang, Y., Yuan, X., Zhang, X., Dong, C., & Liaw, P. K. (2020). The resistivity–temperature behavior of Al CoCrFeNi high-entropy alloy films. Thin Solid Films, 700(September 2019), 137895.
Wang, H., Liu, J., Xing, Z., Ma, G.-Z., Cui, X., Jin, G., & Xu, B. (2020a). Microstructure and corrosion behaviour of AlCoFeNiTiZr high-entropy alloy films. Surface Engineering, 36(1), 78–85.
Wang, H., Liu, J., Xing, Z., Ma, G., Cui, X., Jin, G., & Xu, B. (2020b). Microstructure and corrosion behaviour of AlCoFeNiTiZr high-entropy alloy films. 0844.
Wang, J., Kuang, S., Yu, X., Wang, L., & Huang, W. (2020). Tribo-mechanical properties of CrNbTiMoZr high-entropy alloy film synthesized by direct current magnetron sputtering. Surface and Coatings Technology, 403(August), 126374.
Wang, Y., He, N., Wang, C., Li, J., Guo, W., Sui, Y., & Lan, J. (2022). Microstructure and tribological performance of (AlCrWTiMo)N film controlled by substrate temperature. Applied Surface Science, 574(August 2021), 151677.
Wu, W., Jiang, L., Jiang, H., Pan, X., Cao, Z., Deng, D., Wang, T., & Li, T. (2015). Phase Evolution and Properties of Al2CrFeNiMo x High-Entropy Alloys Coatings by Laser Cladding. Journal of Thermal Spray Technology, 24(7), 1333–1340.
Xing, Q., Wang, H., Chen, M., Chen, Z., Li, R., Jin, P., & Zhang, Y. (2019). Mechanical Properties and Corrosion Resistance of NbTiAlSiZrNx High-Entropy Films Prepared by RF Magnetron Sputtering. Entropy, 21(4), 396. https://doi.org/10.3390/e21040396
Xing, Q., Xia, S., & Yan, X. (2018). Mechanical properties and thermal stability of ( NbTiAlSiZr ) N x high-entropy ceramic fi lms at high temperatures. 3347–3354.
Xu, Y., Li, G., Li, G., Gao, F., & Xia, Y. (2021). Effect of bias voltage on the growth of super-hard (AlCrTiVZr)N high-entropy alloy nitride films synthesized by high power impulse magnetron sputtering. Applied Surface Science, 564(March), 1–10.
Yalamanchili, K., Wang, F., Schramm, I. C., Andersson, J. M., Johansson Jöesaar, M. P., Tasnádi, F., Mücklich, F., Ghafoor, N., & Odén, M. (2017). Exploring the high entropy alloy concept in (AlTiVNbCr)N. Thin Solid Films, 636, 346–352.
Yang, J., Shi, K., Chen, Q., Zhang, W., Zhu, C., Ning, Z., Liao, J., Yang, Y., Liu, N., & Yang, J. (2021). Effect of Au-ion irradiation on the surface morphology, microstructure and mechanical properties of amorphous AlCrFeMoTi HEA coating. Surface and Coatings Technology, 418(March), 127252.
Yang, W., Liu, Y., Pang, S., Liaw, P. K., & Zhang, T. (2020). Bio-corrosion behavior and in vitro biocompatibility of equimolar TiZrHfNbTa high-entropy alloy. Intermetallics, 124(March), 106845.
Yeh, J. W., Chen, S. K., Lin, S. J., Gan, J. Y., Chin, T. S., Shun, T. T., Tsau, C. H., & Chang, S. Y. (2004). Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Advanced Engineering Materials, 6(5), 299–303.
Yoosefan, F., Ashrafi, A., Mahmoud, S., & Constantin, I. (2020). Synthesis of CoCrFeMnNi High Entropy Alloy Thin Films by Pulse Electrodeposition : Part 1 : Effect of Pulse Electrodeposition Parameters. Metals and Materials International, 26(8), 1262–1269.
Yu, X., Wang, J., Wang, L., & Huang, W. (2021). Fabrication and characterization of CrNbSiTiZr high-entropy alloy films by radio-frequency magnetron sputtering via tuning substrate bias. Surface and Coatings Technology, 412(December 2020), 127074.
Zendejas Medina, L., Riekehr, L., & Jansson, U. (2020). Phase formation in magnetron sputtered CrMnFeCoNi high entropy alloy. Surface and Coatings Technology, 403(April), 126323.
Zendejas Medina, L., Tavares da Costa, M. V., Paschalidou, E. M., Lindwall, G., Riekehr, L., Korvela, M., Fritze, S., Kolozsvári, S., Gamstedt, E. K., Nyholm, L., & Jansson, U. (2021). Enhancing corrosion resistance, hardness, and crack resistance in magnetron sputtered high entropy CoCrFeMnNi coatings by adding carbon. Materials and Design, 205.
Zeng, Q., & Xu, Y. (2020). A comparative study on the tribocorrosion behaviors of AlFeCrNiMo high entropy alloy coatings and 304 stainless steel. Materials Today Communications, 24(February), 101261.
Zhang, C., Gunes, O., Li, Y., Cui, X., Mohammadtaheri, M., Wen, S.-J., Wong, R., Yang, Q., & Kasap, S. (2019). The Effect of Substrate Biasing during DC Magnetron Sputtering on the Quality of VO2 Thin Films and Their Insulator–Metal Transition Behavior. Materials, 12(13), 2160.
Zhang, M., Zhou, X., Yu, X., & Li, J. (2017a). Surface & Coatings Technology Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding. Surface & Coatings Technology, 311, 321–329.
Zhang, M., Zhou, X., Yu, X., & Li, J. (2017b). Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding. Surface and Coatings Technology, 311, 321–329.
Zhang, X., Ma, S., Li, F., Yang, F., Liu, J., & Zhao, Q. (2013). Effects of substrate temperature on the growth orientation and optical properties of ZnO:Fe films synthesized via magnetron sputtering. Journal of Alloys and Compounds, 574, 149–154.
Zhang, Y., Wang, D., & Wang, S. (2022). High-Entropy Alloys for Electrocatalysis: Design, Characterization, and Applications. Small, 18(7), 1–22.
Zhang, Y., Zuo, T. T., Tang, Z., Gao, M. C., Dahmen, K. A., Liaw, P. K., & Lu, Z. P. (2014). Microstructures and properties of high-entropy alloys. Progress in Materials Science, 61(November 2013), 1–93.
Zhao, F., Song, Z. X., Zhang, G. F., Hou, X. D., & Deng, D. W. (2013). Effects of substrate bias on structure and mechanical properties of AlCrTiWNbTa coatings. Surface Engineering, 29(10), 778–782.
Zhao, S., Liu, C., Yang, J., Zhang, W., He, L., Zhang, R., Yang, H., Wang, J., Long, J., & Chang, H. (2021). Mechanical and high-temperature corrosion properties of AlTiCrNiTa high entropy alloy coating prepared by magnetron sputtering for accident-tolerant fuel cladding. Surface and Coatings Technology, 417(December 2020), 127228.
Zhou, R., Chen, G., Liu, B., Wang, J., Han, L., & Liu, Y. (2018). Microstructures and wear behaviour of (FeCoCrNi)1-x(WC)x high entropy alloy composites. International Journal of Refractory Metals and Hard Materials, 75(April), 56–62.
Aksoy, C. B., Canadinc, D., & Yagci, M. B. (2019). Assessment of Ni ion release from TiTaHfNbZr high entropy alloy coated NiTi shape memory substrates in artificial saliva and gastric fluid. Materials Chemistry and Physics, 236(June), 121802.
Aliyu, A., & Srivastava, C. (2019). Microstructure and corrosion properties of MnCrFeCoNi high entropy alloy-graphene oxide composite coatings. Materialia, 5(November 2018), 100249.
Alvi, S., Jarzabek, D. M., Kohan, M. G., Hedman, D., Jenczyk, P., Natile, M. M., Vomiero, A., & Akhtar, F. (2020a). Synthesis and Mechanical Characterization of a CuMoTaWV High-Entropy Film by Magnetron Sputtering. ACS Applied Materials and Interfaces, 12(18), 21070–21079.
Alvi, S., Jarzabek, D. M., Kohan, M. G., Hedman, D., Jenczyk, P., Natile, M. M., Vomiero, A., & Akhtar, F. (2020b). Synthesis and Mechanical Characterization of a CuMoTaWV High-Entropy Film by Magnetron Sputtering. ACS Applied Materials & Interfaces, 12(18), 21070–21079.
Arif, Z. U., Khalid, M. Y., Al Rashid, A., ur Rehman, E., & Atif, M. (2022). Laser deposition of high-entropy alloys: A comprehensive review. Optics & Laser Technology, 145(August 2021), 107447.
Ayyagari, A., Barthelemy, C., Gwalani, B., Banerjee, R., Scharf, T. W., & Mukherjee, S. (2018). Reciprocating sliding wear behavior of high entropy alloys in dry and marine environments. Materials Chemistry and Physics, 210, 162–169.
Ayyagari, A. V, Gwalani, B., Muskeri, S., Mukherjee, S., & Banerjee, R. (2018). Surface degradation mechanisms in precipitation-hardened high-entropy alloys. Npj Materials Degradation, September.
Bachani, S. K., Wang, C.-J., Lou, B.-S., Chang, L.-C., & Lee, J.-W. (2020). Microstructural characterization, mechanical property and corrosion behavior of VNbMoTaWAl refractory high entropy alloy coatings: Effect of Al content. Surface and Coatings Technology, 403(August), 126351.
Behravan, N., Farhadizadeh, A., Ghasemi, S., Khademi, A., Shojaei, H., & Ghomi, H. (2021). The pressure dependence of structure and composition of sputtered AlCrSiTiMoO high entropy thin film. Journal of Alloys and Compounds, 852, 156421.
Braeckman, B. R., Boydens, F., Hidalgo, H., Dutheil, P., Jullien, M., Thomann, A.-L., & Depla, D. (2015a). High entropy alloy thin films deposited by magnetron sputtering of powder targets. Thin Solid Films, 580, 71–76.
Braeckman, B. R., Boydens, F., Hidalgo, H., Dutheil, P., Jullien, M., Thomann, A. L., & Depla, D. (2015b). High entropy alloy thin films deposited by magnetron sputtering of powder targets. Thin Solid Films, 580, 71–76.
Braic, M., Balaceanu, M., Vladescu, A., Zoita, C. N., & Braic, V. (2013). Deposition and characterization of multi-principal-element (CuSiTiYZr)C coatings. Applied Surface Science, 284, 671–678.
Braic, V., Balaceanu, M., Braic, M., Vladescu, A., Panseri, S., & Russo, A. (2012). Characterization of multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 10, 197–205.
Cai, Z., Wang, Z., Hong, Y., Lu, B., Liu, J., Li, Y., & Pu, J. (2021). Improved tribological behavior of plasma-nitrided AlCrTiV and AlCrTiVSi high-entropy alloy films. Tribology International, 163(June), 107195.
Cantor, B., Chang, I. T. H., Knight, P., & Vincent, A. J. B. (2004). Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A, 375–377(1-2 SPEC. ISS.), 213–218.
Cemin, F., Luís Artico, L., Piroli, V., Andrés Yunes, J., Alejandro Figueroa, C., & Alvarez, F. (2022). Superior in vitro biocompatibility in NbTaTiVZr(O) high-entropy metallic glass coatings for biomedical applications. Applied Surface Science, 596(May).
Chang, C. H., Li, P. W., Wu, Q. Q., Wang, M. H., Sung, C. C., & Hsu, C.-Y. (2019). Nanostructured and mechanical properties of high-entropy alloy nitride films prepared by magnetron sputtering at different substrate temperatures. Materials Technology, 34(6), 343–349. https://doi.org/10.1080/10667857.2018.1557411
Chang, Z.-C., Tsai, D.-C., & Chen, E.-C. (2015). Structure and characteristics of reactive magnetron sputtered (CrTaTiVZr)N coatings. Materials Science in Semiconductor Processing, 39, 30–39.
Chen, L., Li, W., Liu, P., Zhang, K., Ma, F., Chen, X., Zhou, H., & Liu, X. (2020). Microstructure and mechanical properties of (AlCrTiZrV)Nx high-entropy alloy nitride films by reactive magnetron sputtering. Vacuum, 181(August), 109706. h
Chen, S., Cai, Z., Lu, Z., Pu, J., Chen, R., Zheng, S., Mao, C., & Chen, S. (2019). Tribo-corrosion behavior of VAlTiCrCu high-entropy alloy film. Materials Characterization, 157(August), 109887.
Chen, T., Wu, W., Li, W., & Liu, D. (2019). Laser cladding of nanoparticle TiC ceramic powder: Effects of process parameters on the quality characteristics of the coatings and its prediction model. Optics & Laser Technology, 116(March), 345–355.
Chen, Y. H., Chuang, W. S., Huang, J. C., Wang, X., Chou, H. S., Lai, Y. J., & Lin, P. H. (2020). On the bio-corrosion and biocompatibility of TiTaNb medium entropy alloy films. Applied Surface Science, 508, 145307.
Chen, Y. Y., Duval, T., Hung, U. D., Yeh, J. W., & Shih, H. C. (2005). Microstructure and electrochemical properties of high entropy alloys—a comparison with type-304 stainless steel. Corrosion Science, 47(9), 2257–2279.
Chen, Z., Wen, J., Wang, C., & Kang, X. (2022). Convex Cube-Shaped Pt34Fe5Ni20Cu31Mo9Ru High Entropy Alloy Catalysts toward High-Performance Multifunctional Electrocatalysis. Small, 18(45), 1–9. https://doi.org/10.1002/smll.202204255
Cheng, K.-H., Lai, C.-H., Lin, S.-J., & Yeh, J.-W. (2011). Structural and mechanical properties of multi-element (AlCrMoTaTiZr)Nx coatings by reactive magnetron sputtering. Thin Solid Films, 519(10), 3185–3190.
Chu, J. P., Liu, T. Y., Li, C. L., Wang, C. H., Jang, J. S. C., Chen, M. J., Chang, S. H., & Huang, W. C. (2014). Fabrication and characterizations of thin film metallic glasses: Antibacterial property and durability study for medical application. Thin Solid Films, 561, 102–107.
Dada, M., Popoola, P., Adeosun, S., & Mathe, N. (2021). High Entropy Alloys for Aerospace Applications. In Aerodynamics. IntechOpen.
Dai, C., Fu, Y., Guo, J., & Du, C. (2020). Effects of substrate temperature and deposition time on the morphology and corrosion resistance of FeCoCrNiMo0.3 high-entropy alloy coating fabricated by magnetron sputtering. International Journal of Minerals, Metallurgy and Materials, 27(10), 1388–1397.
Dang, C., Surjadi, J. U., Gao, L., & Lu, Y. (2018). Mechanical properties of nanostructured CoCrFeNiMn high-entropy alloy (HEA) coating. Frontiers in Materials, 5(August), 1–6.
Deng, L., Bai, C., Jiang, Z., Luo, J., Tu, J., Xu, H., Huang, H., Tan, L., & Ding, L. (2021). Effect of B4C particles addition on microstructure and mechanical properties of Fe50Mn30Co10Cr10 high-entropy alloy. Materials Science and Engineering: A, 822(June), 141642.
Depla, D. (2021). Sputter deposition with powder targets: An overview. Vacuum, 184(September), 109892.
Diao, H. Y., Feng, R., Dahmen, K. A., & Liaw, P. K. (2017). Fundamental deformation behavior in high-entropy alloys : An overview. Current Opinion in Solid State & Materials Science, 21(5), 252–266.
Dolique, V., Thomann, A.-L., Brault, P., Tessier, Y., & Gillon, P. (2009). Complex structure/composition relationship in thin films of AlCoCrCuFeNi high entropy alloy. Materials Chemistry and Physics, 117(1), 142–147.
Ejaz, H., Hussain, S., Zahra, M., Saharan, Q. M., & Ashiq, S. (2022). Several sputtering parameters affecting thin film deposition. Journal of Applied Chemical Science International, April, 41–49.
El Garah, M., Touaibia, D. E., Achache, S., Michau, A., Sviridova, E., Postnikov, P. S., Chehimi, M. M., Schuster, F., & Sanchette, F. (2022). Effect of nitrogen content on structural and mechanical properties of AlTiZrTaHf(-N) high entropy films deposited by reactive magnetron sputtering. Surface and Coatings Technology, 432(December 2021), 128051.
Fan, J., Liu, X., Pu, J., & Shi, Y. (2022). Anti-friction mechanism of VAlTiCrMo high-entropy alloy coatings through tribo-oxidation inducing layered oxidic surface. Tribology International, 171(December 2021), 107523.
Feng, X., Tang, G., Sun, M., Ma, X., Wang, L., & Yukimura, K. (2013). Structure and properties of multi-targets magnetron sputtered ZrNbTaTiW multi-elements alloy thin films. Surface and Coatings Technology, 228(SUPPL.1), S424–S427.
Feng, X., Zhang, K., Zheng, Y., Zhou, H., & Wan, Z. (2020). Chemical state, structure and mechanical properties of multi-element (CrTaNbMoV)Nx films by reactive magnetron sputtering. Materials Chemistry and Physics, 239(July 2019), 121991.
George, E. P., Raabe, D., & Ritchie, R. O. (2019). High-entropy alloys. Nature Reviews Materials, 4(8), 515–534.
Ghazal, H., & Sohail, N. (2023). Sputtering Deposition. In Thin Films - Deposition Methods and Applications (Vol. 25, Issue 4, pp. e275–e281). IntechOpen. https://doi.org/10.5772/intechopen.107353
Gökmenoǧlu, C., Özmeric, N., Cakal, G., DökmetaŞ, N., Ergene, C., & Kaftanoǧlu, B. (2016). Coating of titanium implants with boron nitride by RF-magnetron sputtering. Bulletin of Materials Science, 39(5), 1363–1370.
Huang, K., Wang, G., Qing, H., Chen, Y., & Guo, H. (2022). Effect of Cu content on electrical resistivity, mechanical properties and corrosion resistance of AlCu NiTiZr0.75 high entropy alloy films. Vacuum, 195(August), 110695.
Iriarte, G. F., Rodriguez, J. G., & Calle, F. (2011). Effect of substrate–target distance and sputtering pressure in the synthesis of AlN thin films. Microsystem Technologies, 17(3), 381–386.
Jhong, Y. S., Huang, C. W., & Lin, S. J. (2018). Effects of CH4 flow ratio on the structure and properties of reactively sputtered (CrNbSiTiZr)Cx coatings. Materials Chemistry and Physics, 210, 348–352.
Kao, W. H., Su, Y. L., Horng, J. H., & Wu, H. M. (2021a). Effects of carbon doping on mechanical, tribological, structural, anti-corrosion and anti-glass-sticking properties of CrNbSiTaZr high entropy alloy coatings. Thin Solid Films, 717(July 2020), 138448.
Kao, W. H., Su, Y. L., Horng, J. H., & Wu, W. C. (2021b). Mechanical, tribological, anti-corrosion and anti-glass sticking properties of high-entropy TaNbSiZrCr carbide coatings prepared using radio-frequency magnetron sputtering. Materials Chemistry and Physics, 268(May), 124741.
Kawagishi, K., Sato, A., Harada, H., Yeh, A.-C., Koizumi, Y., & Kobayashi, T. (2009). Oxidation resistant Ru containing Ni base single crystal superalloys. Materials Science and Technology, 25(2), 271–275.
Kemény, D. M., Miskolcziné Pálfi, N., & Fazakas, É. (2021). Examination of microstructure and corrosion properties of novel AlCoCrFeNi multicomponent alloy. Materials Today: Proceedings, 45, 4250–4253.
Khan, N. A., Akhavan, B., Zheng, Z., Liu, H., Zhou, C., Zhou, H., Chang, L., Wang, Y., Liu, Y., Sun, L., Bilek, M. M., & Liu, Z. (2021). Nanostructured AlCoCrCu0.5FeNi high entropy oxide (HEO) thin films fabricated using reactive magnetron sputtering. Applied Surface Science, 553(August 2020), 149491.
Khan, N. A., Akhavan, B., Zhou, C., Zhou, H., Chang, L., Wang, Y., Liu, Y., Fu, L., Bilek, M. M., & Liu, Z. (2020). RF magnetron sputtered AlCoCrCu0.5FeNi high entropy alloy (HEA) thin films with tuned microstructure and chemical composition. Journal of Alloys and Compounds, 836, 155348.
Khan, N. A., Akhavan, B., Zhou, H., Chang, L., Wang, Y., Sun, L., Bilek, M. M., & Liu, Z. (2019a). High entropy alloy thin films of AlCoCrCu0.5FeNi with controlled microstructure. Applied Surface Science, 495(July).
Khan, N. A., Akhavan, B., Zhou, H., Chang, L., Wang, Y., Sun, L., Bilek, M. M., & Liu, Z. (2019b). High entropy alloy thin films of AlCoCrCu0.5FeNi with controlled microstructure. Applied Surface Science, 495(July), 143560.
Kim, Y. S., Park, H. J., Lim, K. S., Hong, S. H., & Kim, K. B. (2019). Structural and Mechanical Properties of AlCoCrNi High Entropy Nitride Films: Influence of Process Pressure. Coatings, 10(1), 10. https://doi.org/10.3390/coatings10010010
Kim, Y. S., Park, H. J., Mun, S. C., Jumaev, E., Hong, S. H., Song, G., Kim, J. T., Park, Y. K., Kim, K. S., Jeong, S. Il, Kwon, Y. H., & Kim, K. B. (2019). Investigation of structure and mechanical properties of TiZrHfNiCuCo high entropy alloy thin films synthesized by magnetron sputtering. Journal of Alloys and Compounds, 797, 834–841. https://doi.org/10.1016/j.jallcom.2019.05.043
Kishore Reddy, C., Gopi Krishna, M., & Srikant, P. (2019). Brief Evolution Story and some Basic Limitations of High Entropy Alloys (HEAs) – A Review. Materials Today: Proceedings, 18, 436–439.
Kretschmer, A., Kirnbauer, A., Moraes, V., Primetzhofer, D., Yalamanchili, K., Rudigier, H., & Mayrhofer, P. H. (2021). Improving phase stability, hardness, and oxidation resistance of reactively magnetron sputtered (Al,Cr,Nb,Ta,Ti)N thin films by Si-alloying. Surface and Coatings Technology, 416(April), 127162.
Lei, Z., Liu, X., Wu, Y., Wang, H., Jiang, S., Wang, S., Hui, X., Wu, Y., Gault, B., Kontis, P., Raabe, D., Gu, L., Zhang, Q., Chen, H., Wang, H., Liu, J., An, K., Zeng, Q., Nieh, T., & Lu, Z. (2018). Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes.
Li, J., Huang, Y., Meng, X., & Xie, Y. (2019). A Review on High Entropy Alloys Coatings: Fabrication Processes and Property Assessment. Advanced Engineering Materials, 21(8), 1900343.
Li, W., Liu, P., & Liaw, P. K. (2018). Microstructures and properties of high-entropy alloy films and coatings: a review. Materials Research Letters, 6(4), 199–229.
Liang, J.-T., Cheng, K.-C., Chen, Y.-C., Chiu, S.-M., Chiu, C., Lee, J.-W., & Chen, S.-H. (2020). Comparisons of plasma-sprayed and sputtering Al0.5CoCrFeNi2 high-entropy alloy coatings. Surface and Coatings Technology, 403(September), 126411.
Liang, J., Liu, Q., Li, T., Luo, Y., Lu, S., Shi, X., Zhang, F., Asiri, A. M., & Sun, X. (2021). Magnetron sputtering enabled sustainable synthesis of nanomaterials for energy electrocatalysis. Green Chemistry, 23(8), 2834–2867.
Liao, W.-B., Zhang, H., Liu, Z.-Y., Li, P.-F., Huang, J.-J., Yu, C.-Y., & Lu, Y. (2019). High Strength and Deformation Mechanisms of Al0.3CoCrFeNi High-Entropy Alloy Thin Films Fabricated by Magnetron Sputtering. Entropy, 21(2), 146.
Liao, W., Lan, S., Gao, L., Zhang, H., Xu, S., Song, J., Wang, X., & Lu, Y. (2017a). Nanocrystalline high-entropy alloy (CoCrFeNiAl0.3) thin-film coating by magnetron sputtering. Thin Solid Films, 638, 383–388.
Liao, W., Lan, S., Gao, L., Zhang, H., Xu, S., Song, J., Wang, X., & Lu, Y. (2017b). Nanocrystalline high-entropy alloy (CoCrFeNiAl0.3) thin-film coating by magnetron sputtering. Thin Solid Films, 638, 383–388.
Lin, S.-Y., Chang, S.-Y., Huang, Y.-C., Shieu, F.-S., & Yeh, J.-W. (2012). Mechanical performance and nanoindenting deformation of (AlCrTaTiZr)NCy multi-component coatings co-sputtered with bias. Surface and Coatings Technology, 206(24), 5096–5102.
Lin, Y. C., Hsu, S. Y., Song, R. W., Lo, W. L., Lai, Y. T., Tsai, S. Y., & Duh, J. G. (2020). Improving the hardness of high entropy nitride (Cr0.35Al0.25Nb0.12Si0.08V0.20)N coatings via tuning substrate temperature and bias for anti-wear applications. Surface and Coatings Technology, 403(101), 126417.
Lv, C. F., Zhang, G. F., Cao, B. S., He, Y. Y., Hou, X. D., & Song, Z. X. (2016). Structure and mechanical properties of a-C/(AlCrWTaTiNb)C x N y composite films. Surface Engineering, 32(7), 541–546.
Market, T., & Electronics, M. (2010). Deposition Technologies: An Overview. In Handbook of Deposition Technologies for Films and Coatings (Third Edit, pp. 1–31). Elsevier. https://doi.org/10.1016/B978-0-8155-2031-3.00001-6
Mehmood, K., Umer, M. A., Munawar, A. U., Imran, M., Shahid, M., Ilyas, M., Firdous, R., Kousar, H., & Usman, M. (2022). Microstructure and Corrosion Behavior of Atmospheric Plasma Sprayed NiCoCrAlFe High Entropy Alloy Coating. Materials, 15(4), 1486.
Miracle, D. B. (2019). High entropy alloys as a bold step forward in alloy development. Nature Communications, 1–3. https://doi.org/10.1038/s41467-019-09700-1
Muftah, W., Allport, J., & Vishnyakov, V. (2021a). Corrosion performance and mechanical properties of FeCrSiNb amorphous equiatomic HEA thin film. Surface and Coatings Technology, 422(May), 127486.
Muftah, W., Allport, J., & Vishnyakov, V. (2021b). Corrosion performance and mechanical properties of FeCrSiNb amorphous equiatomic HEA thin film. Surface and Coatings Technology, 422(June), 127486.
Muftah, W., Patmore, N., & Vishnyakov, V. (2020). Demanding applications in harsh environment – FeCrMnNiC amorphous equiatomic alloy thin film. Materials Science and Technology, 36(12), 1301–1307.
Mwema, F. M., Akinlabi, E. T., Oladijo, O. P., & Baruwa, A. D. (2020). Advances in Powder-based Technologies for Production of High-Performance Sputtering Targets. Materials Performance and Characterization, 9(4), 20190160.
Mwema, F. M., Akinlabi, E. T., Oladijo, O. P., & Majumdar, J. D. (2019). Effect of varying low substrate temperature on sputtered aluminium films. Materials Research Express, 6(5), 056404.
Oladijo, S., Akinlabi, E., Mwema, F., & Stamboulis, A. (2021). An Overview of Sputtering Hydroxyapatite for BiomedicalApplication. IOP Conference Series: Materials Science and Engineering, 1107(1), 012068.
Oluwatosin Abegunde, O., Titilayo Akinlabi, E., Philip Oladijo, O., Akinlabi, S., & Uchenna Ude, A. (2019). Overview of thin film deposition techniques. AIMS Materials Science, 6(2), 174–199.
Oses, C., Toher, C., & Curtarolo, S. (2020). High-entropy ceramics. Nature Reviews Materials, 5(4), 295–309.
Öztürk, S., Alptekin, F., Önal, S., Sünbül, S. E., Şahin, Ö., & İçin, K. (2022). Effect of titanium addition on the corrosion behavior of CoCuFeNiMn high entropy alloy. Journal of Alloys and Compounds, 903, 163867.
Parau, A. C., Cotrut, C. M., Guglielmi, P., Cusanno, A., Palumbo, G., Dinu, M., Serratore, G., Ambrogio, G., Vranceanu, D. M., & Vladescu, A. (2022). Deposition temperature effect on sputtered hydroxyapatite coatings prepared on AZ31B alloy substrate. Ceramics International, 48(8), 10486–10497.
Patil, V., Balivada, S., & Appagana, S. (2022). Biomedical Applications of Titanium and Aluminium-based High Entropy Alloys. International Journal of Health Technology, 1(1), 40–48.
Peighambardoust, N. S., Alamdari, A. A., Unal, U., & Motallebzadeh, A. (2021). In vitro biocompatibility evaluation of Ti1.5ZrTa0.5Nb0.5Hf0.5 refractory high-entropy alloy film for orthopedic implants: Microstructural, mechanical properties and corrosion behavior. Journal of Alloys and Compounds, 883, 160786.
Praveen, S., & Kim, H. S. (2018). High-Entropy Alloys: Potential Candidates for High-Temperature Applications – An Overview. Advanced Engineering Materials, 20(1), 1–22. https://doi.org/10.1002/adem.201700645
Qiu, Y., Thomas, S., Gibson, M. A., Fraser, H. L., & Birbilis, N. (2017). Corrosion of high entropy alloys. Npj Materials Degradation, January, 1–17.
Ren, B., Liu, Z. X., Shi, L., Cai, B., & Wang, M. X. (2011). Structure and properties of (AlCrMnMoNiZrB0.1)Nx coatings prepared by reactive DC sputtering. Applied Surface Science, 257(16), 7172–7178.
Ren, B., Lv, S.-J., Zhao, R.-F., Liu, Z.-X., & Guan, S.-K. (2014). Effect of sputtering parameters on (AlCrMnMoNiZr)N films. Surface Engineering, 30(2), 152–158.
Samaei, A., Mirsayar, M., & Aliha, M. (2015). The microstructure and mechanical behavior of modern high temperature alloys. Engineering Solid Mechanics, 3(1), 1-20.
Schwarz, H., Uhlig, T., Rösch, N., Lindner, T., Ganss, F., Hellwig, O., Lampke, T., Wagner, G., & Seyller, T. (2021). CoCrFeNi High-Entropy Alloy Thin Films Synthesised by Magnetron Sputter Deposition from Spark Plasma Sintered Targets. Coatings, 11(4), 468.
Senkov, O. N., Wilks, G. B., Miracle, D. B., Chuang, C. P., & Liaw, P. K. (2010). Refractory high-entropy alloys. Intermetallics, 18(9), 1758–1765.
Sha, C., Zhou, Z., Xie, Z., & Munroe, P. (2020a). High entropy alloy FeMnNiCoCr coatings: Enhanced hardness and damage-tolerance through a dual-phase structure and nanotwins. Surface and Coatings Technology, 385(February), 125435.
Sha, C., Zhou, Z., Xie, Z., & Munroe, P. (2020b). High entropy alloy FeMnNiCoCr coatings: Enhanced hardness and damage-tolerance through a dual-phase structure and nanotwins. Surface and Coatings Technology, 385(December 2020), 125435.
Shang, C., Axinte, E., Sun, J., Li, X., Li, P., Du, J., Qiao, P., & Wang, Y. (2017). CoCrFeNi(W1−xMox) high-entropy alloy coatings with excellent mechanical properties and corrosion resistance prepared by mechanical alloying and hot pressing sintering. Materials & Design, 117, 193–202.
Sharma, A. (2021). High Entropy Alloy Coatings and Technology. Coatings, 11(4), 372. https://doi.org/10.3390/coatings11040372
Shi, Y., Yang, B., Rack, P. D., Guo, S., Liaw, P. K., & Zhao, Y. (2020a). High-throughput synthesis and corrosion behavior of sputter-deposited nanocrystalline Alx(CoCrFeNi)100-x combinatorial high-entropy alloys. Materials and Design, 195, 109018.
Shi, Y., Yang, B., Rack, P. D., Guo, S., Liaw, P. K., & Zhao, Y. (2020b). High-throughput synthesis and corrosion behavior of sputter-deposited nanocrystalline Al (CoCrFeNi)100- combinatorial high-entropy alloys. Materials & Design, 195, 109018.
Simon, A. H. (2018). Sputter Processing. In Handbook of Thin Film Deposition (Second Edi, pp. 195–230). Elsevier.
Sun, X., Cheng, X., Cai, H., Ma, S., Xu, Z., & Ali, T. (2020). Microstructure, mechanical and physical properties of FeCoNiAlMnW high-entropy films deposited by magnetron sputtering. Applied Surface Science, 507(November 2019), 145131.
Surmenev, R. A., Surmeneva, M. A., Grubova, I. Y., Chernozem, R. V., Krause, B., Baumbach, T., Loza, K., & Epple, M. (2017). RF magnetron sputtering of a hydroxyapatite target: A comparison study on polytetrafluorethylene and titanium substrates. Applied Surface Science, 414, 335–344.
Surmenev, R., Vladescu, A., Surmeneva, M., Ivanova, A., Braic, M., Grubova, I., & Cotrut, C. M. (2017). Radio Frequency Magnetron Sputter Deposition as a Tool for Surface Modification of Medical Implants. In Modern Technologies for Creating the Thin-film Systems and Coatings (pp. 214–248). InTech.
Tan, S., Liu, X., & Wang, Z. (2021). Nanoindentation mechanical properties of CoCrFeNi high entropy alloy films. Materials Technology, 00(00), 1–12.
Tüten, N., Canadinc, D., Motallebzadeh, A., & Bal, B. (2019a). Intermetallics Microstructure and tribological properties of TiTaHfNbZr high entropy alloy coatings deposited on Ti e 6Al e 4V substrates. Intermetallics, 105(November 2018), 99–106.
Tüten, N., Canadinc, D., Motallebzadeh, A., & Bal, B. (2019b). Microstructure and tribological properties of TiTaHfNbZr high entropy alloy coatings deposited on Ti 6Al 4V substrates. Intermetallics, 105(August 2018), 99–106.
Vladescu, A., Braic, M., Azem, F. A., Titorencu, I., Braic, V., Pruna, V., Kiss, A., Parau, A. C., & Birlik, I. (2015). Effect of the deposition temperature on corrosion resistance and biocompatibility of the hydroxyapatite coatings. Applied Surface Science, 354, 373–379.
Wang, C., Li, X., Li, Z., Wang, Q., Zheng, Y., Ma, Y., Bi, L., Zhang, Y., Yuan, X., Zhang, X., Dong, C., & Liaw, P. K. (2020). The resistivity–temperature behavior of Al CoCrFeNi high-entropy alloy films. Thin Solid Films, 700(September 2019), 137895.
Wang, H., Liu, J., Xing, Z., Ma, G.-Z., Cui, X., Jin, G., & Xu, B. (2020a). Microstructure and corrosion behaviour of AlCoFeNiTiZr high-entropy alloy films. Surface Engineering, 36(1), 78–85.
Wang, H., Liu, J., Xing, Z., Ma, G., Cui, X., Jin, G., & Xu, B. (2020b). Microstructure and corrosion behaviour of AlCoFeNiTiZr high-entropy alloy films. 0844.
Wang, J., Kuang, S., Yu, X., Wang, L., & Huang, W. (2020). Tribo-mechanical properties of CrNbTiMoZr high-entropy alloy film synthesized by direct current magnetron sputtering. Surface and Coatings Technology, 403(August), 126374.
Wang, Y., He, N., Wang, C., Li, J., Guo, W., Sui, Y., & Lan, J. (2022). Microstructure and tribological performance of (AlCrWTiMo)N film controlled by substrate temperature. Applied Surface Science, 574(August 2021), 151677.
Wu, W., Jiang, L., Jiang, H., Pan, X., Cao, Z., Deng, D., Wang, T., & Li, T. (2015). Phase Evolution and Properties of Al2CrFeNiMo x High-Entropy Alloys Coatings by Laser Cladding. Journal of Thermal Spray Technology, 24(7), 1333–1340.
Xing, Q., Wang, H., Chen, M., Chen, Z., Li, R., Jin, P., & Zhang, Y. (2019). Mechanical Properties and Corrosion Resistance of NbTiAlSiZrNx High-Entropy Films Prepared by RF Magnetron Sputtering. Entropy, 21(4), 396. https://doi.org/10.3390/e21040396
Xing, Q., Xia, S., & Yan, X. (2018). Mechanical properties and thermal stability of ( NbTiAlSiZr ) N x high-entropy ceramic fi lms at high temperatures. 3347–3354.
Xu, Y., Li, G., Li, G., Gao, F., & Xia, Y. (2021). Effect of bias voltage on the growth of super-hard (AlCrTiVZr)N high-entropy alloy nitride films synthesized by high power impulse magnetron sputtering. Applied Surface Science, 564(March), 1–10.
Yalamanchili, K., Wang, F., Schramm, I. C., Andersson, J. M., Johansson Jöesaar, M. P., Tasnádi, F., Mücklich, F., Ghafoor, N., & Odén, M. (2017). Exploring the high entropy alloy concept in (AlTiVNbCr)N. Thin Solid Films, 636, 346–352.
Yang, J., Shi, K., Chen, Q., Zhang, W., Zhu, C., Ning, Z., Liao, J., Yang, Y., Liu, N., & Yang, J. (2021). Effect of Au-ion irradiation on the surface morphology, microstructure and mechanical properties of amorphous AlCrFeMoTi HEA coating. Surface and Coatings Technology, 418(March), 127252.
Yang, W., Liu, Y., Pang, S., Liaw, P. K., & Zhang, T. (2020). Bio-corrosion behavior and in vitro biocompatibility of equimolar TiZrHfNbTa high-entropy alloy. Intermetallics, 124(March), 106845.
Yeh, J. W., Chen, S. K., Lin, S. J., Gan, J. Y., Chin, T. S., Shun, T. T., Tsau, C. H., & Chang, S. Y. (2004). Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Advanced Engineering Materials, 6(5), 299–303.
Yoosefan, F., Ashrafi, A., Mahmoud, S., & Constantin, I. (2020). Synthesis of CoCrFeMnNi High Entropy Alloy Thin Films by Pulse Electrodeposition : Part 1 : Effect of Pulse Electrodeposition Parameters. Metals and Materials International, 26(8), 1262–1269.
Yu, X., Wang, J., Wang, L., & Huang, W. (2021). Fabrication and characterization of CrNbSiTiZr high-entropy alloy films by radio-frequency magnetron sputtering via tuning substrate bias. Surface and Coatings Technology, 412(December 2020), 127074.
Zendejas Medina, L., Riekehr, L., & Jansson, U. (2020). Phase formation in magnetron sputtered CrMnFeCoNi high entropy alloy. Surface and Coatings Technology, 403(April), 126323.
Zendejas Medina, L., Tavares da Costa, M. V., Paschalidou, E. M., Lindwall, G., Riekehr, L., Korvela, M., Fritze, S., Kolozsvári, S., Gamstedt, E. K., Nyholm, L., & Jansson, U. (2021). Enhancing corrosion resistance, hardness, and crack resistance in magnetron sputtered high entropy CoCrFeMnNi coatings by adding carbon. Materials and Design, 205.
Zeng, Q., & Xu, Y. (2020). A comparative study on the tribocorrosion behaviors of AlFeCrNiMo high entropy alloy coatings and 304 stainless steel. Materials Today Communications, 24(February), 101261.
Zhang, C., Gunes, O., Li, Y., Cui, X., Mohammadtaheri, M., Wen, S.-J., Wong, R., Yang, Q., & Kasap, S. (2019). The Effect of Substrate Biasing during DC Magnetron Sputtering on the Quality of VO2 Thin Films and Their Insulator–Metal Transition Behavior. Materials, 12(13), 2160.
Zhang, M., Zhou, X., Yu, X., & Li, J. (2017a). Surface & Coatings Technology Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding. Surface & Coatings Technology, 311, 321–329.
Zhang, M., Zhou, X., Yu, X., & Li, J. (2017b). Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding. Surface and Coatings Technology, 311, 321–329.
Zhang, X., Ma, S., Li, F., Yang, F., Liu, J., & Zhao, Q. (2013). Effects of substrate temperature on the growth orientation and optical properties of ZnO:Fe films synthesized via magnetron sputtering. Journal of Alloys and Compounds, 574, 149–154.
Zhang, Y., Wang, D., & Wang, S. (2022). High-Entropy Alloys for Electrocatalysis: Design, Characterization, and Applications. Small, 18(7), 1–22.
Zhang, Y., Zuo, T. T., Tang, Z., Gao, M. C., Dahmen, K. A., Liaw, P. K., & Lu, Z. P. (2014). Microstructures and properties of high-entropy alloys. Progress in Materials Science, 61(November 2013), 1–93.
Zhao, F., Song, Z. X., Zhang, G. F., Hou, X. D., & Deng, D. W. (2013). Effects of substrate bias on structure and mechanical properties of AlCrTiWNbTa coatings. Surface Engineering, 29(10), 778–782.
Zhao, S., Liu, C., Yang, J., Zhang, W., He, L., Zhang, R., Yang, H., Wang, J., Long, J., & Chang, H. (2021). Mechanical and high-temperature corrosion properties of AlTiCrNiTa high entropy alloy coating prepared by magnetron sputtering for accident-tolerant fuel cladding. Surface and Coatings Technology, 417(December 2020), 127228.
Zhou, R., Chen, G., Liu, B., Wang, J., Han, L., & Liu, Y. (2018). Microstructures and wear behaviour of (FeCoCrNi)1-x(WC)x high entropy alloy composites. International Journal of Refractory Metals and Hard Materials, 75(April), 56–62.