How to cite this paper
Acar, M & Motlagh, P. (2024). A new framework for optimizing energy harvesting from smart composites integrated with piezoelectric patches utilizing lamination parameters.Engineering Solid Mechanics, 12(2), 141-156.
Refrences
Aghakhani, A., Lahe Motlagh, P., Bediz, B., & Basdogan, I. (2019). A general electromechanical model for plates with integrated piezo-patches using spectral-Tchebychev method. Journal of Sound and Vibration, 458, 74–88.
Albazzan, M. A., Harik, R., Tatting, B. F., & Gürdal, Z. (2019). Efficient design optimization of nonconventional laminated composites using lamination parameters: A state of the art. Composite Structures, 209, 362–374.
Bhat, R. B. (1985). Natural frequencies of rectangular plates using characteristic orthogonal polynomials in rayleigh-ritz method. Journal of Sound and Vibration, 102(4), 493–499.
Cook-Chennault, K. A., Thambi, N., & Sastry, A. M. (2008). Powering MEMS portable devices—A review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Materials and Structures, 17(4), 043001.
Detwiler, D. T., Shen, M.-H. H., & Venkayya, V. B. (1995). Finite element analysis of laminated composite structures containing distributed piezoelectric actuators and sensors. Finite Elements in Analysis and Design, 20(2), 87–100.
Erturk, A., & Inman, D. J. (2009). An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Materials and Structures, 18(2), 025009.
Fakhzan, M. N., & Muthalif, A. G. A. (2013). Harvesting vibration energy using piezoelectric material: Modeling, simulation and experimental verifications. Mechatronics, 23(1), 61–66.
Gohari, S., Sharifi, S., & Vrcelj, Z. (2016). New explicit solution for static shape control of smart laminated cantilever piezo-composite-hybrid plates/beams under thermo-electro-mechanical loads using piezoelectric actuators. Composite Structures, 145, 89–112.
Howells, C. A. (2009). Piezoelectric energy harvesting. Energy Conversion and Management, 50(7), 1847–1850.
Kim, H. S., Kim, J.-H., & Kim, J. (2011). A review of piezoelectric energy harvesting based on vibration. International Journal of Precision Engineering and Manufacturing, 12(6), 1129–1141.
Lahe Motlagh, P., Bediz, B., Alan, S., & Kefal, A. (2023). Analysis of smart laminated composites integrated with piezoelectric patches using spectral element method and lamination parameters. Journal of Sound and Vibration, 567, 118063.
Lam, K. Y., Peng, X. Q., Liu, G. R., & Reddy, J. N. (1997). A finite-element model for piezoelectric composite laminates. Smart Materials and Structures, 6(5), 583–591.
Lee, C. K. (1990). Theory of laminated piezoelectric plates for the design of distributed sensors/actuators. Part I: Governing equations and reciprocal relationships. The Journal of the Acoustical Society of America, 87(3), 1144–1158.
Li, H., Tian, C., & Deng, Z. D. (2014). Energy harvesting from low frequency applications using piezoelectric materials. Applied Physics Reviews, 1(4), 041301.
Liu, X.-M. (2023). Mechanical response of composite materials prepared with polyurethane elastomers and polyvinyl chloride films. Journal of the Mechanical Behavior of Biomedical Materials, 106006.
Motlagh, P. L., Aghakhani, A., & Basdogan, I. (2018). Passive vibration control of a plate via piezoelectric shunt damping with FEM and ECM. Smart Materials and Nondestructive Evaluation for Energy Systems IV, 10601, 8–15.
Motlagh, P. L., Anamagh, M. R., Bediz, B., & Basdogan, I. (2021). Electromechanical analysis of functionally graded panels with surface-integrated piezo-patches for optimal energy harvesting. Composite Structures, 263, 113714.
Motlagh, P. L., Bediz, B., & Basdogan, I. (2020). A spectral Tchebychev solution for electromechanical analysis of thin curved panels with multiple integrated piezo-patches. Journal of Sound and Vibration, 486, 115612.
Park, J. H., Hwang, J. H., Lee, C. S., & Hwang, W. (2001). Stacking sequence design of composite laminates for maximum strength using genetic algorithms. Composite Structures, 52(2), 217–231.
Torres, E. O., & Rincon-Mora, G. A. (2009). Electrostatic Energy-Harvesting and Battery-Charging CMOS System Prototype. IEEE Transactions on Circuits and Systems I: Regular Papers, 56(9), 1938–1948.
Tsai, S. W., & Hahn, T. (n.d.). INTRODUCTION TO COMPOSITE MATERIALS.
Wan, X., Cong, H., Jiang, G., Liang, X., Liu, L., & He, H. (2023). A Review on PVDF Nanofibers in Textiles for Flexible Piezoelectric Sensors. ACS Applied Nano Materials, 6(3), 1522–1540.
Yang, B., Lee, C., Xiang, W., Xie, J., Han He, J., Kotlanka, R. K., Low, S. P., & Feng, H. (2009). Electromagnetic energy harvesting from vibrations of multiple frequencies. Journal of Micromechanics and Microengineering, 19(3), 035001.
Yang, H., Guo, M., Wang, L., Hou, Y., Zhao, Q., Cao, D., Zhou, B., & Wang, D. (2017). Investigation on the factors influencing the performance of piezoelectric energy harvester. Road Materials and Pavement Design, 18(sup3), 180–189.
Yoon, H., Youn, B. D., & Kim, H. S. (2016). Kirchhoff plate theory-based electromechanically coupled analytical model considering inertia and stiffness effects of a surface-bonded piezoelectric patch. Smart Materials and Structures, 25(2), 025017.
Zhang, Y. X., & Yang, C. H. (2009). Recent developments in finite element analysis for laminated composite plates. Composite Structures, 88(1), 147–157.
Zhou, M., Al-Furjan, M. S. H., & Wang, B. (2018). Modeling and Efficiency Analysis of a Piezoelectric Energy Harvester Based on the Flow Induced Vibration of a Piezoelectric Composite Pipe. Sensors, 18(12), Article 12.
Albazzan, M. A., Harik, R., Tatting, B. F., & Gürdal, Z. (2019). Efficient design optimization of nonconventional laminated composites using lamination parameters: A state of the art. Composite Structures, 209, 362–374.
Bhat, R. B. (1985). Natural frequencies of rectangular plates using characteristic orthogonal polynomials in rayleigh-ritz method. Journal of Sound and Vibration, 102(4), 493–499.
Cook-Chennault, K. A., Thambi, N., & Sastry, A. M. (2008). Powering MEMS portable devices—A review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Materials and Structures, 17(4), 043001.
Detwiler, D. T., Shen, M.-H. H., & Venkayya, V. B. (1995). Finite element analysis of laminated composite structures containing distributed piezoelectric actuators and sensors. Finite Elements in Analysis and Design, 20(2), 87–100.
Erturk, A., & Inman, D. J. (2009). An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Materials and Structures, 18(2), 025009.
Fakhzan, M. N., & Muthalif, A. G. A. (2013). Harvesting vibration energy using piezoelectric material: Modeling, simulation and experimental verifications. Mechatronics, 23(1), 61–66.
Gohari, S., Sharifi, S., & Vrcelj, Z. (2016). New explicit solution for static shape control of smart laminated cantilever piezo-composite-hybrid plates/beams under thermo-electro-mechanical loads using piezoelectric actuators. Composite Structures, 145, 89–112.
Howells, C. A. (2009). Piezoelectric energy harvesting. Energy Conversion and Management, 50(7), 1847–1850.
Kim, H. S., Kim, J.-H., & Kim, J. (2011). A review of piezoelectric energy harvesting based on vibration. International Journal of Precision Engineering and Manufacturing, 12(6), 1129–1141.
Lahe Motlagh, P., Bediz, B., Alan, S., & Kefal, A. (2023). Analysis of smart laminated composites integrated with piezoelectric patches using spectral element method and lamination parameters. Journal of Sound and Vibration, 567, 118063.
Lam, K. Y., Peng, X. Q., Liu, G. R., & Reddy, J. N. (1997). A finite-element model for piezoelectric composite laminates. Smart Materials and Structures, 6(5), 583–591.
Lee, C. K. (1990). Theory of laminated piezoelectric plates for the design of distributed sensors/actuators. Part I: Governing equations and reciprocal relationships. The Journal of the Acoustical Society of America, 87(3), 1144–1158.
Li, H., Tian, C., & Deng, Z. D. (2014). Energy harvesting from low frequency applications using piezoelectric materials. Applied Physics Reviews, 1(4), 041301.
Liu, X.-M. (2023). Mechanical response of composite materials prepared with polyurethane elastomers and polyvinyl chloride films. Journal of the Mechanical Behavior of Biomedical Materials, 106006.
Motlagh, P. L., Aghakhani, A., & Basdogan, I. (2018). Passive vibration control of a plate via piezoelectric shunt damping with FEM and ECM. Smart Materials and Nondestructive Evaluation for Energy Systems IV, 10601, 8–15.
Motlagh, P. L., Anamagh, M. R., Bediz, B., & Basdogan, I. (2021). Electromechanical analysis of functionally graded panels with surface-integrated piezo-patches for optimal energy harvesting. Composite Structures, 263, 113714.
Motlagh, P. L., Bediz, B., & Basdogan, I. (2020). A spectral Tchebychev solution for electromechanical analysis of thin curved panels with multiple integrated piezo-patches. Journal of Sound and Vibration, 486, 115612.
Park, J. H., Hwang, J. H., Lee, C. S., & Hwang, W. (2001). Stacking sequence design of composite laminates for maximum strength using genetic algorithms. Composite Structures, 52(2), 217–231.
Torres, E. O., & Rincon-Mora, G. A. (2009). Electrostatic Energy-Harvesting and Battery-Charging CMOS System Prototype. IEEE Transactions on Circuits and Systems I: Regular Papers, 56(9), 1938–1948.
Tsai, S. W., & Hahn, T. (n.d.). INTRODUCTION TO COMPOSITE MATERIALS.
Wan, X., Cong, H., Jiang, G., Liang, X., Liu, L., & He, H. (2023). A Review on PVDF Nanofibers in Textiles for Flexible Piezoelectric Sensors. ACS Applied Nano Materials, 6(3), 1522–1540.
Yang, B., Lee, C., Xiang, W., Xie, J., Han He, J., Kotlanka, R. K., Low, S. P., & Feng, H. (2009). Electromagnetic energy harvesting from vibrations of multiple frequencies. Journal of Micromechanics and Microengineering, 19(3), 035001.
Yang, H., Guo, M., Wang, L., Hou, Y., Zhao, Q., Cao, D., Zhou, B., & Wang, D. (2017). Investigation on the factors influencing the performance of piezoelectric energy harvester. Road Materials and Pavement Design, 18(sup3), 180–189.
Yoon, H., Youn, B. D., & Kim, H. S. (2016). Kirchhoff plate theory-based electromechanically coupled analytical model considering inertia and stiffness effects of a surface-bonded piezoelectric patch. Smart Materials and Structures, 25(2), 025017.
Zhang, Y. X., & Yang, C. H. (2009). Recent developments in finite element analysis for laminated composite plates. Composite Structures, 88(1), 147–157.
Zhou, M., Al-Furjan, M. S. H., & Wang, B. (2018). Modeling and Efficiency Analysis of a Piezoelectric Energy Harvester Based on the Flow Induced Vibration of a Piezoelectric Composite Pipe. Sensors, 18(12), Article 12.