How to cite this paper
Reyes-Ramírez, A., Estrada-Cingualbres, R., Zúñiga-Igarza, L., Pérez-Rodríguez, R & Lorente-Leyva, L. (2024). Conceptual design vulnerability assessment of the housing light roofs to strong winds.Engineering Solid Mechanics, 12(2), 133-140.
Refrences
Alarcón Borges, R. Y., Pérez Montero, O., Tejera, R. G., Silveira, M. T. D., Montoya, J. C., Hernández Mestre, D., Vazquez, J. M., Mestanza-Ramon, C., Hernandez-Guzmán, D., & Milanes, C. B. (2023). Legal Risk in the Management of Forest Cover in a River Basin San Juan, Cuba. Land, 12 (4), 842. doi: 10.3390/land12040842.
Arrayago, I., Rasmussen, K. J. R., & Zhang, H. (2022). System-based reliability analysis of stainless steel frames subjected to gravity and wind loads. Struct. Saf., 97, 102211. doi: 10.1016/j.strusafe.2022.102211.
Bhardwaj, J., Yadav, A., Chauhan, M. S., & Chauhan, A. S. (2021). Kano model analysis for enhancing customer satisfaction of an automotive product for Indian market. Materials Today: Proceedings, 46, 10996-11001. doi: 10.1016/j.matpr.2021.02.093.
Habte, F., Asghari Mooneghi, M., Gan Chowdhury, A., & Irwin, P. (2015). Full-scale testing to evaluate the performance of standing seam metal roofs under simulated wind loading. Eng. Struct., 105, 231-248. doi: 10.1016/j.engstruct.2015.10.006.
Kwan, K., & Kopp, G. A. (2021). The effects of edge radius on wind tunnel tests of low-rise buildings. J. Wind Eng. Ind., 214, 104668. doi: 10.1016/j.jweia.2021.104668.
Papathoma-Köhle, M., Gems, B., Sturm, M., & Fuchs, S. (2017). Matrices, curves and indicators: A review of approaches to assess physical vulnerability to debris flows. Earth Sci. Rev., 171, 272-288. doi: 10.1016/j.earscirev.2017.06.007.
Papathoma-Köhle, M., Ghazanfari, A., Mariacher, R., Huber, W., Lücksmann, T., & Fuchs, S. (2023). Vulnerability of Buildings to Meteorological Hazards: A Web-Based Application Using an Indicator-Based Approach. Appl. Sci., 13 (10), 6253. doi: 10.3390/app13106253.
Pereira, C. I., Botero, C. M., Ricaurte-Villota, C., Coca, O., Morales, D., Cuker, B., & Milanes, C. B. (2022). Grounding the SHIELD Model for Tropical Coastal Environments. Sustainability, 14 (19), 12317. doi: 10.3390/su141912317.
Qin, H., & Stewart, M. G. (2020). Construction defects and wind fragility assessment for metal roof failure: A Bayesian approach. Reliab. Eng., 197, 106777. doi: 10.1016/j.ress.2019.106777.
Reyes Ramírez, A., Estrada Cingualbres, R. A., de la Rosa Melián, J. E., & Pérez Rodríguez, R. (2022). Procedure for the simulation of extreme wind loads on light metal roofs, (in Spanish). Ingeniería Mecánica, 25 (2), e643.
Shin, J.-G., Heo, I.-S., Yae, J.-H., & Kim, S.-H. (2022). Kano model of autonomous driving user acceptance according to driver characteristics: A survey study. Transp Res Part F Traffic Psychol Behav., 91, 73-86. doi: 10.1016/j.trf.2022.10.002.
Singhal, A., & Jha, S. K. (2021). Can the approach of vulnerability assessment facilitate identification of suitable adaptation models for risk reduction?. Int. J. Disaster Risk Reduct., 63, 102469. doi: 10.1016/j.ijdrr.2021.102469.
Stevenson, S. A., El Ansary, A. M., & Kopp, G.A. (2019). A practical modelling technique to assess the performance of wood-frame roofs under extreme wind loads. Eng. Struct., 191, 640-648, 2019, DOI: 10.1016/j.engstruct.2019.04.058.
Wang, J., & Kopp, G. A. (2021). Comparisons of Aerodynamic Data with the Main Wind Force–Resisting System Provisions of ASCE 7-16. I: Low-Rise Buildings. J. Struct. Eng., 147, (3), 04020347. doi: 10.1061/(ASCE)ST.1943-541X.0002925.
Arrayago, I., Rasmussen, K. J. R., & Zhang, H. (2022). System-based reliability analysis of stainless steel frames subjected to gravity and wind loads. Struct. Saf., 97, 102211. doi: 10.1016/j.strusafe.2022.102211.
Bhardwaj, J., Yadav, A., Chauhan, M. S., & Chauhan, A. S. (2021). Kano model analysis for enhancing customer satisfaction of an automotive product for Indian market. Materials Today: Proceedings, 46, 10996-11001. doi: 10.1016/j.matpr.2021.02.093.
Habte, F., Asghari Mooneghi, M., Gan Chowdhury, A., & Irwin, P. (2015). Full-scale testing to evaluate the performance of standing seam metal roofs under simulated wind loading. Eng. Struct., 105, 231-248. doi: 10.1016/j.engstruct.2015.10.006.
Kwan, K., & Kopp, G. A. (2021). The effects of edge radius on wind tunnel tests of low-rise buildings. J. Wind Eng. Ind., 214, 104668. doi: 10.1016/j.jweia.2021.104668.
Papathoma-Köhle, M., Gems, B., Sturm, M., & Fuchs, S. (2017). Matrices, curves and indicators: A review of approaches to assess physical vulnerability to debris flows. Earth Sci. Rev., 171, 272-288. doi: 10.1016/j.earscirev.2017.06.007.
Papathoma-Köhle, M., Ghazanfari, A., Mariacher, R., Huber, W., Lücksmann, T., & Fuchs, S. (2023). Vulnerability of Buildings to Meteorological Hazards: A Web-Based Application Using an Indicator-Based Approach. Appl. Sci., 13 (10), 6253. doi: 10.3390/app13106253.
Pereira, C. I., Botero, C. M., Ricaurte-Villota, C., Coca, O., Morales, D., Cuker, B., & Milanes, C. B. (2022). Grounding the SHIELD Model for Tropical Coastal Environments. Sustainability, 14 (19), 12317. doi: 10.3390/su141912317.
Qin, H., & Stewart, M. G. (2020). Construction defects and wind fragility assessment for metal roof failure: A Bayesian approach. Reliab. Eng., 197, 106777. doi: 10.1016/j.ress.2019.106777.
Reyes Ramírez, A., Estrada Cingualbres, R. A., de la Rosa Melián, J. E., & Pérez Rodríguez, R. (2022). Procedure for the simulation of extreme wind loads on light metal roofs, (in Spanish). Ingeniería Mecánica, 25 (2), e643.
Shin, J.-G., Heo, I.-S., Yae, J.-H., & Kim, S.-H. (2022). Kano model of autonomous driving user acceptance according to driver characteristics: A survey study. Transp Res Part F Traffic Psychol Behav., 91, 73-86. doi: 10.1016/j.trf.2022.10.002.
Singhal, A., & Jha, S. K. (2021). Can the approach of vulnerability assessment facilitate identification of suitable adaptation models for risk reduction?. Int. J. Disaster Risk Reduct., 63, 102469. doi: 10.1016/j.ijdrr.2021.102469.
Stevenson, S. A., El Ansary, A. M., & Kopp, G.A. (2019). A practical modelling technique to assess the performance of wood-frame roofs under extreme wind loads. Eng. Struct., 191, 640-648, 2019, DOI: 10.1016/j.engstruct.2019.04.058.
Wang, J., & Kopp, G. A. (2021). Comparisons of Aerodynamic Data with the Main Wind Force–Resisting System Provisions of ASCE 7-16. I: Low-Rise Buildings. J. Struct. Eng., 147, (3), 04020347. doi: 10.1061/(ASCE)ST.1943-541X.0002925.