How to cite this paper
Berkia, A., Rebai, B., Mansouri, K., Chitour, M & Khadraoui, F. (2024). Using finite element modeling to predict stress concentration factors in tubular T, Y and K joints.Engineering Solid Mechanics, 12(2), 103-112.
Refrences
Alaoui, A. E. M. (2005). Influence du chargement sur la propagation en fatigue de fissures courtes dans un acier de construction navale (Doctoral dissertation, Université de Metz).
Castem software, http://www-cast3m.cea.fr/.
Clough, R. W., & Johnson, C. P. (1968). A finite element approximation for the analysis of thin shells. International Journal of Solids and Structures, 4(1), 43-60.
Efthymiou, M. (1988). Development of SCF formulae and generalised influence functions for use in fatigue analysis.
El Fakkoussi, S., Moustabchir, H., Elkhalfi, A., & Pruncu, C. I. (2019). Computation of the stress intensity factor KI for external longitudinal semi-elliptic cracks in the pipelines by FEM and XFEM methods. International Journal on Interactive Design and Manufacturing (IJIDeM), 13(2), 545-555.
Fuštar, B., Lukačević, I., & Dujmović, D. (2018). Review of fatigue assessment methods for welded steel structures. Advances in Civil Engineering, 2018.
Gibstein, M. B. (1978, November). Parametric stress analysis of T joints. In European Offshore Steels Research Seminar[Proc. Conf.].
Gibstein, M. B., & Moe, E. T. (1981, October). Numerical and experimental stress analysis of tubular joints with inclined braces. In SIMS (Vol. 6, p. 15).
Guidance on Design, “Construction and Certification. HSE”. February (1995).
Jukić, K., Perić, M., Tonković, Z., Skozrit, I., & Jarak, T. (2021). Numerical Calculation of Stress Intensity Factors for Semi-Elliptical Surface Cracks in Buried-Arc Welded Thick Plates. Metals, 11(11), 1809.
Karamanos, S. A., Romeijn, A., & Wardenier, J. (2000). Stress concentrations in tubular gap K-joints: mechanics and fatigue design. Engineering Structures, 22(1), 4-14.
Kuang, J. G., Potvin, A. B., & Leick, R. D. (1975). Stress Concentration in Tubular Joints', OTC 2205. Annual Offshore Technology Confer-ence, May 1975.
Li, Y., Chen, J., & Ren, N. (2014). Refined fatigue analysis for the tripod support structure of offshore wind turbine (OWT). EJGE, 19, 4193-4200.
Mansouri, K., Abboudi, A., & Djebaili, H. (2022). Vickers Hardness Test of Steel Pipes Welded by High Frequency Induction. Journal Of Nano- And Electronic Physics. 14 (1).
Nazari, A., Daniel, W. T., Guan, Z., & Gurgenci, H. (2007). Parametric equations using generic representation of joint stiffness. Journal of Offshore Mechanics and Arctic Engineering, 129(2), 131-137.
N’diaye, A., Hariri, S., Pluvinage, G., & Azari, Z. (2007). Stress concentration factor analysis for notched welded tubular T-joints. International Journal of Fatigue, 29(8), 1554-1570.
OH, C. Y., Kim, Y. J., OH, Y. J., Song, T. K., & Kim, Y. B. (2012). Estimation of stress intensity factors for circumferential cracked pipes under welding residual stress filed. Transactions of the Korean Nuclear Society Autumn Meeting, Gyeongju, Korea.
Pang, H. L. J., & Lee, C. W. (1995). Three-dimensional finite element analysis of a tubular T-joint under combined axial and bending loading. International journal of fatigue, 17(5), 313-320.
PD6493, B. S. I. (1991). Guidance on methods for assessing the acceptability of flaws in fusion welded structures. British Standard Institute.
Potvin, A. B., Kuang, J. G., Leick, R. D., & Kahlich, J. L. (1977). Stress concentration in tubular joints. Society of Petroleum Engineers Journal, 17(04), 287-299.
Smedley, S., & Fischer, P. J. (1991, August). Stress concentration factors for ring-stiffened tubular joints. In First International Offshore and Polar Engineering Conference (ISOPE), Edinburgh, Scotland, Aug (pp. 11-16).
Wang, X., & Lambert, S. B. (2003). On the calculation of stress intensity factors for surface cracks in welded pipe–plate and tubular joints. International journal of fatigue, 25(1), 89-96.
Wang, H. (2016). Numerical investigation of fracture spacing and sequencing effects on multiple hydraulic fracture interference and coalescence in brittle and ductile reservoir rocks. Engineering Fracture Mechanics, 157, 107-124.
Yao, X. M., Zhang, Y. C., Pei, Q., Jin, L. Z., Ma, T. H., He, X. H., & Zhou, C. Y. (2022). Empirical Solution of Stress Intensity Factors for the Inclined Inner Surface Crack of Pipe under External Pressure and Axial Compression. Materials, 16(1), 364.
Yearbook, S. S. (2017). World Steel Association: Brussels.
Zhen, C. H. E. N., Xue-Qing, L. I. U., Kui, W. A. N. G., Lu-Yi, L. U., & Qing-Ren, W. A. N. G. (2016, December). Cracking failure analysis of T-type welded tee in waste heat boiler. In 3rd International Conference on Material Engineering and Application (ICMEA 2016) (pp. 427-432). Atlantis Press.
Castem software, http://www-cast3m.cea.fr/.
Clough, R. W., & Johnson, C. P. (1968). A finite element approximation for the analysis of thin shells. International Journal of Solids and Structures, 4(1), 43-60.
Efthymiou, M. (1988). Development of SCF formulae and generalised influence functions for use in fatigue analysis.
El Fakkoussi, S., Moustabchir, H., Elkhalfi, A., & Pruncu, C. I. (2019). Computation of the stress intensity factor KI for external longitudinal semi-elliptic cracks in the pipelines by FEM and XFEM methods. International Journal on Interactive Design and Manufacturing (IJIDeM), 13(2), 545-555.
Fuštar, B., Lukačević, I., & Dujmović, D. (2018). Review of fatigue assessment methods for welded steel structures. Advances in Civil Engineering, 2018.
Gibstein, M. B. (1978, November). Parametric stress analysis of T joints. In European Offshore Steels Research Seminar[Proc. Conf.].
Gibstein, M. B., & Moe, E. T. (1981, October). Numerical and experimental stress analysis of tubular joints with inclined braces. In SIMS (Vol. 6, p. 15).
Guidance on Design, “Construction and Certification. HSE”. February (1995).
Jukić, K., Perić, M., Tonković, Z., Skozrit, I., & Jarak, T. (2021). Numerical Calculation of Stress Intensity Factors for Semi-Elliptical Surface Cracks in Buried-Arc Welded Thick Plates. Metals, 11(11), 1809.
Karamanos, S. A., Romeijn, A., & Wardenier, J. (2000). Stress concentrations in tubular gap K-joints: mechanics and fatigue design. Engineering Structures, 22(1), 4-14.
Kuang, J. G., Potvin, A. B., & Leick, R. D. (1975). Stress Concentration in Tubular Joints', OTC 2205. Annual Offshore Technology Confer-ence, May 1975.
Li, Y., Chen, J., & Ren, N. (2014). Refined fatigue analysis for the tripod support structure of offshore wind turbine (OWT). EJGE, 19, 4193-4200.
Mansouri, K., Abboudi, A., & Djebaili, H. (2022). Vickers Hardness Test of Steel Pipes Welded by High Frequency Induction. Journal Of Nano- And Electronic Physics. 14 (1).
Nazari, A., Daniel, W. T., Guan, Z., & Gurgenci, H. (2007). Parametric equations using generic representation of joint stiffness. Journal of Offshore Mechanics and Arctic Engineering, 129(2), 131-137.
N’diaye, A., Hariri, S., Pluvinage, G., & Azari, Z. (2007). Stress concentration factor analysis for notched welded tubular T-joints. International Journal of Fatigue, 29(8), 1554-1570.
OH, C. Y., Kim, Y. J., OH, Y. J., Song, T. K., & Kim, Y. B. (2012). Estimation of stress intensity factors for circumferential cracked pipes under welding residual stress filed. Transactions of the Korean Nuclear Society Autumn Meeting, Gyeongju, Korea.
Pang, H. L. J., & Lee, C. W. (1995). Three-dimensional finite element analysis of a tubular T-joint under combined axial and bending loading. International journal of fatigue, 17(5), 313-320.
PD6493, B. S. I. (1991). Guidance on methods for assessing the acceptability of flaws in fusion welded structures. British Standard Institute.
Potvin, A. B., Kuang, J. G., Leick, R. D., & Kahlich, J. L. (1977). Stress concentration in tubular joints. Society of Petroleum Engineers Journal, 17(04), 287-299.
Smedley, S., & Fischer, P. J. (1991, August). Stress concentration factors for ring-stiffened tubular joints. In First International Offshore and Polar Engineering Conference (ISOPE), Edinburgh, Scotland, Aug (pp. 11-16).
Wang, X., & Lambert, S. B. (2003). On the calculation of stress intensity factors for surface cracks in welded pipe–plate and tubular joints. International journal of fatigue, 25(1), 89-96.
Wang, H. (2016). Numerical investigation of fracture spacing and sequencing effects on multiple hydraulic fracture interference and coalescence in brittle and ductile reservoir rocks. Engineering Fracture Mechanics, 157, 107-124.
Yao, X. M., Zhang, Y. C., Pei, Q., Jin, L. Z., Ma, T. H., He, X. H., & Zhou, C. Y. (2022). Empirical Solution of Stress Intensity Factors for the Inclined Inner Surface Crack of Pipe under External Pressure and Axial Compression. Materials, 16(1), 364.
Yearbook, S. S. (2017). World Steel Association: Brussels.
Zhen, C. H. E. N., Xue-Qing, L. I. U., Kui, W. A. N. G., Lu-Yi, L. U., & Qing-Ren, W. A. N. G. (2016, December). Cracking failure analysis of T-type welded tee in waste heat boiler. In 3rd International Conference on Material Engineering and Application (ICMEA 2016) (pp. 427-432). Atlantis Press.